107
Views
0
CrossRef citations to date
0
Altmetric
Basic Research

Effect of peripheral blood mononuclear cells on ischemia-reperfusion injury of sciatic nerve of adult male albino rat: histological, immunohistochemical, and ultrastructural study

ORCID Icon &
Pages 172-191 | Received 15 Nov 2023, Accepted 15 Feb 2024, Published online: 29 Feb 2024

References

  • Soares S, Losada D, Jordani M, Évora P, Castro-E-Silva O. Ischemia/Reperfusion injury revisited: an overview of the latest pharmacological strategies. Int J Mol Sci. 2019;20(20):5034. doi:10.3390/ijms20205034.
  • Zamorano M, Castillo R, Beltran J, et al. Tackling ischemic reperfusion injury with the aid of stem cells and tissue engineering. Front Physiol. 2021;12:1–18. doi:10.3389/fphys.2021.705256.
  • Naito H, Nojima T, Fujisaki N, et al. Therapeutic strategies for ischemia reperfusion injury in emergency medicine. Acute Medicine & Surgery. 2020;7(1):1–9. doi:10.1002/ams2.501.
  • Yi S, Cao H, Zheng W, et al. Targeting the opioid remifentanil: protective effects and molecular mechanisms against organ ischemia-reperfusion injury. Biomed Pharmacother. 2023;14(167):115472. doi:10.1016/j.biopha.2023.115472.
  • Sun H, Wang J, Bi W, et al. Sulforaphane ameliorates limb ischemia/reperfusion-induced muscular injury in mice by inhibiting pyroptosis and autophagy via the Nrf2-ARE pathway. Evid Based Complement Alternat Med. 2022;2022(11):1–9. doi:10.1155/2022/4653864.
  • Lanigan L, Russell D, Woolard K, Pardo I, Godfrey V, et al. Comparative pathology of the peripheral nervous system. Vet Pathol. 2021;58(1):10–33. doi:10.1177/0300985820959231.
  • Çakir T, Yücetaş C, Yazici G, et al. Ischemia-reperfusion injury of sciatic nerve in rats and protective role of benidipine hydrochloride. European Journal Of Therapeutics. 2021;27(4):286–292. doi:10.5152/eurjther.2021.21031.
  • Sen P, Kemppainen E, Orešic M. Perspectives on systems modeling of human peripheral blood mononuclear cells. Front Mol Biosci. 2018;4(96):1–11. doi:10.3389/fmolb.2017.00096.
  • Laggner M, Gugerell A, Bachmann C, et al. Reproducibility of GMP-compliant production of therapeutic stressed peripheral blood mononuclear cell-derived secretomes, a novel class of biological medicinal products. Stem Cell Res Ther. 2020 3;11(1):1–16. doi:10.1186/s13287-019-1524-2.
  • Gaertner D, Hallman T, Hankenson F, Batcherder M. Anesthesia and analgesia for laboratory rodents in. In: Fish R, Brown M, Danneman P Karas A, eds. Anesthesia and Analgesia in Laboratory Animals. 2nd ed. San Diego, CA. Boston: Academic Press; 2008:242–243.
  • Mansour Z, Charles A, Kindo M, Pottecher J, Chamaraux-Tran T, et al. Remote effects of lower limb ischemia-reperfusion: impaired lung, unchanged liver, and stimulated kidney oxidative capacities. Biomed Res Int. 2014;2014:1–7. doi:10.1155/2014/392390.
  • Rahmoune H, Guest P. Preparation of peripheral blood mononuclear cells (pbmcs) as a model for proteomic studies of psychiatric disorders in: guest. In: eds. Proteomic Methods in Neuropsychiatric Research. Advances in Experimental Medicine and iology. Vol. 974. 2017. doi:10.07/978-3-319-52479-528.
  • Şerban G, Mănescu I, Manu D, Dobreanu M. Optimization of a density gradient centrifugation protocol for isolation of peripheral blood mononuclear cells. Acta Medica Marisiensis Journal. 2018;64(2):83–90. doi:10.2478/amma-2018-0011.
  • Padilla L, Argüero-Sánchez R, Rodríguez-Trejo J, et al. Effect of autologous transplant of peripheral blood mononuclear cells in combination with proangiogenic factors during experimental revascularization of lower limb ischemia. J Tissue Eng Regen Med. 2020;14(4):600–608. doi:10.1002/term.3024.
  • Bancroft J, Layton C. The hematoxylins and eosin. In: Suvarna S, Layton C Bancroft J, eds. Bancroft’s Theory and Practice of Histological Techniques, 8th. Chapter 10. Philadelphia, USA: Elsevier; 2019:126–138.
  • Layton C, Bancroft J. Carbohydrates. In: Suvarna S, Layton C JD B, eds. Bancroft’s Theory and Practice of Histological Techniques, 8th ed. 8th ed: Churchill Livingstone, Elsevier. Philadelphia. chapter 12. Philadelphia, USA: Elsevier; 2019:215–239.
  • Zoghroban H, Ibrahim F, Nasef N, Saad A. The impact of L-citrulline on murine intestinal cell integrity, immune response, and arginine metabolism in the face of giardia lamblia infection. Acta Trop. 2023;237:106748. doi:10.1016/j.actatropica.2022.106748.
  • Jumabay M, Zhang L, Yao J, Boström K. Progenitor cells from brown adipose tissue undergo neurogenic differentiation. Sci Rep. 2022 4;12(1):5614–24. doi:10.1038/s41598-022-09382-8.
  • Shalaby A, Aboregela A, Alabiad M, Tayssir M. The effect of induced diabetes mellitus on the cerebellar cortex of adult male rat and the possible protective role of oxymatrine: a histological, immunohistochemical and biochemical study. Ultrastruct Pathol. 2021;45(3):182–196. doi:10.1080/01913123.2021.1926610.
  • Kashef S, Yassien R, El-Ghazouly D. The possible effect of lycopene in ameliorating experimentally induced ulcerative colitis in adult male albino rats (A histological, immunohistochemical, and ultrastructural study). Ultrastruct Pathol 2023 4;47(3):172–187. doi:10.1080/01913123.2023.2185718.
  • Woods A, Stirling J. Electron Microscope (22) in Theory and Practice of Histological Techniques. 7th ed. editors Bancroft J, Layton C & Suvarna S. New York, Toronto: Chuchill Livengstone; 2013:493–539.
  • Newman B, Jacokes Z, Venkadesh S, et al. Conduction velocity, g-ratio, and extracellular water as microstructural characteristics of autism spectrum disorder. 2023;25:2023. doi:10.1101/2023.07.23.550166.
  • Dawson B, Trapp RG. Basic and Clinical Biostatistics. 5th ed. New York: McGraw-Hill Education/Medical; 2020:190–220.
  • Tuncer S, Akkoca A, Celen MC, Dalkilic N. Can mito TEMPO protect rat sciatic nerve against ischemia-reperfusion injury? Naunyn-Schmiedeberg’s Arch Pharmacol. 2021;394(3):545–553. doi:10.1007/s00210-020-02039-1.
  • Mohamadian M, Parsamanesh N, Chiti H, Sathyapalan T, Sahebkar A. Protective effects of curcumin on ischemia/reperfusion injury. Phytother Res. 2022;36(12):4299–4324. doi:10.1002/ptr.7620.
  • Kamel N, El-Tanbouly D, Abdallah D, Sayed H. PAR1, a therapeutic target for remote lung injury associated with hind limb ischemia/reperfusion: ERK5/KLF2-dependent lung capillary barrier preservation. Chem Biol Interact. 2022;354(354):109809. doi:10.1016/j.cbi.2022.109809.
  • Korkmaz M, Parlakpinar H, Erdem M, et al. The therapeutic efficacy of dexpanthenol on sciatic nerve injury in a rat model. Br J Neurosurg. 2020;34(4):397–401. doi:10.1080/02688697.2020.1749984.
  • Da Rosa P, Bertomeu J, Royes L, Osiecki R. The physical exercise-induced oxidative/inflammatory response in peripheral blood mononuclear cells: signaling cellular energetic stress situations. Life Sci. 2023;321:121440. doi:10.1016/j.lfs.2023.121440.
  • de la Parte B H, Roa-Esparza J, Cearra I, et al. The prevention of ischemia-reperfusion injury in elderly rats after lower limb tourniquet use. Antioxidants (Basel). 2022 28;11(10):1936. doi:10.3390/antiox11101936.
  • Cearra I, Herrero de la Parte B, Moreno-Franco D, García-Alonso I. A reproducible method for biochemical, histological and functional assessment of the effects of ischaemia-reperfusion syndrome in the lower limbs. Sci Rep. 2021;11(1):19325. doi:10.1038/s41598-021-98887-9.
  • Dong S, Cao Y, Li H, Tian J, Yi C, Sang W. Impact of ischemic preconditioning on ischemia-reperfusion injury of the rat sciatic nerve. Int J Clin Exp Med. 2015;8:16245–16251.
  • Ozyigit F, Kucuk A, Akcer S, et al. Different dose-dependent effects of ebselen in -sciatic nerve ischemia-reperfusion injury in rats. Bosn J Basic Med Sci. 2015;15(4):36–43. doi:10.17305/bjbms.2015.521.
  • Apostolopoulou K, Konstantinou D, Alataki R, et al. Ischemia–reperfusion injury of sciatic nerve in rats: protective role of combination of vitamin c with e and tissue plasminogen activator. Neurochem Res. 2018;43(3):650–658. doi:10.1007/s11064-017-2465-8.
  • Tokmak M, Sehitoglu M, Yuksel Y, et al. The Axon protective effects of syringic acid on ischemia/reperfusion injury in a rat sciatic nerve model. Turk Neurosurg. 2017;27(1):124–132. doi:10.5137/1019-5149.JTN.14656-15.5.
  • Yuceli S, Yazici G, Mammadov R, Suleyman H, Ozdogan S. The effect of lutein on ischemia-reperfusion-induced vasculitic neuropathic pain and neuropathy in rats. vivo. 2021;35(3):1537–1543. doi:10.21873/invivo.12407.
  • Zedan O, Bashandy MA. Comparing effects of L-carnitine and sildenafil citrate on histopathologic recovery from sciatic nerve crush injury in female albino rats. Folia Morphol. 2022;81(2):421–434. doi:10.5603/FM.a2021.0037.
  • Kizilay Z, Aktas S, Cetin Nand Kilic N, Kilic MA, Ozturk H. Effect of tarantula cubensis extract (theranekron) on peripheral nerve healing in an experimental sciatic nerve injury model in rats. Turk Neurosurg. 2019;29(5):743–749. doi:10.5137/1019-5149.JTN.26162-19.2.
  • Yang N, Yang X, Fang Y, et al. Nitric oxide promotes cerebral ischemia/reperfusion injury through upregulating hypoxia-inducible factor1-α-associated inflammation and apoptosis in rats. Neurosci Lett. 2023;795:137034. doi:10.1016/j.neulet.2022.137034.
  • Da Silva P, de Melo Apolinário N, Da Silva S, et al. Involvement of the Soluble Guanylate Cyclase, Nitric Oxide Synthase and Cytokines Pathway in the Anti-Inflammatory Profile of N-Acylhydrazone Derivatives (Jr19). Preprints 2023, 2023072069. doi:10.20944/preprints202307.2069.v1.
  • Zhang D, Jing B, Chen ZN, Li X, Shi HM, et al. Ferulic acid alleviates sciatica by inhibiting neuroinflammation and promoting nerve repair via the TLR4/NF-κB pathway. CNS Neurosci Ther. 2023;29(4):1000–1011. doi:10.1111/cns.14060.
  • Klymenko A, Lutz D. Melatonin signalling in Schwann cells during neuroregeneration. Front Cell Dev Biol. 2022;10(10):999322. doi:10.3389/fcell.2022.999322.
  • Negro S, Pirazzini M, Rigoni M. Models and methods to study schwann cells. J Anat. 2022;241(5):1235–1258. doi:10.1111/joa.13606.
  • Abdelrahman A, Abd Elhaliem N, El-Nady H, Lotfy A, Moghazy H. A comparative study between the effect of nerve growth factor and all-trans retinoic acid versus their combined use on taxol induced peripheral neuropathy in adult male albino rat. EJH. 2019;42(2):408–424. doi:10.21608/EJH.2019.7080.1063.
  • Yuan B, Zheng X, Wu ML, Yang Y, Chen J, et al. Platelet-rich plasma gel-loaded collagen/chitosan composite film accelerated rat sciatic nerve injury repair. ACS Omega. 2023;8(3):2931–2941. doi:10.1021/acsomega.2c05351.
  • Abdel Gawad S, Ali H, Fikry H. Neuroregenerative role of transplanted olfactory ensheathing cells in a model of sciatic nerve crush injury in rats: histological study. Egypt J Histol. 2017;40(3):362–373. doi:10.21608/EJH.2017.4661.
  • Abdel Mohsen M, Ali S, Salama N, Ahmed E. Comparative histological study on the effect of erythropoietin versus curcumin on the sciatic nerve crush injury in a rat model. Egypt J Histol. 2022;45(1):192–207. doi:10.21608/EJH.2021.60603.1427.
  • Turkoglu E, Serbes G, Dolgun H, et al. Effects of α-MSH on ischemia/reperfusion injury in the rat sciatic nerve surg neurol int. Surg Neurol Int. 2012;3(1):74. doi:10.4103/2152-7806.98501.
  • Yuceli S, Suleyman B, Yazici G, et al. Effect of taxifolin on ischemia/reperfusion-induced oxidative injury of sciatic nerve in rats. Transplant Proc. 2021;53(10):3087–3092. doi:10.1016/j.transproceed.2021.09.041.
  • Guven M, Yuksel Y, Sehitoglu M, et al. The effect of coumaric acid on ischemia–reperfusion injury of sciatic nerve in rats. Inflammation. 2015;6(38):2124–2131. doi:10.1007/s10753-015-0195-0.
  • Wang H, Fang J, Hu F, Li G, Hong H. Seawater immersion aggravates sciatic nerve injury in rats. Exp Ther Med. 2015;9(4):1153–1160. doi:10.3892/etm.2015.2281.
  • Hassen E, Mahmoud A, Ibrahem N, El-Shal A. The effect of long term administration of aspartame on the sciatic nerve of adult male albino rats and the possible therapeutic role of ozone (histological and biochemical study). Egypt J Histol. 2019;42(1):191–201. doi:10.21608/ejh.2018.6082.1035.
  • Kassab A, Elkaliny H. The possible role of propolis in ameliorating paclitaxel-induced peripheral neuropathy in sciatic nerve of adult male albino rats. Egyptian Journal Of Histology2017. 2017;40(2):141–155. doi:10.21608/EJH.2017.4073.
  • Kerns J, Walter J, Patetta M, Sood A, Hussain A, et al. Histological assessment of wallerian degeneration of the rat tibial nerve following crush and transection injuries. J Reconstr Microsurg. 2021;37(5):391–404. doi:10.1055/s-0040-1716870.
  • Ali E, Makary E, Fargali L, Hosny S. Gingko biloba versus neuropeptide derivative FPF 1070 (Cerebrolysin) effect against cisplatin-induced sciatic neuropathy. Austin Neurosurg. 2015;2:1036.
  • Chun Y, Kim M, Kim Y, Kim N, Yang H, et al. Carvacrol effectively protects demyelination by suppressing transient receptor potential melastatin 7 (TRPM7) in schwann cells. Anat Sci Int. 2020;95(2):230–239. doi:10.1007/s12565-019-00514-1.
  • Sayan H, Ugurlu B, Babül A, Take G, Erdogan D. Effects of L-arginine and NG-nitro L-arginine methyl ester on lipid peroxide, superoxide dismutase and nitrate levels after experimental sciatic nerve ischemia-reperfusion in rats. Int J Neurosci. 2004;114(3):349–364. doi:10.1080/00207450490270578.
  • Mikesh M, Ghergherehchi C, Hastings R, et al. Polyethylene glycol solutions rapidly restore and maintain axonal continuity, neuromuscular structures, and behaviors lost after sciatic nerve transections in female rats. J Neurosci Res. 2018;96(7):1223–1242. doi:10.1002/jnr.24225.
  • Sea C, Peterson R. Ultrastructure and biochemistry of myelin after isoniazid-induced nerve degeneration in rats. Exp Neurol. 1975;48(2):252–60. doi:10.1016/0014-4886(75)90155-7.
  • Li Y, Tian Y, Pei X, et al. SCG10 is required for peripheral axon maintenance and regeneration in mice. J Cell Sci. 2023 15;136(12):jcs260490. doi:10.1242/jcs.260490.
  • Ismail D, Farag E. A histological study on platelet poor plasma versus platelet rich plasma in amelioration of induced diabetic neuropathy in rats and the potential role of telocyte-like cells. Egypt J Histol. 2021;44(1):8–30. doi:10.21608/EJH.2020.27619.1274.
  • Wang L, Janes M, Kumbhojkar N, et al. Cell therapies in the clinic. Bioengineering & Transla Med. 2021;6(2):e10214. doi:10.1002/btm2.10214.
  • Scala P, Manzo P, Lamparelli E, et al. Peripheral blood mononuclear cells contribute to myogenesis in a 3D bioengineered system of bone marrow mesenchymal stem cells and myoblasts. Front Bioeng Biotechnol. 2023;10:1075715. doi:10.3389/fbioe.2022.1075715.
  • Dutta R, Khalil R, Green R, Mohapatra S, Mohapatra S. Somnifera W (ashwagandha) and withaferin A: potential in integrative oncology. IJMS. 2019;20(21):5310–5329. doi:10.3390/ijms20215310.
  • Wu Y, Liu X, Han Y, Li L, Jian M, et al. Peripheral blood mononuclear cells regulate differentially expressed proteins in the proximal sciatic nerve of rats after transection anastomosis. Neuroscience. 2022;491:146–155. doi:10.1016/j.neuroscience.2022.03.041.
  • Shulman I, Ogurcov S, Kostennikov A, Rogozin A, Garanina E, et al. Application of autologous peripheral blood mononuclear cells into the area of spinal cord injury in a subacute period: a feasibility study in pigs. Biology (Basel). 24, 2021;10(2):87. doi:10.3390/biology10020087.
  • Zhang M, Huang B. The multidifferentiation potential of peripheral blood mono nuclear cell. Stem Cell Res Ther. 2012;3(6):48. doi:10.1186/scrt139.
  • Usach V, Malet M, López M, et al. Systemic transplantation of bone marrow mononuclear cells promotes axonal regeneration and analgesia in a model of wallerian degeneration. Transplantation. 2017;101(7):1573–1586. doi:10.1097/TP.0000000000001478.
  • Jamaludin W, Yusoff F, Ismail N, et al. Autologous mononuclear cells from different sources are seen to improve wound healing in patients with haematological malignancies. Malaysian J Pathol. 2018;40(1):61–67.
  • Kado M, Tanaka R, Arita K, Okada K, Ito-Hirano R, et al. Human peripheral blood mononuclear cells enriched in endothelial progenitor cells via quality and quantity controlled culture accelerate vascularization and wound healing in a porcine wound model. Cell Transplant. 2018;27(7):1068–1079. doi:10.1177/0963689718780307.
  • Xi Y, Yue G, Gao S, Ju R, Wang Y. Human umbilical cord blood mononuclear cells transplantation for perinatal brain injury. Stem Cell Res Ther. 2022;13(1):458. doi:10.1186/s13287-022-03153-y.
  • Copic D, Direder M, Schossleitner K, Laggner M, Klas K, et al. Paracrine factors of stressed peripheral blood mononuclear cells activate proangiogenic and anti-proteolytic processes in whole blood cells and protect the endothelial barrier. Pharmaceutics. 30, 2022;14(8):1600. doi:10.3390/pharmaceutics14081600.
  • Haider T, Höftberger R, Rüger B, et al. The secretome of apoptotic human peripheral blood mononuclear cells attenuates secondary damage following spinal cord injury in rats. Exp Neurol. 2015;267:230–42. doi:10.1016/j.expneurol.2015.03.013.
  • Abd El Halim H, Elbakary R, Okasha E, Mousa A, Salah E. Effect of peripheral blood mononuclear cells on induced ischemia/reperfusion in skeletal muscle of adult male albino rat: an immunohistochemical study. Int J Curr Microbiol App Sci. 2020;9(10):2133–2144. doi:10.20546/ijcmas.2020.910.260.
  • Ornellas F, Ornellas D, Martini S, et al. Bone marrow–derived mononuclear cell therapy accelerates renal ischemia-reperfusion injury recovery by modulating inflammatory, antioxidant and apoptotic related molecules. Cell Physiol Biochem. 2017;41(5):1736–1752. doi:10.1159/000471866.
  • Scatena A, Petruzzi P, Maioli F, et al. Autologous peripheral blood mononuclear cells for limb salvage in diabetic foot patients with no-option critical limb ischemia. J Clin Med. 2021;10(10):2213. doi:10.3390/jcm10102213.
  • Játiva S, Torrico S, Calle P, et al. NGAL release from peripheral blood mononuclear cells protects against acute kidney injury and prevents AKI induced fibrosis. Biomed Pharmacother. 2022;153:113415. doi:10.1016/j.biopha.2022.113415.
  • Ribeiro-Resende V, Pimentel-Coelho P, Mesentier-Louro L, Mendez R, Mello-Silva J, et al. Trophic activity derived from bone marrow mononuclear cells increases peripheral nerve regeneration by acting on both neuronal and glial cell populations. Neuroscience. 17, 2009;159(2):540–9. doi:10.1016/j.neuroscience.2008.12.059.
  • Goel R, Suri V, Suri A, et al. Effect of bone marrow-derived mononuclear cells on nerve regeneration in the transection model of the rat sciatic nerve. J Clin Neurosci. 2009;16(9):1211–7. doi:10.1016/j.jocn.2009.01.031.
  • Persiani F, Paolini A, Camilli D, et al. Peripheral blood mononuclear cells therapy for treatment of lower limb ischemia in diabetic patients: a single-center experience. Ann Vasc Surg. 2018;53:190–196. doi:10.1016/j.avsg.2018.05.036.
  • Huang F, Cao FL, Zheng SG. Update of humanized animal disease models in studying graft-versus-host disease. Hum Vaccin Immunother. 2018;14(11):2618–2623. doi:10.1080/21645515.2018.1512454.
  • Worel N. ABO-mismatched allogeneic hematopoietic stem cell transplantation. Transfus Med Hemother. 2016;43(1):3–12. doi:10.1159/000441507.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.