77
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Evaluation of structure-reactivity correlation of efficient corrosion inhibitor ionic liquids for mild steel in acidic medium

, , &
Pages 1107-1119 | Received 22 Dec 2022, Accepted 28 Mar 2023, Published online: 11 Apr 2023

References

  • Chigondo, M.; Chigondo, F. Recent Natural Corrosion Inhibitors for Mild Steel: An Overview. J. Chem. 2016, 2016, 1–7. DOI: 10.1155/2016/6208937.
  • Corrales-Luna, M.; Le Manh, T.; Romero-Romo, M.; Palomar-Pardavé, M.; Arce-Estrada, E. M. 1-Ethyl 3-Methylimidazolium Thiocyanate Ionic Liquid as Corrosion Inhibitor of API 5L X52 Steel in H2SO4 and HCl Media. Corrs. Sci. 2019, 153, 85–99. DOI: 10.1016/j.corsci.2019.03.041.
  • Sefaja, J.; Derniković, B.; Malina, J.; Lovreček, B. Investigation of Steel Corrosion in Pickling Solutions: solutions with Inhibitors. Surf. Technol. 1983, 20, 247–263. DOI: 10.1016/0376-4583(83)90008-0.
  • Zheng, X.; Zhang, S.; Li, W.; Yin, L.; He, J.; Wu, J. Investigation of 1-Butyl-3-Methyl-1H-Benzimidazolium Iodide as Inhibitor for Mild Steel in Sulfuric Acid Solution. Corrs. Sci. 2014, 80, 383–392. DOI: 10.1016/j.corsci.2013.11.053.
  • Mouaden, K. E.; Chauhan, D. S.; Quraishi, M. A.; Bazzi, L. Thiocarbohydrazide-Crosslinked Chitosan as a Bioinspired Corrosion Inhibitor for Protection of Stainless Steel in 3.5% NaCl. Sustain. Chem. Pharm. 2020, 15, 1–8. DOI: 10.1016/j.scp.2020.100213.
  • Singh, A.; Ansari, K. R.; Haque, J.; Dohare, P.; Lgaz, H.; Salghi, R.; Quraishi, M. A. Effect of Electron Donating Functional Groups on Corrosion Inhibition of Mild Steel in Hydrochloric Acid: experimental and Quantum Chemical Study. J. Taiwan Inst. Chem. Eng. 2018, 82, 233–251. DOI: 10.1016/j.jtice.2017.09.02.
  • Verma, C.; Ebenso, E. E.; Quraishi, M. A. Ionic Liquids as Green and Sustainable Corrosion Inhibitors for Metals and Alloys: An Overview. J. Mol. Liq. 2017, 233, 403–414. DOI: 10.1016/j.molliq.2017.02.111.
  • Zakaria, K.; Hamdy, A.; Abbas, M. A.; Abo-Elenien, O. M. New Organic Compounds Based on Siloxane Moiety as Corrosion Inhibitors for Carbon Steel in HCl Solution: weight Loss, Electrochemical and Surface Studies. J. Taiwan Inst. Chem. Eng. 2016, 65, 530–543. DOI: 10.1016/j.jtice.2016.05.036.
  • Cotting, F.; Aoki, I. V. Smart Protection Provided by Epoxy Clear Coating Doped with Polystyrene Microcapsules Containing Silanol and Ce (III) Ions as Corrosion Inhibitors. Surf. Coat. Technol. 2016, 303, 310–318. DOI: 10.1016/j.surfcoat.2015.11.035.
  • Xhanari, K.; Finšgar, M. Organic Corrosion Inhibitors for Aluminium and Its Alloys in Acid Solutions: A Review. RSC Adv. 2016, 6, 62833–62857. DOI: 10.1039/C6RA11818F.
  • Hamani, H.; Douadi, T.; Daoud, D.; Al-Noaimi, M.; Chafaa, S. Corrosion Inhibition Efficiency and Adsorption Behavior of Azomethine Compounds at Mild Steel/Hydrochloric Acid Interface. Measurement 2016, 94, 837–846. DOI: 10.1016/j.measurement.2016.09.027.
  • Hulsbosch, J.; De Vos, D. E.; Binnemans, K.; Ameloot, R. Biobased Ionic Liquids: solvents for a Green Processing Industry. ACS Sustainable Chem. Eng. 2016, 4, 2917–2931. DOI: 10.1021/acssuschemeng.6b00553.
  • Xing, D. Y.; Dong, W. Y.; Chung, T. S. Effects of Different Ionic Liquids as Green Solvents on the Formation and Ultrafiltration Performance of CA Hollow Fiber Membranes. Ind. Eng. Chem. Res. 2016, 55, 7505–7513. DOI: 10.1021/acs.iecr.6b01603.
  • Gurjar, S.; Sharma, S. K.; Sharma, A.; Ratnani, S. Pyridazinium Based Ionic Liquids as Green Corrosion Inhibitors: An Overview. ELSA 2022, 2, 1–5. DOI: 10.1002/elsa.202100110.
  • Gurjar, S.; Ratnani, S.; Kandwal, P.; Tiwari, K. K.; Sharma, A.; Sharma, S. K. Experimental and Theoretical Studies of 1-Benzyl Pyridazinium Bromide as Green Inhibitor for Mild Steel Corrosion. ePrime-Adv. Electr. Eng. Electron. Energy 2022, 2, 100054. DOI: 10.1016/j.prime.2022.100054.
  • Holbrey, J. D.; Seddon, K. R. Ionic Liquids. Clean Prod. Process 1999, 1, 223–236. DOI: 10.1007/s100980050036.
  • Jason, P. H.; Tom, W. Room-Temperature Ionic Liquids: solvents for Synthesis and Catalysis. Chem. Rev. 2011, 111, 3508–3576. DOI: 10.1021/cr100324.
  • Suhasaria, A.; Murmu, M.; Satpati, S.; Banerjee, P.; Sukul, D. Bis-Benzothiazoles as Efficient Corrosion Inhibitors for Mild Steel in Aqueous HCl: Molecular Structure-Reactivity Correlation Study. J. Mol. Liq. 2020, 313, 113537. DOI: 10.1016/j.molliq.2020.113537.
  • Shukla, A. K.; Chaudhary, A. P.; Pandey, J. Synthesis, Spectral Analysis, Molecular Docking and DFT Studies of 3-(2, 6-Dichlorophenyl)-Acrylamide and Its Dimer through QTAIM Approach. Heliyon 2020, 6, e05016. DOI: 10.1016/j.heliyon.2020.e05016.
  • Verma, D.; Sharma, S.; Vashishtha, M. Evaluation of Optimized Molecular Structure-Antimicrobial and Antioxidant Efficacy Relationship of Schiff Bases. Environ. Sci. Poll. Res. 2022. DOI: 10.1007/s11356-022-23633-1.
  • Chen, M. F.; Chen, Y.; Lim, Z. J.; Wong, M. W. Adsorption of Imidazolium-Based Ionic Liquids on the Fe (1 0 0) Surface for Corrosion Inhibition: Physisorption or Chemisorption. J. Mol. Liq. 2022, 367, 120489. DOI: 10.1016/j.molliq.2022.120489.
  • Zunita, M.; Kevin, Y. J. Ionic Liquids as Corrosion Inhibitor: From Research and Development to Commercialization. RINENG 2022, 15, 100562. DOI: 10.1016/j.rineng.2022.100562.
  • Nahlé, A.; Salim, R.; EL Hajjaji, F.; Ech-Chihbi, E.; Titi, A.; Messali, M.; Kaya, S.; El IBrahimi, B.; Taleb, M. Experimental and Theoretical Approach for Novel Imidazolium Ionic Liquids as Smart Corrosion Inhibitors for Mild Steel in 1.0 M Hydrochloric Acid. Arab. J. Chem. 2022, 15, 103967. DOI: 10.1016/j.arabjc.2022.103967.
  • Gurjar, S.; Sharma, S. K.; Sharma, A.; Ratnani, S. Performance of Imidazolium Based Ionic Liquids as Corrosion Inhibitors in Acidic Medium: A Review. Appl. Surf. Sci. Adv. 2021, 6, 100170. DOI: 10.1016/j.apsadv.2021.100170.
  • Murugavel, S.; Manikandan, N.; Lakshmanan, D.; Naveen, K.; Perumal, P. T. Synthesis, Crystal Structure, Dft and Antibacterial Activity Studies of (E)-2-Benzyl-3-(Furan-3-Yl)-6, 7-Dimethoxy-4-(2- 37 Phenyl-1h-Inden-1-Ylidene)-1, 2, 3, 4-Tetrahydroisoquinoline. J. Chil. Chem. Soc. 2015, 60, 3015–3020. DOI: 10.4067/S0717-97072015000300008.
  • Miar, M.; Shiroudi, A.; Pourshamsian, K.; Oliaey, A. R.; Hatamjafari, F. Theoretical Investigations on the HOMO–LUMO Gap and Global Reactivity Descriptor Studies, Natural Bond Orbital, and Nucleusindependent Chemical Shifts Analyses of 3-Phenylbenzo[d]Thiazole-2(3H)-Imine and Its Parasubstituted Derivatives: Solvent and Substituent Effects. J. Chem. Res. 2021, 45, 147–158. DOI: 10.1177/1747519820932091.
  • Boudjellal, F.; Ouici, H. B.; Guendouzi, A.; Benali, O.; Sehmi, A. Experimental and Theoretical Approach to the Corrosion Inhibition of Mild Steel in Acid Medium by a Newly Synthesized Pyrazole Carbothioamide Heterocycle. J. Mol. Struct. 2020, 1199, 127051. DOI: 10.1016/j.molstruc.2019.127051.
  • Esmaielzadeh, E.; Mashhadiagha, G. Formation Constants and Thermodynamic Parameters of Bivalent Co, Ni, Cu and Zn Complexes with Schiff Base Ligand: Experimental and DFT Calculations. Bull. Chem. Soc. Eth. 2017, 31, 159–170. DOI: 10.4314/bcse.v31i1.14.
  • Soliman, S. M.; Abu-Youssef, M. A. M.; Albering, J.; El-Faham, A. Molecular Structure and DFT Investigations on New Cobalt (II) Chloride Complex with Superbase Guanidine Type Ligand. J. Chem. Sci. 2015, 127, 2137–2149. DOI: 10.1007/s12039-015-0976-x.
  • Vidhya, V.; Austine, A.; Arivazhagan, M. Quantum Chemical Determination of Molecular Geometries and Spectral Investigation of 4-Ethoxy-2, 3-Difluoro Benzamide. Heliyon 2019, 5, e02365. DOI: 10.1016/j.heliyon.2019.e02365.
  • Ouici, H. B.; Belkhouda, M.; Benali, O.; Salghi, R.; Bammou, L.; Zarrouk, A.; Hammouti, B. Adsorption and Inhibition Effect of 5-Phenyl-1,2,4-Triazole-3-Thione on C38 Steel Corrosion in 1 M HCl. Res. Chem. Intermed. 2015, 41, 4617–4634. DOI: 10.1007/s11164-014-1556-2.
  • Singh, A.; Talha, M.; Xu, X.; Sun, Z.; Lin, Y. Heterocyclic Corrosion Inhibitors for J55 Steel in a Sweet Corrosive Medium. ACS Omega 2017, 2, 8177–8186. DOI: 10.1021/acsomega.7b01376.
  • Daoud, D.; Douadi, T.; Hamani, H.; Chafaa, S.; Al-Noaimi, M. Corrosion Inhibition of Mild Steel by Two New S-Heterocyclic Compounds in 1 M HCl:experimental and Computational Study. Corros. Sci. 2015, 94, 21–37. DOI: 10.1016/j.corsci.2015.01.025.
  • Aslam, R.; Mobin, M.; Zehra, S.; Obot, I.,B.; Ebenso, E. E. N,N′-Dialkylcystinegemini and Monomeric N-Alkyl Cysteine Surfactants as Corrosion Inhibitors on Mild Steel Corrosion in 1 M HCl Solution: A Comparative Study. ACS Omega 2017, 2, 5691–5707. DOI: 10.1021/acsomega.7b00501.
  • Jeeva, M.; Prabhu, G. V.; Boobalan, M. S.; Rajesh, C. M. Interactions and Inhibition Effect of Ureaderived Mannich Bases on a Mild Steel Surface in HCl. J. Phys. Chem. C 2015, 119, 22025–22043. DOI: 10.1021/acs.jpcc.5b05788.
  • Oguzie, E. E.; Unaegbu, C.; Ogukwe, C. N.; Okolue, B. N.; Onuchukwu, A. L. Inhibition of Mild Steel Corrosion in Sulphuric Acid Using Indigo Dye and Synergistic Halide Additives. Mater. Chem. Phys. 2004, 84, 363–368. DOI: 10.1016/j.matchemphys.2003.11.027.
  • Li, X.; Deng, S.; Fu, H.; Mu, G. Inhibition Effect of 6-Benzylaminopurine on the Corrosion of Cold Rolled Steel in H2SO4 Solution. Corros. Sci. 2009, 51, 620–634. DOI: 10.1016/j.corsci.2008.12.021.
  • Abd El Haleem, S. M.; Abd El Wanees, S.; Abd El Aal, E. E.; Farouk, A. Factors Affecting the Corrosion Behaviour of Aluminium in Acid Solutions. I.Nitrogen and/or Sulphur-Containing Organic Compounds as Corrosion Inhibitors for Al in HCl Solutions. Corros. Sci. 2013, 68, 1–13. DOI: 10.1016/j.corsci.2012.03.021.
  • Ekanem, U. F.; Umoren, S. A.; Udousoro, L. L.; Udoh, A. P. Inhibition of Mild Steel Corrosion in HCl Using Pineapple Leaves (Ananas comosus L.) Extract. J. Mater. Sci. 2010, 45, 5558–5566. DOI: 10.1007/s10853-010-4617-y.
  • Ramya, K.; Mohan, R.; Anupama, K. K.; Joseph, A. Electrochemical and Theoretical Studies on the Synergistic Interaction and Corrosion Inhibition of Alkyl Benzimidazoles and Thiosemicarbazide Pair on Mild Steel in Hydrochloric Acid. Mater. Chem. Phys. 2015, 149-150, 632–647. DOI: 10.1016/j.matchemphys.2014.11.020.
  • Yadav, M.; Behera, D.; Kumar, S.; Sinha, R. R. Experimental and Quantum Chemical Studies on the Corrosion Inhibition Performance of Benzimidazole Derivatives for Mild Steel in HCl. Ind. Eng. Chem. Res. 2013, 52, 6318–6328. DOI: 10.1021/ie400099q.
  • Salim, R.; Elaatiaoui, A.; Benchat, N.; Ech-Chihbi, E.; Rais, Z.; Oudda, H.; El Hajjaji, F.; El Aoufir, Y.; Taleb, M. Corrosion Behavior of a Smart Inhibitor in Hydrochloric Acid Molar: Experimental and Theoretical Studies. JMES 2017, 8, 3747–3758.
  • Ituen, E.; Akaranta, O.; James, A. Evaluation of Performance of Corrosion Inhibitors Using Adsorption Isotherm Models: An Overview. CSIJ 2017, 18, 1–34. DOI: 10.9734/CSIJ/2017/28976.
  • Verma, C.; Olasunkanmi, L. O.; Bahadur, L.; Lgaz, H.; Quraishi, M. A.; Haque, J.; Scherif, M.; ElSayed, M.; Ebenso, E. E. Experimental, Density Functional Theory and Molecular Dynamics Supported Adsorption Behavior of Environmental Benign Imidazolium Based Ionic Liquids on Mild Steel Surface in Acidic Medium. J. Mol. Liq. 2019, 273, 1–15. DOI: 10.1016/j.molliq.2018.09.139.
  • Chauhan, D. S.; Quraishi, M. A.; Sorour, A. A.; Saha, S. K.; Banerjee, P. Triazole-Modified Chitosan: A Biomacromolecule as a New Environmentally Benign Corrosion Inhibitor for Carbon Steel in a Hydrochloric Acid Solution. RSC Adv. 2019, 9, 14990–15003. DOI: 10.1039/C9RA00986H.
  • Nahlé, A.; Salim, R.; El Hajjaji, F.; Aouad, M. R.; Messali, M.; Ech-Chihbi, E.; Hammouti, B.; Taleb, M. Novel Triazole Derivatives as Ecological Corrosion Inhibitors for Mild Steel in 1.0 M HCl: experimental & Theoretical Approach. RSC Adv. 2021, 11, 4147–4162. DOI: 10.1039/d0ra09679b.
  • Han, T.; Guo, J.; Zhao, Q.; Wu, Y.; Zhang, Y. Enhanced Corrosion Inhibition of Carbon Steel by Pyridyl Gemini Surfactants with Different Alkyl Chains. Mater. Chem. Phys 2020, 240, 122156. DOI: 10.1016/j.matchemphys.2019.122156.
  • Tan, B.; Zhang, S.; Liu, H.; Qiang, Y.; Li, W.; Guo, L.; Chen, S. Insights into the Inhibition Mechanism of Three 5-Phenyltetrazole Derivatives for Copper Corrosion in Sulfuric Acid Medium via Experimental and DFT Methods. J. Taiwan. Inst. Chem. E 2019, 102, 424–437. DOI: 10.1016/j.jtice.2019.06.005.
  • El-Hajjaji, F.; Messali, M.; Martı’nez de Yuso, M. V.; Rodrı’guez- Castelló N, E.; Almutairi, S.; Bandosz, T. J.; Algarra, M. Effect of 1-(3-Phenoxypropyl) Pyridazin-1-Ium Bromide on Steel Corrosion Inhibition in Acidic Medium. J. Colloid Interface Sci. 2019, 541, 418–424. DOI: 10.1016/j.jcis.2019.01.113.
  • Saady, A.; Ech-Chihbi, E.; El-Hajjaji, F.; Benhiba, F.; Zarrouk, A.; Rodi, Y. K.; Taleb, M.; El Biache, A.; Rais, Z. Molecular Dynamics, DFT and Electrochemical to Study the Interfacial Adsorption Behavior of New Imidazo[4,5-b] Pyridine Derivative as Corrosion Inhibitor in Acid Medium. J. Appl. Electrochem. 2021, 51, 245–265. DOI: 10.1007/s10800-020-01498-x.
  • Sengupta, S.; Murmu, M.; Murmu, N. C.; Banerjee, P. Adsorption of Redox-Active Schiff Bases and Corrosion Inhibiting Property for Mild Steel in 1 molL−1 H2SO4: Experimental Analysis Supported by ab Initio DFT, DFTB and Molecular Dynamics Simulation Approach. J. Mol. Liq. 2021, 326, 115215. DOI: 10.1016/j.molliq.2020.115215.
  • Ech-Chihbi, E.; Nahlé, A.; Salim, R.; Benhiba, F.; Moussaif, A.; El-Hajjaji, F.; Oudda, H.; Guenbour, A.; Taleb, M.; Warad, L.; Zarrouk, A. Computational, MD Simulation, SEM/EDX and Experimental Studies for Understanding Adsorption of Benzimidazole Derivatives as Corrosion Inhibitors in 1.0 M HCl Solution. J. Alloys Compd. 2020, 844, 155842. DOI: 10.1016/j.jallcom.2020.155842.
  • Dehghani, A.; Bahlakeh, G.; Ramezanzadeh, B.; Ramezanzadeh, M. Potential Role of a Novel Green Eco-Friendly Inhibitor in Corrosion Inhibition of Mild Steel in HCl Solution: Detailed Macro/Microscale Experimental and Computational Explorations. Constr. Build. Mater. 2020, 245, 118464. DOI: 10.1016/j.conbuildmat.2020.118464.
  • Singh, A.; Ansari, K. R.; Bedi, P.; Pramanik, T.; Ali, I. H.; Lin, Y.; Banerjee, P.; Zamindar, S. Understanding Xanthone Derivatives as Novel and Efficient Corrosion Inhibitors for P110 Steel in Acidizing Fluid: Experimental and Theoretical Studies. J. Phy. Chem. Sol 2023, 172, 111064. DOI: 10.1016/j.jpcs.2022.111064.
  • El Faydy, M.; Galai, M.; Rbaa, M.; Ouakki, M.; Lakhrissi, B.; EbnTouhami, M.; El Kacimi, Y. Synthesis and Application of New Quinoline as Hydrochloric Acid Corrosion Inhibitor of Carbon Steel. Anal. Bioanal. Electrochem. 2018, 10, 815–839.
  • Arrousse, N.; Salim, R.; Kaddouri, Y.; Zarrouk, A.; Zahri, D.; Hajjaji, F. E.; Touzani, R.; Taleb, M.; Jodeh, S. The Inhibition Behavior of Two Pyrimidine-Pyrazole Derivatives against Corrosion in Hydrochloric Solution: Experimental, Surface Analysis and in Silico Approach Studies. Arab. J. Chem. 2020, 13, 5949–5965. DOI: 10.1016/j.arabjc.2020.04.030.
  • Ouakki, M.; Galai, M.; Cherkaoui, M.; Rifi, E. H.; Hatim, Z. Inorganic Compound (Apatite Doped by Mg and Na) as a Corrosion Inhibitor for Mild Steel in Phosphoric Acidic Medium. Anal. Bioanal. Electrochem. 2018, 10, 943–960.
  • Li, W. H.; He, Q.; Zhang, S. T.; Pei, C. L.; Hou, B. R. Some New Triazole Derivatives as Inhibitors for Mild Steel Corrosion in Acidic Medium. J. Appl. Electrochem. 2008, 38, 289–295. DOI: 10.1007/s10800-007-9437-7.
  • Verma, C.; Alrefaee, S. H.; Quraishi, M. A.; Ebenso, E. E.; Hussain, C. M. Recent Developments in Sustainable Corrosion Inhibition Using Ionic Liquids: A Review. J. Mol. Liq. 2021, 321, 114484. DOI: 10.1016/j.molliq.2020.114484.
  • Keleş, H.; Emir, D. M.; Keleş, M. A Comparative Study of the Corrosion Inhibition of Low Carbon Steel in HCl Solution by an Imine Compound and Its Cobalt Complex. Corros. Sci 2015, 101, 19–31. DOI: 10.1016/j.corsci.2015.07.01342.
  • Zhang, L.; He, Y.; Zhou, Y.; Yang, R.; Yang, Q.; Qing, D.; Niu, Q. A Novel Imidazoline Derivative as Corrosion Inhibitor for P110 Carbon Steel in Hydrochloric Acid Environment. Petroleum 2015, 1, 237–243. DOI: 10.1016/j.petlm.2015.10.007.
  • Kannan, P.; Varghese, A. Structural Effect in Ionic Liquids is the Vital Role to Enhance the Corrosion Protection of Metals in Acid Cleaning Process. Corrosion Inhib. 2019, DOI: 10.5772/intechopen.82422.
  • Kobzar, Y. L.; Fatyeyeva, K. Ionic Liquids as Green and Sustainable Steel Corrosion Inhibitors: Recent Developments. Chem. Eng. J. 2021, 425, 131480. DOI: 10.1016/j.cej.2021.131480.
  • Aziz, I. A. A.; Abdulkareem, M. H.; Annon, I. A.; Hanoon, M. M.; Alkaabi, M. H.; Shaker, L. M.; Kadhum, A. A. H. Corrosion Inhibition Potential of a New Corrosion Inhibitor for Mild Steel in 1 M Hydrochloric Acid Solution Determined by Weight Loss Technique, Complemented with Adsorption Studies and DFT Calculations. Int. J. Corros. Scale Inhib. 2022, 11, 64–81. DOI: 10.17675/2305-6894-2022-11-1-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.