67
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Eco-friendly treatment of synthetic dyes contaminated water by biosorption: use of Bacillus mojavensis BI2 derived lipopeptide and date palm waste flour as biosorbents

, &
Pages 1214-1226 | Received 28 Dec 2022, Accepted 07 Apr 2023, Published online: 07 May 2023

References

  • Wang, X.; Jiang, J.; Gao, W. Reviewing Textile Wastewater Produced by Industries: Characteristics, Environmental Impacts, and Treatment Strategies. Water Sci. Technol. 2022, 85, 2076–2096. DOI: 10.2166/wst.2022.088.
  • Al-Tohamy, R.; Ali, S. S.; Li, F.; Okasha, K. M.; Mahmoud, Y. A.-G.; Elsamahy, T.; Jiao, H.; Fu, Y.; Sun, J. A Critical Review on the Treatment of Dye-Containing Wastewater: Ecotoxicological and Health Concerns of Textile Dyes and Possible Remediation Approaches for Environmental Safety. Ecotoxicol. Environ. Saf. 2022, 231, 113160. DOI: 10.1016/j.ecoenv.2021.113160.
  • Mani, S.; Bharagava, R. N. Exposure to Crystal Violet, Its Toxic, Genotoxic and Carcinogenic Effects on Environment and Its Degradation and Detoxification for Environmental Safety. Rev. Environ. Contam. Toxicol. 2016, 237, 71–104. DOI: 10.1007/978-3-319-23573-8_4.
  • Mnif, I.; Fendri, R.; Ghribi, D. Malachite Green Bioremoval by a Newly Isolated Strain Citrobacter sedlakii RI11; Enhancement of the Treatment by Biosurfactant Addition. Water Sci. Technol. 2015a, 72, 1283–1293. DOI: 10.2166/wst.2015.302.
  • Sinha, R.; Jindal, R. Elucidation of Malachite Green Induced Behavioural, Biochemical, and Histo-Architectural Defects in Cyprinus Carpio, as Piscine Model. Enviro. Sustain. Industr. 2020, 8, 100055–100066. DOI: 10.1016/j.indic.2020.100055.
  • Ceretta, M. B.; Nercessian, D.; Wolski, E. K. Current Trends on Role of Biological Treatment in Integrated Treatment Technologies of Textile Wastewater. Front. Microbiol. 2021, 12, 651025. DOI: 10.3389/fmicb.2021.651025.
  • Elgarahy, A. M.; Elwakeel, K. Z.; Mohammad, S. H.; Elshoubaky, G. A. A Critical Review of Biosorption of Dyes, Heavy Metals and Metalloids from Wastewater as an Efficient and Green Process. Cleaner Engin. Technol. 2021, 4, 100209. DOI: 10.1016/j.clet.2021.100209.
  • Kalpana, R.; Maheshwaran, M.; Vimali, E.; Soosai, M. R.; Shivamathi, C. S.; Moorthy, I. G.; Ashokkumar, B.; Varalakshmi, P. Decolorization of Textile Dye by Halophilic Exiguobacterium sp.VK1: Biomass and Exopolysaccharide (EPS) Enhancement for Bioremediation of Malachite Green. Biol. Chem. Chem. Biol. 2020, 5, 8787–8797. DOI: 10.1002/slct.202001648.
  • Reddy, S.; Osborne, J. W. Biodegradation and Biosorption of Reactive Red 120 Dye by Immobilized Pseudomonas guariconensis: Kinetic and Toxicity Study. J. Hazard. Mater. 2020, 92(8), 1230–1241. DOI: 10.1002/wer.1319.
  • Aragaw, T. A.; Bogale, F. M. Biomass-Based Adsorbents for Removal of Dyes from Wastewater: A Review. Front. Environ. Sci. 2021, 9, 764958. DOI: 10.3389/fenvs.2021.764958.
  • Blaga, A. C.; Tanasă, A. M.; Cimpoesu, R.; Tataru-Farmus, R.-E.; Suteu, D. Biosorbents Based on Biopolymers from Natural Sources and Food Waste to Retain the Methylene Blue Dye from the Aqueous Medium. Polymers 2022, 14, 2728. DOI: 10.3390/polym14132728.
  • Ayangbenro, A. S.; Babalola, O. O. Metal(Loid) Bioremediation: Strategies Employed by Microbial Polymers. Sustainability 2018, 10, 3028. DOI: 10.3390/su10093028.
  • Zhu, Z.; Zhang, B.; Cai, Q.; Cao, Y.; Ling, J.; Lee, K.; Chen, B. A Critical Review on the Environmental Application of Lipopeptide Micelles. Bioresour. Technol. 2021, 339, 125602. DOI: 10.1016/j.biortech.2021.125602.
  • Rajkumari, J.; Busi, S. Biosorption of Dyes: An Implication of Microbial Exopolysaccharides. In Book: Bioremediation: Current Research and Applications. Chapter: Biosorption of Dyes: An Implication of Microbial Exopolysaccharides; Rathoure, A. K.; I.K. International Publishing House Pvt. Ltd, 2017; pp.192–205.
  • Ladnorg, S.; Junior, N. L.; Dall’ Agnol, P.; Domingos, D. G.; Magnus, B. S.; Wichern, M.; Gehring, T.; da Costa, R. H. R. Alginate-like Exopolysaccharide Extracted from Aerobic Granular Sludge as Biosorbent for Methylene Blue: Thermodynamic, Kinetic and Isotherm Studies. J. Environ. Chem. Engin. 2019, 7, 103081. DOI: 10.1016/j.jece.2019.103081.
  • Li, C.; Chen, D.; Ding, J.; Shi, Z. A Novel Hetero-Exopolysaccharide for the Adsorption of Methylene Blue from Aqueous Solutions: Isotherm, Kinetic, and Mechanism Studies. J. Cleaner Prod. 2020, 265, 121800. DOI: 10.1016/j.jclepro.2020.121800.
  • Banerjee, A.; Sarkar, S.; Govil, T.; González-Faune, P.; Cabrera-Barjas, G.; Bandopadhyay, R.; Salem, D. R.; Sani, R. K. Extremophilic Exopolysaccharides: Biotechnologies and Wastewater Remediation. Front Microbiol. 2021, 12, 721365. DOI: 10.3389/fmicb.2021.721365.
  • Suteu, D.; Blaga, A. C.; Zaharia, C.; Cimpoesu, R.; Puițel, A. C.; Tataru-Farmus, R.-E.; Tanasă, A. M. Polysaccharides Used in Biosorbents Preparation for Organic Dyes Retaining from Aqueous Media. Polymers. (Basel), 2022, 14, 588. DOI: 10.3390/polym14030588.
  • David, C.; Arivazhagan, M.; Balamurali, M. N.; Shanmugarajan, D. Decolorization of Distillery Spent Wash Using Biopolymer Synthesized by Pseudomonas aeruginosa Isolated from Tannery Effluent. Biomed Res. Int. 2015, 2015, 195879. DOI: 10.1155/2015/195879.
  • Mathuriya, A. S.; Yakhmi, J. V. Polyhydroxyalkanoates: Biodegradable Plastics and Their Applications. In Handbook of Ecomaterials, Martínez, L., Kharissova, O., Kharisov, B., Eds.; Springer: Cham, 2019; pp 2873–2900. DOI: 10.1007/978-3-319-48281-1_84-1.
  • Samal, K.; Das, C.; Mohanty, K. Eco-Friendly Biosurfactant Saponin for the Solubilization of Cationic and Anionic Dyes in Aqueous System. Dyes Pigm. 2017, 140, 100–108. DOI: 10.1016/j.dyepig.2017.01.031.
  • Carolin, C. P. F.; Kumar, S. P.; Ngueagni, T. A Review on New Aspects of Lipopeptide Biosurfactant: Types, Production, Properties and Its Application in the Bioremediation Process. J. Environ. Chem. Engin. 2019, 7, 103081.
  • Fegade, U. Chapter 1 - Application of Biosurfactant for Treatment of Effluent Waste, Polluted Wastewater Treatment, and Sewage Sludge. In Green Sustainable Process for Chemical and Environmental Engineering and Science: Biosurfactants for the Bioremediation of Polluted Environments, 2021; pp 1–19. DOI: 10.1016/B978-0-12-822696-4.00020-6.
  • Johnson, P.; Trybala, A.; Starov, V.; Pinfield, V. J. Effect of Synthetic Surfactants on the Environment and the Potential for Substitution by Biosurfactants. Adv. Colloid Interface Sci. 2021, 288, 102340. DOI: 10.1016/j.cis.2020.102340.
  • Perez-Ameneiro, M.; Vecino, X.; Cruz, J. M.; Moldes, A. B. Wastewater Treatment Enhancement by Applying a Lipopeptide Biosurfactant to a Lignocellulosic Biocomposite. Carbohydr. Polym. 2015, 131, 186–196. DOI: 10.1016/j.carbpol.2015.05.075.
  • Martins, P. C.; Martin, V. G. Biosurfactant Production from Industrial Wastes with Potential Remove of Insoluble Paint. Int. Biodeterior. Biodegrad. 2018, 127, 10–16. DOI: 10.1016/j.ibiod.2017.11.005.
  • Nor, F. H. M.; Abdullah, S.; Yuniarto, A.; Ibrahim, Z.; Nor, M. H. M.; Hadibarata, T. Production of Lipopeptide Biosurfactant by Kurthia gibsonii KH2 and Their Synergistic Action in Biodecolourisation of Textile Wastewater. Environ. Technol. Innov. 2021, 22, 101533. DOI: 10.1016/j.eti.2021.101533.
  • Mnif, I.; Bouallegue, A.; Mekki, S.; Ghribi, D. Valorization of Date Juice by the Production of Lipopeptide Biosurfactants by a Bacillus mojavensis BI2 Strain: bioprocess Optimization by Response Surface Methodology and Study of Surface Activities. Bioprocess Biosyst. Eng. 2021a, 44, 2315–2330. DOI: 10.1007/s00449-021-02606-7.
  • Mnif, I.; Bouallegue, A.; Bouassida, M.; Ghribi, D. Surface Properties and Heavy Metals Chelation of Lipopeptides Biosurfactants Produced from Date Flour by Bacillus subtilis ZNI5: optimized Production for Application in Bioremediation. Bioprocess Biosyst. Eng. 2022, 45, 31–44. DOI: 10.1007/s00449-021-02635-2.
  • Mnif, I.; Rajhi, H.; Bouallegue, A.; Trabelsi, N.; Ghribi, D. Characterization of Lipopeptides Biosurfactants Produced by a Newly Isolated Strain Bacillus subtilis ZNI5: Potential Environmental Application. J. Polym. Environ. 2021c, 30, 2378–2391. DOI: 10.1007/s10924-021-02361-6.
  • Mnif, I.; Mekki, S.; Ghribi, D. Treatment of Heavy Metals Contaminated Water: use of B. mojavensis BI2 Derived Lipopeptide and Palm Waste Flour. Water Sci. Technol. 2022, 86, 1083–1094. DOI: 10.2166/wst.2022.247.
  • Mnif, I.; Maktouf, S.; Fendri, R.; Kriaa, M.; Ellouze, S.; Ghribi, D. Improvement of Methyl Orange Dye Biotreatment by a Novel Isolated Strain, Aeromonas veronii GRI, by SPB1 Biosurfactant Addition. Environ. Sci. Pollut. Res. 2016a, 23, 1742–1754. DOI: 10.1007/s11356-015-5294-9.
  • Mnif, I.; Fendri, R.; Ghribi, D. Biosorption of Congo Red from Aqueous Solution by Bacillus weihenstephanensis RI12; Effect of SPB1 Biosurfactant Addition on Biodecolorization Potency. Water Sci. Technol. 2015b, 72, 865–874. DOI: 10.2166/wst.2015.288.
  • Aksu, Z.; Ertuğrul, S.; Dönmez, G. Methylene Blue Biosorption by Rhizopus arrhizus: Effect of SDS (Sodium Dodecyl Sulfate) Surfactant on Biosorption Properties. Chem. Engin. J. 2010, 158, 474–481. DOI: 10.1016/j.cej.2010.01.029.
  • Rasheed, T.; Shafi, S.; Bilal, M.; Hussain, T.; Sher, F.; Rizwan, K. Surfactants-Based Remediation as an Effective Approach for Removal of Environmental pollutants-A Review. J. Mol. Liq. 2020, 318, 113960. DOI: 10.1016/j.molliq.2020.113960.
  • Zhang, Z.; Xia, S.; Wang, X.; Yang, A.; Xu, B.; Chen, L.; Zhu, Z.; Zhao, J.; Jaffrezic-Renault, N.; Leonard, D. A. Novel Biosorbent for Dye Removal: Extracellular Polymeric Substance (EPS) of Proteus mirabilis TJ-1. J. Hazard Mater. 2009, 163, 279–284. DOI: 10.1016/j.jhazmat.2008.06.096.
  • Kumar, M. R.; King, P.; Wolde, Z.; Mulu, M. Application of Optimization Response Surface for the Biosorption of Crystal Violet Dye from Textile Wastewater onto Clerodendrum Fragrans Leaves. Biomass Conv. Bioref. 2022. DOI: 10.1007/s13399-022-02419-y.
  • Kristanti, R. A.; Yuniarto, A.; Hadibarata, T. Adsorption of Basic Dyes Crystal Violet on Agricultural Biomass: Characterization, Isotherm and Kinetic Studies. IJIE 2022, 14, 269–275. DOI: 10.30880/ijie.2022.14.01.025.
  • Salahudeen, N.; Alhassan, A. Adsorption of Crystal Violet on Rice Husk Activated Carbon. JES 2022, 9, F11–F15. DOI: 10.21272/jes.2022.9(1).f2.
  • Sulthana, R.; Taqui, S. N.; Syed, U. T.; Soudagar, M. E. M.; Mujtaba, M. A.; Afzal Mir, R.; Shahapurkar, K.; Khidmatgar, A.; Mohanavel, V.; Syed, A. A.; Hossain, N. Biosorption of Crystal Violet by Nutraceutical Industrial Fennel Seed Spent Equilibrium, Kinetics, and Thermodynamic Studies. Biocatal. Agric. Biotechnol. 2022, 43, 102402–29515926. DOI: 10.1016/j.bcab.2022.102402.
  • Mosoarca, G.; Vancea, C.; Popa, S.; Boran, S.; Radulescu-Grad, M. E. Crystal Violet Removal from Aqueous Solutions Using Dry Bean Pods Husks Powder – Optimization and Desorption Studies. Ovidius Univ. Ann. Chem. 2022, 33, 129–134. DOI: 10.2478/auoc-2022-0019.
  • Imran, M. S.; Javed, T.; Areej, I.; Haider, M. N. Sequestration of Crystal Violet Dye from Wastewater Using Low-Cost Coconut Husk as a Potential Adsorbent. Water Sci. Technol. 2022, 85, 2295–2317. DOI: 10.2166/wst.2022.124.
  • Rezazadeh, M.; Baghdadi, M.; Mehrdadi, N.; Abdoli, M. A. Adsorption of Crystal Violet Dye by Agricultural Rice Bran Waste: Isotherms, Kinetics, Modeling and Influencing Factors. Environ. Engin. Res. 2021, 26, 200128.
  • Abbas, S.; Javed, T.; Zafar, S.; Taj, M. B.; Ashraf, A. R.; Din, M. I. Adsorption of Crystal Violet Dye by Using a Low-Cost Adsorbent – Peanut Husk. DWT 2021, 233, 387–398. DOI: 10.5004/dwt.2021.27538.
  • Loulidi, I.; Boukhlifi, F.; Ouchabi, M.; Amar, A.; Jabri, M.; Kali, A.; Chraibi, S.; Hadey, C.; Aziz, F. Adsorption of Crystal Violet onto an Agricultural Waste Residue: Kinetics, Isotherm, Thermodynamics, and Mechanism of Adsorption. ScientificWorldJournal 2020, 2020, 5873521. DOI: 10.1155/2020/5873521.
  • Keereerak, A.; Chinpa, W. A Potential Biosorbent from Moringa Oleifera Pod Husk for Crystal Violet Adsorption: Kinetics, Isotherms, Thermodynamic and Desorption Studies. Science Asia 2020, 46, 186–194. DOI: 10.2306/scienceasia1513-1874.2020.46.186.
  • Kagongbe, D.; Zangue, A. H.; Inna, S.; Guy, N. B.; Villieras, F.; Nko’o, E. G. Removal of Violet Crystal from Aqueous Solution by Limon Peel Powders from Adamawa Region of Cameroon. Int. J. Engin. Res. Technol. 2019, 8, 387–395.
  • Kulkarni, M. R.; Revanth, T.; Acharya, A.; Bhat, P. Removal of Crystal Violet Dye from Aqueous Solution Using Water Hyacinth: Equilibrium, Kinetics and Thermodynamics Study. Resour-Effic. Technol. 2017, 3, 71–77. DOI: 10.1016/j.reffit.2017.01.009.
  • Sulyman, M.; Namieśnik, J.; Gierak, A. Adsorptive Removal of Aqueous Phase Crystal Violet Dye by Low-Cost Activated Carbon Obtained from Date Palm (L.) Dead Leaflets. Eng. Prot. Environ. 2016, 19, 611–631. DOI: 10.17512/ios.2016.4.14.
  • Hossain, M. A.; Tanim-Al-Hassan; Hossain, L. Adsorption of Crystal Violet on Used Black Tea Leaves from Acidic Solution: Equilibrium, Thermodynamic and Mechanism Studies. Int. J. Sci. 2015, 4(10), 31–39. DOI: 10.18483/ijSci.849.
  • Chakraborty, S.; Chowdhury, S.; Saha, P. D. Insight into Biosorption Equilibrium, Kinetics and Thermodynamics of Crystal Violet onto Ananas Comosus (Pineapple) Leaf Powder. Appl. Water Sci. 2012, 2, 135–141. DOI: 10.1007/s13201-012-0030-9.
  • Rammel, R. S.; Zatiti, S. A.; El Jamal, M. M. Biosorption of Crystal Violet by Chaetophora Elegans Alga. J. Univ. Chem. Technol. Metallurgy 2011, 46, 283–292.
  • Saeed, A.; Sharif, M.; Iqbal, M. Application Potential of Grapefruit Peel as Dye Sorbent: Kinetics, Equilibrium and Mechanism of Crystal Violet Adsorption. J. Hazard Mater. 2010, 179, 564–572. DOI: 10.1016/j.jhazmat.2010.03.041.
  • El Hadj Ali, Y. A.; N’diaye, A. D.; Ahrouch, M.; Sakar, E. H.; Raklami, A.; Lahcen, A. A.; Stitou, M. Dehydrate Sewage Sludge as an Efficient Adsorbent for Malachite Green Removal in Textile Wastewater: Experimental and Theoretical Studies. Chemistry Africa 2022, 5, 359–373. DOI: 10.1007/s42250-021-00308-x.
  • Deng, H.; Li, Y. F.; Tao, S. Q.; Li, A. Y.; Li, Q. Y.; Hu, L. N. Efficient Adsorption Capability of Banana and Cassava Biochar for Malachite Green: Removal Process and Mechanism Exploration. Environ. Eng. Res. 2021, 27, 200575–200570. DOI: 10.4491/eer.2020.575.
  • Kanda, M.; Sridevi, V.; Pamu, S. H.; Tukaram Bai, M.; Prasad, K. S. N. Adsorption of Malachite Green from Aqueous Solution Using Hen Feathers -Application of Different Mathematical Models to Continuous Biosorption. J. Environ. Treatment Techniques 2022, 10, 116–123.
  • Wang, P.; Chen, W.; Zhang, R.; Xing, Y.; Heilongjiang. Enhanced Removal of Malachite Green Using Calcium-Functionalized Magnetic Biochar. IJERPH 2022, 19, 3247. DOI: 10.3390/ijerph19063247.
  • Mustapha, R.; Ali, A.; Subramaniam, G.; Zuki, A. A. A.; Awang, M.; Harun, M. H. C.; Hamzah, S. Removal of Malachite Green Dye Using Oil Palm Empty Fruit Bunch as a Low-Cost Adsorbent. Biointerface Res. Appl. Chem. 2021, 11, 14998–15008.
  • Metin, N.; Savci, S. Adsorption of Malachite Green by an Agricultural Waste: Rice Husk. Türk Tarım ve Doğa Bilimleri Dergisi 2021, 8, 23–29. DOI: 10.30910/turkjans.749218.
  • Kumar, K. A.; Sandeep, S. Adsorption Kinetics of Malachite Green Dye Removal from Aqueous Solution by Using Banana Stem. IJEAT 2021, 10, 215–220. DOI: 10.35940/ijeat.E2756.0610521.
  • Abate, G. Y.; Alene, A. N.; Habte, A. T.; Getahun, D. M. Adsorptive Removal of Malachite Green Dye from Aqueous Solution onto Activated Carbon of Catha Edulis Stem as a Low Cost Bio-Adsorbent. Environ. Syst. Res. 2020, 9(29), 1–13. DOI: 10.1186/s40068-020-00191-4.
  • Arora, C.; Kumar, P.; Soni, S.; Mittal, J.; Mittal, A.; Singh, B. Efficient Removal of Malachite Green Dye from Aqueous Solution Using Curcuma Caesia Based Activated Carbon. DWT 2020, 195, 341–352. DOI: 10.5004/dwt.2020.25897.
  • Kumari, R.; Dey, S. A Breakthrough Column Study for Removal of Malachite Green Using Coco-Peat. Int. J. Phytoremediation 2019, 21, 1263–1271. DOI: 10.1080/15226514.2019.1633252.
  • Wannahari, R.; Mohamad, M.; Kamal, A. A. A.; Ai, J. Y. S. Removal of Malachite Green Dye by Peanut (Arachis Hypogaea) Shell Biochar: Optimisation Using Response Surface Methodology. Int. J. Sci. Technol. Res. 2019, 8(10), 2564–2569.
  • Ali, A. M.; Farhood, A. S.; Ali, F. F. Technique of Batch Adsorption for the Elimination of (Malachite Green) Dye from Industrial Waste Water by Exploitation Walnut Shells as Sorbent. Indones. J. Chem. 2017, 17, 211–218. DOI: 10.22146/ijc.23063.
  • Jiang, F.; Dinh, D. M.; Hsieh, Y.-L. Adsorption and Desorption of Cationic Malachite Green Dye on Cellulose Nanofibril Aerogels. Carbohydr. Polym. 2017, 173, 286–294. DOI: 10.1016/j.carbpol.2017.05.097.
  • Muinde, V. M.; Onyari, J. M.; Wamalwa, B.; Wabomba, J.; Nthumbi, R. M. Adsorption of Malachite Green from Aqueous Solutions onto Rice Husks: Kinetic and Equilibrium Studies. JEP 2017, 8, 215–230. DOI: 10.4236/jep.2017.83017.
  • Sartape, A. S.; Mandhare, A. M.; Jadhav, V. V.; Raut, P. D.; Anuse, M. A.; Kolekar, S. S. Removal of Malachite Green Dye from Aqueous Solution with Adsorption Technique Using Limonia Acidissima (Wood Apple) Shell as Low Cost Adsorbent. Arabian J. Chem. 2017, 10, S3229–S3238. DOI: 10.1016/j.arabjc.2013.12.019.
  • Sharma, N.; Nandi, B. K. Utilization of Sugarcane Baggase, an Agricultural Waste to Remove Malachite Green Dye from Aqueous Solutions. J. Mater. Environ. Sci. 2013, 4, 1052–1065.
  • Tan, J.; Zhang, X.; Wei, X.; Wang, L. Removal of Malachite Green from Aqueous Solution Using Waste Newspaper Fiber. BioRessource 2012, 7, 4307–4320.
  • Sharma, Y. C.; Singh, B.; Uma. Fast Removal of Malachite Green by Adsorption on Rice Husk Activated Carbon. The Open Environ. Pollution & Toxicol. J. 2009, 1, 74–78.
  • Sonawane, G. H.; Shrivastava, V. S. Kinetics of Decolourization of Malachite Green from Aqueous Medium by Maize Cob (Zea Maize): an Agricultural Solid Waste. Desalination 2009, 247, 430–441. DOI: 10.1016/j.desal.2009.01.006.
  • Shayesteh, H.; Rahbar-Kelishami, A.; Norouzbeigi, R. Adsorption of Malachite Green and Crystal Violet Cationic Dyes from Aqueous Solution Using Pumice Stone as a Low-Cost Adsorbent: kinetic, Equilibrium, and Thermodynamic Studies. Desalin. Water Treat. 2016, 57, 12822–12831. DOI: 10.1080/19443994.2015.1054315.
  • Vijayaraghavan, K.; Premkumar, Y.; Jegan, J. Malachite Green and Crystal Violet Biosorption onto Coco-Peat: characterization and Removal Studies. Desalin. Water Treat. 2016, 57, 6423–6431. DOI: 10.1080/19443994.2015.1011709.
  • Zhang, L.; Zhang, H.; Guo, W.; Tian, Y. Removal of Malachite Green and Crystal Violet Cationic Dyes from Aqueous Solution Using Activated Sintering Process Red Mud. Appl. Clay Sci. 2014, 93–94, 85–93. DOI: 10.1016/j.clay.2014.03.004.
  • Gul, U. D.; Donmez, G. Effect of a Cationic Surfactant on Dye Biosorption Properties of Aspergillus versicolor. Communications de la Faculté Des Sciences de L'Université D'Ankara, Séries C 2010, 22, 1–13.
  • Gul, U. D.; Donmez, G. Effect of Dodecyltrimethyammonium Bromide Surfactant on Decolorization of Remazol Blue by Living Aspergillus versicolor Strain. J. Surfact Deterg. 2012a, 15, 797–803. DOI: 10.1007/s11743-012-1377-5.
  • Gul, U. D.; Donmez, G. Comparison the Dye Removal Activity of Systems Contained Surfactants and Fungus. J. Chil. Chem. Soc. 2012b, 57, 1170–1173. DOI: 10.4067/S0717-97072012000200024.
  • Busi, S.; Rajkumari, J. Biosurfactant: A Promising ApproachToward the Remediation of Xenobiotics, a Way to Rejuvenate the Marine Ecosystem. In: Marine Pollution and Microbial Remediation, Naik, M., Dubey, S., Eds.; Springer, Singapore, 2017, pp. 87–104. DOI: 10.1007/978-981-10-1044-6_6.
  • Mnif, I.; Sahnoun, R.; Ellouz-Chaabouni, S.; Ghribi, D. Application of Bacterial Biosurfactants for Enhanced Removal and Biodegradation of Diesel Oil in Soil Using a Newly Isolated Consortium. Process Safety and Environ. Protection 2017, 109, 72–81. DOI: 10.1016/j.psep.2017.02.002.
  • Mnif, I.; Fendri, R.; Ghribi, D. Effect of Bacillus subtilis SPB1 Biosurfactant Addition on the Efficiency of the Biodecolourization of Methyl Red Using Bacillus thuringiensis RI16 Strain. Water Practice and Technol. 2022, 17, 2570–2580. (in press). DOI: 10.2166/wpt.2022.143.
  • Jadhav, M.; Kalme, S.; Tamboli, D.; Govindwar, S. Rhamnolipid from Pseudomonas Desmolyticum NCIM-2112 and Its Role in the Degradation of Brown 3REL. J. Basic Microbiol. 2011, 51, 385–396. DOI: 10.1002/jobm.201000364.
  • Afroze, S.; Sen, T. K. A Review on Heavy Metal Ions and Dye Adsorption from Water by Agricultural Solid Waste Adsorbents. Water, Air and Soil Pollution 2018, 229, 225. DOI: 10.1007/s11270-018-3869-z.
  • Chao, C. C.; Krueger, R. R. The Date Palm (Phoenix Dactylifera L.): Overview of Biology, Uses, and Cultivation. horts 2007, 42, 1077–1082. DOI: 10.21273/HORTSCI.42.5.1077.
  • El Messaoudi, N.; Dbik, A.; El Khomri, M.; Sabour, A.; Bentahar, S.; Lacherai, A. Date Stones of Phoenix Dactylifera and Jujube Shells of Ziziphus Lotus as Potential Biosorbents for Anionic Dye Removal. Int. J. Phytoremediation 2017, 19, 1047–1052. DOI: 10.1080/15226514.2017.1319331.
  • Alharbi, H. A.; Hameed, B. H.; Alotaibi, K. D.; Al-Oud, S. S.; Al-Modaihsh, A. S. Recent Methods in the Production of Activated Carbon from Date Palm Residues for the Adsorption of Textile Dyes: A Review. Front. Environ. Sci. 2022, 10. DOI: 10.3389/fenvs.2022.996953.
  • Umar, M.; Kadir, H. A.; Doho, A.; Mela, Y.; Garba, M.; Aliyu, A. Application of Date Stones on the Process of Removing Erythrosine Dye from Industrial Effluents. Int. J. Environ. Chem. 2022, 6, 36–41. DOI: 10.11648/j.ijec.20220602.11.
  • Thiam, A.; Tanji, K.; Assila, O.; Zouheir, M.; Haounati, R.; Arrahli, A.; Abeid, A.; Lairini, S.; Bouslamti, R.; Zerouq, F.; Kherbeche, A. Valorization of Date Pits as an Effective Biosorbent for Remazol Brilliant Blue Adsorption from Aqueous Solution. J. Chem. 2020, 2020, 1–14. DOI: 10.1155/2020/4173152.
  • Çetintaş, S.; Bingol, D. Optimization of Pb(II) Biosorption with Date Palm (Phoenix Dactylifera L.) Seeds Using Response Surface Methodology. J. Water Chem. Technol. 2018, 40, 370–378. DOI: 10.3103/S1063455X18060103.
  • Rambabu, K.; Thanigaivelan, A.; Bharath, G.; Sivarajasekar, N.; Banat, F.; Show, P. L. Biosorption Potential of Phoenix Dactylifera Coir Wastes for Toxic Hexavalent Chromium Sequestration. Chemosphere 2021, 268, 128809. DOI: 10.1016/j.chemosphere.2020.128809.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.