116
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Effect of comb polymer dispersants with different molecular structures on the performance of LiFePO4 suspensions

, , , &
Pages 1241-1250 | Received 15 Dec 2022, Accepted 13 Apr 2023, Published online: 21 Jul 2023

References

  • Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. Phospho‐Olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries. J. Electrochem. Soc. 1997, 144, 1188–1194. DOI: 10.1149/1.1837571.
  • Ilango, P. R.; Gnanamuthu, R.; Jo, Y. N.; Lee, C. W. Design and Electrochemical Investigation of a Novel Graphene Oxide-Silver Joint Conductive Agent on LiFePO4 Cathodes in Rechargeable Lithium-Ion Batteries. J. Ind. Eng. Chem. 2016, 36, 121–124. DOI: 10.1016/j.jiec.2016.01.037.
  • Lai, A.; Chu, Y.; Jiang, J.; Huang, Y.; Hu, S.; Pan, Q.; Zheng, F.; Wang, J.; Li, J.; Wang, H.; Li, Q. Self-Restriction to Form in-Situ N,P Co-Doped Carbon-Coated LiFePO4 Nanocomposites for High-Performance Lithium Ion Batteries. Electrochim. Acta 2022, 414, 140161. DOI: 10.1016/j.electacta.2022.140161.
  • Moustafa, M. G.; Sanad, M. M. S. Green Fabrication of ZnAl2O4-Coated LiFePO4 Nanoparticles for Enhanced Electrochemical Performance in Li-Ion Batteries. J. Alloys Compd. 2022, 903, 163910. DOI: 10.1016/j.jallcom.2022.163910.
  • Qin, X.; Yang, G.; Ma, F.; Cai, F. Preparation and Performance of Nano-LiFePO4/C Cathode Material for Lithium-Ion Battery. Russ. J. Phys. Chem. 2016, 90, 233–239. DOI: 10.1134/S0036024415120304.
  • Forouzan, M. M.; Chao, C. W.; Bustamante, D.; Mazzeo, B. A.; Wheeler, D. R. Experiment and Simulation of the Fabrication Process of Lithium-Ion Battery Cathodes for Determining Microstructure and Mechanical Properties. J. Power Sources 2016, 312, 172–183. DOI: 10.1016/j.jpowsour.2016.02.014.
  • Xu, L.; Lv, W.; Shi, K.; Xiao, S.; You, C.; He, Y. B.; Kang, F.; Yang, Q. H. Holey Graphenes as the Conductive Additives for LiFePO4 Batteries with an Excellent Rate Performance. Carbon 2019, 149, 257–262. DOI: 10.1016/j.carbon.2019.04.025.
  • Michaud, X.; Shi, K.; Zhitomirsky, I. Electrophoretic Deposition of LiFePO4 for Li-Ion Batteries. Mater. Lett. 2019, 241, 10–13. DOI: 10.1016/j.matlet.2019.01.032.
  • Moyer, K.; Carter, R.; Hanken, T.; Douglas, A.; Oakes, L.; Pint, C. L. Electrophoretic Deposition of LiFePO4 onto 3-D Current Collectors for High Areal Loading Battery Cathodes. Mater. Sci. Eng. B 2019, 241, 42–47. DOI: 10.1016/j.mseb.2019.02.003.
  • Li, C. C.; Chang, S. J.; Wu, C. W.; Chang, C. W.; Yu, R. H. Newly Designed Diblock Dispersant for Powder Stabilization in Water-Based Suspensions. J Colloid Interface Sci. 2017, 506, 180–187. DOI: 10.1016/j.jcis.2017.07.045.
  • Ran, Q.; Somasundaran, P.; Miao, C.; Liu, J.; Wu, S.; Shen, J. Adsorption Mechanism of Comb Polymer Dispersants at the Cement/Water Interface. J. Dispers. Sci. Technol. 2010, 31, 790–798. DOI: 10.1080/01932690903333580.
  • Farrokhpay, S. A Review of Polymeric Dispersant Stabilisation of Titania Pigment. Adv. Colloid Interface Sci. 2009, 151, 24–32. DOI: 10.1016/j.cis.2009.07.004.
  • Gharanjig, H.; Gharanjig, K.; Sarli, M. A.; Ozguney, A. T.; Jalili, M.; Gharanjik, A.; Jahankaran, S. Effect of Molecular Composition of Comb-like Polycarboxylate Dispersants on Hydrophobic Dye Dispersion Properties. J. Mol. Liq. 2022, 350, 118615. DOI: 10.1016/j.molliq.2022.118615.
  • Zhang, G.; Zhu, N.; Zhu, X. Influence of Polycarboxylate Dispersants with Different Molecular Structures on the Performance of Coal Water Slurry. J. Dispers. Sci. Technol. 2016, 37, 1799–1805. DOI: 10.1080/01932691.2016.1140585.
  • Yoshikawa, J.; Lewis, J. A.; Chun, B.-W. Comb Polymer Architecture, Ionic Strength, and Particle Size Effects on the BaTiO3 Suspension Stability. J. Am. Ceram. Soc. 2009, 92, S42–S49. DOI: 10.1111/j.1551-2916.2008.02647.x.
  • Kuo, K.-H.; Peng, Y.-H.; Chiu, W.-Y.; Don, T.-M. A Novel Dispersant for Preparation of High Loading and Photosensitive Carbon Black Dispersion. J. Polym. Sci. A Polym. Chem. 2008, 46, 6185–6197. DOI: 10.1002/pola.22929.
  • Ran, Q.; Qiao, M.; Liu, J.; Miao, C. SMA-g-MPEG Comb-like Polymer as a Dispersant for Al2O3 Suspensions. Appl. Surf. Sci. 2012, 258, 2447–2453. DOI: 10.1016/j.apsusc.2011.10.068.
  • Winnefeld, F.; Becker, S.; Pakusch, J.; Götz, T. Effects of the Molecular Architecture of Comb-Shaped Superplasticizers on Their Performance in Cementitious Systems. Cem. Concr. Compos. 2007, 29, 251–262. DOI: 10.1016/j.cemconcomp.2006.12.006.
  • Gharanjig, H.; Gharanjig, K.; Khosravi, A. Effects of the Side Chain Density of Polycarboxylate Dispersants on Dye Dispersion Properties. Coloration Technol. 2019, 135, 160–168. DOI: 10.1111/cote.12391.
  • He, J.; Luo, Y. Novel Carboxylate Comb-like Dispersant Used in Disperse Dyes. J. Appl. Polym. Sci. 2022, 139, 52147. DOI: 10.1002/app.52147.
  • Holbrook, T. P.; Masson, G. M.; Storey, R. F. Synthesis of Comb-like Dispersants and a Study on the Effect of Dispersant Architecture and Carbon Black Dispersion. J. Polym. Sci. A: Polym. Chem. 2019, 57, 1682–1696. DOI: 10.1002/pola.29433.
  • Wu, G. Material Characterization and Application.; Chemical Industry Press: Beijing, China, 2002.
  • Mustaffa, N.; Kaneko, T.; Takada, K.; Dwivedi, S.; Su Ait, M. S.; Mobarak, N. N. Synthesis and Characterization of Polyimides from Diisocyanate with Enhanced Solubility and Thermostability Properties via Direct Low-Temperature One-Step Polymerization in NMP Solvent. Polym. Bull. [Online early access]. DOI: 10.1007/s00289-022-04510-w.
  • Kaba, M.; Romero, R. E.; Essamri, A.; Mas, A. Synthesis and Characterization of Fluorinated Copolyetherimides with CH2C6F13 Side Chains Based on the ULTEM™ Structure. J. Fluor. Chem. 2005, 126, 1476–1486. DOI: 10.1016/j.jfluchem.2005.07.014.
  • Barsema, J. N.; Klijnstra, S. D.; Balster, J. H.; Van der Vegt, N. F. A.; Koops, G. H.; Wessling, M. Intermediate Polymer to Carbon Gas Separation Membranes Based on Matrimid PI. J. Membr. Sci. 2004, 238, 93–102. DOI: 10.1016/j.memsci.2004.03.024.
  • Chhabra, R. P.; Richardson, J. F. Non-Newtonian Flow and Applied Rheology: Engineering Applications.; Butterworth-Heinemann: Oxford, UK, 2011.
  • Jing, X.; Gong, W.; Feng, Z.; Meng, X.; Zheng, B. Influence of Comb-like Copolymer Dispersants with Different Molecular Structures on the Performance of CaCO3 Suspension in Organic System. J. Dispers. Sci. Technol. 2017, 38, 1311–1318. DOI: 10.1080/01932691.2016.1234389.
  • Kamibayashi, M.; Ogura, H.; Otsubo, Y. Shear-Thickening Flow of Nanoparticle Suspensions Flocculated by Polymer Bridging. J. Colloid Interface Sci. 2008, 321, 294–301. DOI: 10.1016/j.jcis.2008.02.022.
  • Xu, Y.; Gong, X.; Peng, C.; Sun, Y.; Jiang, W.; Zhang, Z. Shear Thickening Fluids Based on Additives with Different Concentrations and Molecular Chain Lengths. Chin. J. Chem. Phys. 2010, 23, 342–346. DOI: 10.1088/1674-0068/23/03/342-346.
  • Zhang, K.; He, R.; Xie, C.; Wang, G.; Ding, G.; Wang, M.; Song, W.; Fang, D. Photosensitive ZrO2 Suspensions for Stereolithography. Ceram. Int. 2019, 45, 12189–12195. DOI: 10.1016/j.ceramint.2019.03.123.
  • Liu, W.; Lv, L.; Li, Y.; Wang, Y.; Wang, J.; Xue, C.; Dong, Y.; Yang, J. Effects of Slurry Composition on the Properties of 3-1 Type Porous PZT Ceramics Prepared by Ionotropic Gelation. Ceram. Int. 2017, 43, 6542–6547. DOI: 10.1016/j.ceramint.2017.02.079.
  • Zhang, S.; Zhang, L.; Yang, X.; Hua, W.; Qiu, J.; Zhang, M.; Zhang, B.; Ren, T. Novel Comb-like Anion-Nonionic Copolymer for Improving the Stability of Pymetrozine Suspension Concentrate. J. Appl. Polym. Sci. 2021, 138, e50040. DOI: 10.1002/app.50040.
  • Yoshioka, K.; Tazawa, E-i.; Kawai, K.; Enohata, T. Adsorption Characteristics of Superplasticizers on Cement Component Minerals. Cem. Concr. Res. 2002, 32, 1507–1513. DOI: 10.1016/S0008-8846(02)00782-2.
  • Zingg, A.; Winnefeld, F.; Holzer, L.; Pakusch, J.; Becker, S.; Gauckler, L. Adsorption of Polyelectrolytes and Its Influence on the Rheology, Zeta Potential, and Microstructure of Various Cement and Hydrate Phases. J. Colloid Interface Sci. 2008, 323, 301–312. DOI: 10.1016/j.jcis.2008.04.052.
  • Rosen, M. J.; Kunjappu, J. T. Surfactants and Interfacial Phenomena, 4th ed.; Wiley: Hoboken, USA, 2012.
  • Norde, W. Adsorption of Proteins from Solution at the Solid Liquid Interface. Adv. Colloid Interface Sci. 1986, 25, 267–340. DOI: 10.1016/0001-8686(86)80012-4.
  • Qian, J.; Gu, T. Effects of Adsorption and Surface Micellization of Dodecylpyridinium Bromide on the Stability of Silica Suspension. Chin. J. Chem. 1997, 02, 43–47.
  • Yang, Y.; Meng, Z.; Zhao, M. Studies on the Adsorption of Cetyltrimethylammouium Bromide (CTMAB) in Old Manured Loessal Soil. J. Northwest A& F Univ. 2007, 35, 149–152.
  • Zhao, Z.; Qian, C.; Wang, Q. Effect of Adsorption of Surfactants and Polyvinylpyrrolidone on the Stability of ZrO2 Suspension. Chin. J. Chem. 1998, 15, 6–10.
  • Sun, S.; Wang, A. Adsorption Kinetics of Cu(II) Ions Using N,O-Carboxymethyl-Chitosan. J. Hazard Mater. 2006, 131, 103–111. DOI: 10.1016/j.jhazmat.2005.09.012.
  • Patkowski, J.; Myśliwiec, D.; Chibowski, S. Adsorption of Polyethyleneimine (PEI) on Hematite. Influence of Magnetic Field on Adsorption of PEI on Hematite. Mater. Chem. Phys. 2014, 144, 451–461. DOI: 10.1016/j.matchemphys.2014.01.019.
  • Jing, X.; Gong, W.; Feng, Z.; Meng, X.; Zheng, B. Synthesis of a Novel Comb-like Copolymer Used as Dispersant in Organic Solvent and Influence of Free Comb-like Copolymer on CaCO3 Suspension. J. Dispers. Sci. Technol. 2017, 38, 1003–1010. DOI: 10.1080/01932691.2016.1217491.
  • Tsai, J.-C.; Tsai, F.-Y.; Tung, C.-A.; Hsieh, H.-W.; Li, C.-C. Gelation or Dispersion of LiFePO4 in Water-Based Slurry? J. Power Sources 2013, 241, 400–403. DOI: 10.1016/j.jpowsour.2013.04.102.
  • Chin, R. M.; Chang, S. J.; Li, C. C.; Chang, C. W.; Yu, R. H. Preparation of Highly Dispersed and Concentrated Aqueous Suspensions of Nanodiamonds Using Novel Diblock Dispersants. J. Colloid Interface Sci. 2018, 520, 119–126. DOI: 10.1016/j.jcis.2018.03.017.
  • Li, Y.; Zhang, Y.; Zheng, J.; Guo, H.; Yang, C.; Li, Z.; Lu, M. Dispersion and Rheological Properties of Concentrated Kaolin Suspensions with Polycarboxylate Copolymers Bearing Comb-like Side Chains. J. Eur. Ceram. Soc. 2014, 34, 137–146. DOI: 10.1016/j.jeurceramsoc.2013.07.009.
  • Ezzeddine, Z.; Batonneau-Gener, I.; Pouilloux, Y.; Hamad, H. Removal of Methylene Blue by Mesoporous CMK-3: Kinetics, Isotherms and Thermodynamics. J. Mol. Liq. 2016, 223, 763–770. DOI: 10.1016/j.molliq.2016.09.003.
  • Zeng, F.; Huang, R. Research on Absorbed Film’s Thickness of Dispersants on Coal Surface. J. China Univ. Mining Technol. 1995, 24, 20–24.
  • Liu, C.; Li, Y.; Liu, S.; Zhou, Y.; Li, B.; Liu, D.; Fu, C.; Ye, L. Polyethylenimine Embellished Multiwalled Carbon Nanotube (MWCNTs) for Efficiently Enhancing Sequestration of Uranium(Ⅵ) from Seawater. J. Environ. Chem. Eng. 2022, 10, 108513. DOI: 10.1016/j.jece.2022.108513.
  • Wang, A.; Qiao, M.; Xu, J.; Pan, Y.; Ran, Q.; Wu, S.; Chen, Q. POEGMA-b-PAA Comb-like Polymer Dispersant for Al2 Suspensions. J. Appl. Polym. Sci. 2016, 133, 43352. DOI: 10.1002/app.43577.
  • Flatt, R. J. Towards a Prediction of Superplasticized Concrete Rheology. Mat. Struct. 2004, 37, 289–300. DOI: 10.1617/14088.
  • Gay, C.; Raphael, E. Comb-like Polymers inside Nanoscale Pores. Adv. Colloid Interface Sci. 2001, 94, 229–236. DOI: 10.1016/S0001-8686(01)00062-8.
  • Flatt, R. J.; Schober, I.; Raphael, E.; Plassard, C.; Lesniewska, E. Conformation of Adsorbed Comb Copolymer Dispersants. Langmuir 2009, 25, 845–855. DOI: 10.1021/la801410e.
  • Mori, T.; Ochi, T.; Kitamura, K. Characterization of Slurries for Lithium-Ion Battery Cathodes by Measuring Their Flow and Change in Hydrostatic Pressure over Time and Clarification of the Relationship between Slurry and Cathode Properties. J. Colloid Interface Sci. 2022, 629, 36–45. DOI: 10.1016/j.jcis.2022.08.192.
  • Ma, F.; Fu, Y.; Battaglia, V.; Prasher, R. Microrheological Modeling of Lithium Ion Battery Anode Slurry. J. Power Sources 2019, 438, 226994. DOI: 10.1016/j.jpowsour.2019.226994.
  • Youssry, M.; Madec, L.; Soudan, P.; Cerbelaud, M.; Guyomard, D.; Lestriez, B. Non-Aqueous Carbon Black Suspensions for Lithium-Based Redox Flow Batteries: Rheology and Simultaneous Rheo-Electrical Behavior. Phys. Chem. Chem. Phys. 2013, 15, 14476–14486. DOI: 10.1039/c3cp51371h.
  • Takeno, M.; Katakura, S.; Miyazaki, K.; Takeno, M.; Fukutsuka, T. Relation between Mixing Processes and Properties of Lithium-Ion Battery Electrode-Slurry. Electrochemistry 2021, 89, 585–589. DOI: 10.5796/electrochemistry.21-00076.
  • Wu, Y.; Tang, R.; Li, W.; Wang, Y.; Huang, L.; Ouyang, L. A High-Quality Aqueous Graphene Conductive Slurry Applied in Anode of Lithium-Ion Batteries. J. Alloys Compd. 2020, 830, 154575.
  • Zhang, Z.; Qu, C.; Zheng, T.; Lai, Y.; Li, J. Effect of Triton X-100 as Dispersant on Carbon Black for LiFePO4 Cathode. Int. J. Electrochem. Sci. 2013, 8, 6722–6733.
  • Nguyen, B. P. N.; Chazelle, S.; Cerbelaud, M.; Porcher, W.; Lestriez, B. Manufacturing of Industry-Relevant Silicon Negative Composite Electrodes for Lithium Ion-Cells. J. Power Sources 2014, 262, 112–122. DOI: 10.1016/j.jpowsour.2014.03.119.
  • Zhang, Z.; Qu, C.; Jia, M.; Lai, Y.; Li, J. Pre-Dispersed Carbon Black as Conductive Agent for LiFePO4 Cathodes. J. Cent. South Univ. 2014, 21, 2604–2611. DOI: 10.1007/s11771-014-2219-6.
  • Wang, Y.; Zhang, J.; Xue, J.; Zhang, K.; Wen, L.; Liang, G. Effect of Particle Dispersion on the Properties of LiFePO4 Slurry and the Electrochemical Properties of the Battery. Ionics 2022, 28, 1547–1558. DOI: 10.1007/s11581-021-04412-3.
  • Cao, J.; Guo, H.; Liu, R.; Zhang, K.; Tian, S.; Liang, G. Effect of Polyvinyl Pyrrolidone/Sodium Polyacrylate Compound Surfactants on Slurry Properties of Lithium Iron Phosphate and Electrochemical Performance of the Battery. Ionics 2022, 28, 1595–1606. DOI: 10.1007/s11581-021-04413-2.
  • Li, C.; Wang, Y.; Yang, T. Effects of Surface-Coated Carbon on the Chemical Selectivity for Water-Soluble Dispersants of LiFePO4. J. Electrochem. Soc. 2011, 158, A828–A834. DOI: 10.1149/1.3592158.
  • Liu, S.; Zhong, H.; Zhang, C.; Yan, X.; Zhao, X.; Zhang, L. Improving the Processability and Cycling Stability of Nano-LiFePO4 Cathode by Using PVDF/TX Binary Binder. Compos. Interfaces 2019, 26, 1013–1024. DOI: 10.1080/09276440.2019.1578574.
  • Li, C.; Lin, Y. Interactions between Organic Additives and Active Powders in Water-Based Lithium Iron Phosphate Electrode Slurries. J. Power Sources 2012, 220, 413–421. DOI: 10.1016/j.jpowsour.2012.07.125.
  • Li, C.; Peng, X.; Lee, J.; Wang, F. Using Poly(4-Styrene Sulfonic Acid) to Improve the Dispersion Homogeneity of Aqueous-Processed LiFePO4 Cathodes. J. Electrochem. Soc. 2010, 157, A517–A520. DOI: 10.1149/1.3308595.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.