194
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Wettability alteration of sandstone oil reservoirs by different ratios of graphene oxide/silica hybrid nanofluid for enhanced oil recovery

, , &
Pages 1251-1263 | Received 19 Jan 2023, Accepted 15 Apr 2023, Published online: 02 May 2023

References

  • Ali, J. A.; Kolo, K.; Manshad, A. K.; Mohammadi, A. H. Recent Advances in Application of Nanotechnology in Chemical Enhanced Oil Recovery: Effects of Nanoparticles on Wettability Alteration, Interfacial Tension Reduction, and Flooding. Egypt. J. Pet. 2018, 27, 1371–1383. DOI: 10.1016/j.ejpe.2018.09.006.
  • Gholamzadeh, Y.; Sharifi, M.; Hemmati-Sarapardeh, A.; Rafiei, Y. Toward Mechanistic Understanding of Interfacial Tension Behavior in Nanofluid-Model Oil Systems at Different Asphaltene Stability Conditions: The Roles of Nanoparticles, Solvent, and Salt Concentration. Geoenergy Sci. Eng. 2023, 222, 211449. DOI: 10.1016/j.geoen.2023.211449.
  • Prudencio, G.; Celis, C.; Armacanqui, J. S.; Sinchitullo, J. Development of an Evolutionary Artificial Neural Network-Based Tool for Selecting Suitable Enhanced Oil Recovery Methods. J. Braz. Soc. Mech. Sci. Eng. 2022, 44, 121. DOI: 10.1007/s40430-022-03403-3.
  • Ivanova, A.; Kuandykova, A.; Rodionov, A.; Morkovkin, A.; Burukhin, A.; Cheremisin, A. Pore-Scale Investigation of Low-Salinity Nanofluids on Wetting Properties of Oil Carbonate Reservoir Rocks Studied by X-Ray Micro-Tomography. Energies 2023, 16, 1400. DOI: 10.3390/en16031400.
  • Ahmadzadeh Zahedany, F.; Sabbaghi, S.; Saboori, R.; Rasouli, K. Investigation of the Synergistic Effect of TiO2 Nanofluid and Biomaterials Derived from Three Bacteria in Various Culture Media: Implications for Enhanced Oil Recovery. Chem. Eng. Res. Des. 2022, 186, 50–63. DOI: 10.1016/j.cherd.2022.07.053.
  • Roodbari, P.; Sabbaghi, S. Investigating the Properties of Modified Drilling Mud with Barite/Polyacrylamide Nanocomposite. SPE Drill. Completion 2021, 36, 868–874. DOI: 10.2118/205511-PA.
  • Morgenstern, R.; Mukherjee, S.; Behr, A.; Rafiee, M. Numerical Analysis of Condensate Blockage and Its Mitigation by a Wettability Altering Nanofluid Treatment. In SPE Reservoir Characterisation and Simulation Conference and Exhibition; OnePetro, 2023. DOI: 10.2118/212609-MS.
  • Elkhatib, O.; Xie, Y.; Mohamed, A.; Arshadi, M.; Piri, M.; Goual, L. Pore-Scale Study of Wettability Alteration and Fluid Flow in Propped Fractures of Ultra-Tight Carbonates. Langmuir 2023, 39, 1870–1884. DOI: 10.1021/acs.langmuir.2c02900.
  • Lu, Y.; Liu, Y.; Tang, J.; Jia, Y.; Tian, R.; Zhou, J.; Chen, X.; Xu, Z.; Cheng, Q. Water Wettability Alternation of CO2-Water-Shale System Due to Nanoparticles: Implications for CO2 Geo-Storage. Int. J. Greenhouse Gas Control. 2023, 124, 103836. DOI: 10.1016/j.ijggc.2023.103836.
  • Hasanshahi, Z.; Parvasi, P.; Zerafat, M. M.; Sabbaghi, S. Experimental Investigation of Fe3O4-Chitosan Nanocomposite as a Nano-Demulsifier for Water in Crude Oil Separation. J. Nanoanal. 2021, 8, 41–51.
  • Saboori, R.; Azin, R.; Osfouri, S.; Sabbaghi, S.; Bahramian, A. Wettability Alteration of Carbonate Rocks from Strongly Liquid-Wetting to Strongly Gas-Wetting by Fluorine-Doped Silica Coated by Fluorosilane. J. Dispersion Sci. Technol. 2018, 39, 767–776. DOI: 10.1080/01932691.2017.1388179.
  • Chen, W.; Geng, X.; Liu, W.; Ding, B.; Xiong, C.; Sun, J.; Wang, C.; Jiang, K. A Comprehensive Review on Screening, Application, and Perspectives of Surfactant-Based Chemical-Enhanced Oil Recovery Methods in Unconventional Oil Reservoirs. Energy Fuels 2023, 37, 4729–4750. DOI: 10.1021/acs.energyfuels.2c03612.
  • Liang, T.; Hou, J.; Xi, J. Mechanisms of Nanofluid Based Modification MoS2 Nanosheet for Enhanced Oil Recovery in Terms of Interfacial Tension, Wettability Alteration and Emulsion Stability. J. Dispersion Sci. Technol. 2023, 44, 26–37. DOI: 10.1080/01932691.2021.1930034.
  • Saboori, R.; Azin, R.; Osfouri, S.; Sabbaghi, S.; Bahramian, A. Wettability Alteration of Carbonate Cores by Alumina-Nanofluid in Different Base Fluids and Temperature. j. sustain. energy Engng. 2018, 6, 84–98. DOI: 10.7569/JSEE.2018.629502.
  • Jafarbeigi, E.; Mansouri, M.; Talebian, S. H. Effect of UiO-66-NH2/TiO2 Nano-Fluids on the IFT Reduction and Their Use for Wettability Alteration of Carbonate Rocks. Mater. Chem. Phys. 2023, 299, 127496. DOI: 10.1016/j.matchemphys.2023.127496.
  • Saboori, R.; Sabbaghi, S.; Barahoei, M.; Sahooli, M. Improvement of Thermal Conductivity Properties of Drilling Fluid by CuO Nanofluid. Challenges Nano Micro Scale Sci. Technol. 2017, 5, 97–101.
  • Sabbaghi, S.; Rezaii, A.; Shahri, G. R.; Baktash, M. Mathematical Analysis for the Efficiency of a Semi-Spherical Fin with Simultaneous Heat and Mass Transfer. Int. J. Refrig. 2011, 34, 1877–1882. DOI: 10.1016/j.ijrefrig.2011.06.014.
  • AlZaabi, A.; Arif, M.; Ali, M.; Adila, A.; Abbas, Y.; Kumar, R. S.; Keshavarz, A.; Iglauer, S. Impact of Carbonate Mineral Heterogeneity on Wettability Alteration Potential of Surfactants. Fuel 2023, 342, 127819. DOI: 10.1016/j.fuel.2023.127819.
  • Lashari, N.; Ganat, T.; Ayoub, M. A.; Kalam, S.; Ali, I. Coreflood Investigation of HPAM/GO-SiO2 Composite through Wettability Alteration. J. Mol. Liq. 2023, 371, 121130. DOI: 10.1016/j.molliq.2022.121130.
  • Ramezani, M.; Abedini, R.; Lashkarbolooki, M. Experimental Study about the Effect of SiO2 Nanoparticle in Surfactant Performance on IFT Reduction and Wettability Alteration. Chem. Eng. Res. Des. 2023, 192, 350–361. DOI: 10.1016/j.cherd.2023.02.051.
  • Xu, G.; Chang, J.; Wu, H.; Shao, W.; Li, G.; Hou, J.; Kang, N.; Yang, J. Enhanced Oil Recovery Performance of Surfactant-Enhanced Janus SiO2 Nanofluid for High Temperature and Salinity Reservoir. Colloids Surf. A 2023, 657, 130545. DOI: 10.1016/j.colsurfa.2022.130545.
  • Kazemzadeh, Y.; Sharifi, M.; Riazi, M.; Rezvani, H.; Tabaei, M. Potential Effects of Metal Oxide/SiO2 Nanocomposites in EOR Processes at Different Pressures. Colloids Surf. A 2018, 559, 372–384. DOI: 10.1016/j.colsurfa.2018.09.068.
  • Giraldo, L. J.; Gallego, J.; Villegas, J. P.; Franco, C. A.; Cortés, F. B. Enhanced Waterflooding with NiO/SiO2 0-D Janus Nanoparticles at Low Concentration. J. Petrol. Sci. Eng. 2019, 174, 40–48. DOI: 10.1016/j.petrol.2018.11.007.
  • Li, Y.; Zhou, F.; Li, B.; Xu, H.; Yao, E.; Li, M.; Zhang, L. 2022 Enhancement of Tight Oil Recovery by Amphiphilic Janus Nanosheets. In International Conference on Offshore Mechanics and Arctic Engineering; American Society of Mechanical Engineers; V010T011A093. DOI: 10.1115/OMAE2022-79920.
  • Sikiru, S. Ionic Transport and Influence of Electromagnetic Field Interaction within Electric Double Layer in Reservoir Sandstone. J. Mol. Liq. 2021, 344, 117675. DOI: 10.1016/j.molliq.2021.117675.
  • Nowrouzi, I.; Khaksar Manshad, A.; Mohammadi, A. H. Effects of MgO, γ-Al2O3, and TiO2 Nanoparticles at Low Concentrations on Interfacial Tension (IFT), Rock Wettability, and Oil Recovery by Spontaneous Imbibition in the Process of Smart Nanofluid Injection into Carbonate Reservoirs. ACS Omega. 2022, 7, 22161–22172. DOI: 10.1021/acsomega.1c07134.
  • Gonbadi, M.; Sabbaghi, S.; Saboori, R.; Derakhshandeh, A.; Narimani, M.; Fatemi, A. Sulfide Adsorption by “Green Synthesized Fe3O4@ ZnO Core/Shell” Nanoparticles from Aqueous Solution and Industrial Rich Amine Solution: Kinetic and Equilibrium Study. Int. J. Environ. Sci. Technol. 2023, 20, 3101–3120. DOI: 10.1007/s13762-023-04755-6.
  • Hassan, Y. M.; Guan, B. H.; Chuan, L. K.; Hamza, M. F.; Khandaker, M. U.; Sikiru, S.; Adam, A. A.; Sani, S. F. A.; Abdulkadir, B. A.; Ayub, S. The Influence of ZnO/SiO2 Nanocomposite Concentration on Rheology, Interfacial Tension, and Wettability for Enhanced Oil Recovery. Chem. Eng. Res. Des. 2022, 179, 452–461. DOI: 10.1016/j.cherd.2022.01.033.
  • Li, S.; Kaasa, A. T.; Hendraningrat, L.; Torsæter, O. 2013 Effect of Silica Nanoparticles Adsorption on the Wettability Index of Berea Sandstone. In Paper SCA2013-059 Presented at the International Symposium of the Society of Core Analysts Held in Napa Valley, California, USA; 16–19.
  • Khoramian, R.; Ramazani Sa, A.; Hekmatzadeh, M.; Kharrat, R.; Asadian, E. Graphene Oxide Nanosheets for Oil Recovery. ACS Appl. Nano Mater. 2019, 2, 5730–5742. DOI: 10.1021/acsanm.9b01215.
  • Manshad, A. K.; Ali, J. A.; Haghighi, O. M.; Sajadi, S. M.; Keshavarz, A. Oil Recovery Aspects of ZnO/SiO2 Nano-Clay in Carbonate Reservoir. Fuel 2022, 307, 121927. DOI: 10.1016/j.fuel.2021.121927.
  • Abouzeid, R. E.; Owda, M. E.; Dacrory, S. Effective Adsorption of Cationic Methylene Blue Dye on Cellulose Nanofiber/Graphene Oxide/Silica Nanocomposite: Kinetics and Equilibrium. J. Appl. Polymer Sci. 2022, 139, 52377. DOI: 10.1002/app.52377.
  • Hao, T.; Wang, Y.; Zhang, M.; Liu, Z.; Liu, J.; Huang, L.; Li, J.; Peng, Y.; Tang, J. The Addition of GO-SiO2 to Synthesis Polyethylene Terephthalate Composite with Enhanced Crystalline and Mechanical Properties. J. Mater. Res. Technol. 2022, 18, 1746–1753. DOI: 10.1016/j.jmrt.2022.03.095.
  • Moradi, H.; Sabbaghi, S.; Mirbagheri, N. S.; Chen, P.; Rasouli, K.; Kamyab, H.; Chelliapan, S. Removal of Chloride Ion from Drinking Water Using Ag NPs-Modified Bentonite: Characterization and Optimization of Effective Parameters by Response Surface Methodology-Central Composite Design. Environ. Res. 2023, 223, 115484. DOI: 10.1016/j.envres.2023.115484.
  • Sadeghalvaad, M.; Razavi, S. R.; Sabbaghi, S.; Rasouli, K. Heating Performance of a Large-Scale Line Heater by Adding Synthesized Carbon-Nanodots to the Heater Bath Fluid: CFD Simulation and Experimental Study. Adv. Powder Technol. 2023, 34, 103960. DOI: 10.1016/j.apt.2023.103960.
  • Rasouli, K.; Alamdari, A.; Sabbaghi, S. Ultrasonic-Assisted Synthesis of α-Fe2O3@ TiO2 Photocatalyst: Optimization of Effective Factors in the Fabrication of Photocatalyst and Removal of Non-Biodegradable Cefixime via Response Surface Methodology-Central Composite Design. Sep. Purif. Technol. 2023, 307, 122799. DOI: 10.1016/j.seppur.2022.122799.
  • Razavi, S.; Sabbaghi, S.; Rasouli, K. Comparative Investigation of the Influence of CaCO3 and SiO2 Nanoparticles on Lithium-Based Grease: Physical, Tribological, and Rheological Properties. Inorg. Chem. Commun. 2022, 142, 109601. DOI: 10.1016/j.inoche.2022.109601.
  • Fereidooni, M.; Esmaeilzadeh, F.; Zandifar, A. Innovatively-Synthesized CeO2/ZnO Photocatalysts by Sono-Photochemical Deposition: Catalyst Characterization and Effect of Operational Parameters on High Efficient Dye Removal. J. Mater. Sci. 2022, 57, 16228–16244. DOI: 10.1007/s10853-022-07666-y.
  • Hashemi, S. F.; Sabbaghi, S.; Saboori, R.; Zarenezhad, B. Photocatalytic Degradation of Ammonia with Titania Nanoparticles under UV Light Irradiation. Environ. Sci. Pollut. Res. Int. 2022, 29, 68600–68614. DOI: 10.1007/s11356-022-20408-6.
  • Malekshahi, M.; Sabbaghi, S.; Rasouli, K. Preparation of α-Alumina/γ-Alumina/γ-Alumina-Titania Ceramic Composite Membrane for Chloride Ion Removal. Mater. Chem. Phys. 2022, 287, 126218. DOI: 10.1016/j.matchemphys.2022.126218.
  • Moyano, J. J.; Loizillon, J.; Pérez-Coll, D.; Belmonte, M.; Miranzo, P.; Grosso, D.; Osendi, M. I. Robust and Conductive Mesoporous Reduced Graphene Oxide-Silica Hybrids Achieved by Printing and the Sol Gel Route. J. Eur. Ceram. Soc. 2021, 41, 2908–2917. DOI: 10.1016/j.jeurceramsoc.2020.09.070.
  • Mohammadi, M.; Dadvar, M.; Dabir, B. Application of Response Surface Methodology for Optimization of the Stability of Asphaltene Particles in Crude Oil by TiO2/SiO2 Nanofluids under Static and Dynamic Conditions. J. Dispersion Sci. Technol. 2018, 39, 431–442. DOI: 10.1080/01932691.2017.1326127.
  • Liu, H.; Pang, X.; Ding, W.; Guo, S.; Ding, Z. Preparation of nano-SiO2 Modified Graphene Oxide and Its Application in Polyacrylate Emulsion. Mater. Today Commun. 2021, 27, 102245. DOI: 10.1016/j.mtcomm.2021.102245.
  • Liu, D.; Zhao, W.; Liu, S.; Cen, Q.; Xue, Q. Comparative Tribological and Corrosion Resistance Properties of Epoxy Composite Coatings Reinforced with Functionalized Fullerene C60 and Graphene. Surf. Coat. Technol. 2016, 286, 354–364. DOI: 10.1016/j.surfcoat.2015.12.056.
  • Galpaya, D.; Wang, M.; George, G.; Motta, N.; Waclawik, E.; Yan, C. Preparation of Graphene Oxide/Epoxy Nanocomposites with Significantly Improved Mechanical Properties. J. Appl. Phys. 2014, 116, 053518. DOI: 10.1063/1.4892089.
  • Pourhashem, S.; Vaezi, M. R.; Rashidi, A. Investigating the Effect of SiO2-Graphene Oxide Hybrid as Inorganic Nanofiller on Corrosion Protection Properties of Epoxy Coatings. Surf. Coat. Technol. 2017, 311, 282–294. DOI: 10.1016/j.surfcoat.2017.01.013.
  • Di, H.; Yu, Z.; Ma, Y.; Li, F.; Lv, L.; Pan, Y.; Lin, Y.; Liu, Y.; He, Y. Graphene Oxide Decorated with Fe3O4 Nanoparticles with Advanced Anticorrosive Properties of Epoxy Coatings. J. Taiwan Inst. Chem. Eng. 2016, 64, 244–251. DOI: 10.1016/j.jtice.2016.04.002.
  • Parhizkar, N.; Shahrabi, T.; Ramezanzadeh, B. A New Approach for Enhancement of the Corrosion Protection Properties and Interfacial Adhesion Bonds between the Epoxy Coating and Steel Substrate through Surface Treatment by Covalently Modified Amino Functionalized Graphene Oxide Film. Corros. Sci. 2017, 123, 55–75. DOI: 10.1016/j.corsci.2017.04.011.
  • Wang, R.; Zhuo, D.; Weng, Z.; Wu, L.; Cheng, X.; Zhou, Y.; Wang, J.; Xuan, B. A Novel Nanosilica/Graphene Oxide Hybrid and Its Flame Retarding Epoxy Resin with Simultaneously Improved Mechanical, Thermal Conductivity, and Dielectric Properties. J. Mater. Chem. A 2015, 3, 9826–9836. DOI: 10.1039/C5TA00722D.
  • Nezamdoust, S.; Seifzadeh, D. rGO@ APTES/Hybrid Sol-Gel Nanocomposite for Corrosion Protection of 2024 Aluminum Alloy. Prog. Org. Coat. 2017, 109, 97–109. DOI: 10.1016/j.porgcoat.2017.04.022.
  • Makhesana, M. A.; Baravaliya, J. A.; Parmar, R. J.; Mawandiya, B. K.; Patel, K. M. Machinability Improvement and Sustainability Assessment during Machining of AISI 4140 Using Vegetable Oil-Based MQL. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 535. DOI: 10.1007/s40430-021-03256-2.
  • Zhang, X.; Niu, J.; Zhang, X.; Xiao, R.; Lu, M.; Cai, Z. Graphene oxide-SiO2 Nanocomposite as the Adsorbent for Extraction and Preconcentration of Plant Hormones for HPLC Analysis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017, 1046, 58–64. DOI: 10.1016/j.jchromb.2017.01.004.
  • Hernández-Padrón, G.; García-Garduño, M. V. Sol-Gel, One Technology by Produced Nanohybrid with Anticorrosive Properties. Phys. Procedia. 2013, 48, 102–108. DOI: 10.1016/j.phpro.2013.07.017.
  • Mohammad-Rezaei, R.; Razmi, H. Preparation and Characterization of Reduced Graphene Oxide Doped in Sol-Gel Derived Silica for Application in Electrochemical Double-Layer Capacitors. Int. J. Nanosci. Nanotechnol. 2016, 12, 233–241.
  • Al-Ansari, A.; Parra, C.; Abahussain, A.; Abuhamed, A. M.; Pino, R.; El Bialy, M.; Mohamed, H.; Lopez, C. Reservoir Drill-in Fluid Minimizes Fluid Invasion and Mitigates Differential Stuck Pipe with Improved Production Test Results. In SPE Middle East Oil & Gas Show and Conference; OnePetro, 2017. DOI: 10.2118/183764-MS.
  • Rashidi, M.; Kalantariasl, A.; Saboori, R.; Haghani, A.; Keshavarz, A. Performance of Environmental Friendly Water-Based Calcium Carbonate Nanofluid as Enhanced Recovery Agent for Sandstone Oil Reservoirs. J. Petrol. Sci. Eng. 2021, 196, 107644. DOI: 10.1016/j.petrol.2020.107644.
  • Jahanbakhsh, A.; Shahrokhi, O.; Maroto-Valer, M. M. Understanding the Role of Wettability Distribution on Pore-Filling and Displacement Patterns in a Homogeneous Structure via Quasi 3D Pore-Scale Modelling. Sci. Rep. 2021, 11, 1–12. DOI: 10.1038/s41598-021-97169-8.
  • Hiller, T.; Ardevol-Murison, J.; Muggeridge, A.; Schröter, M.; Brinkmann, M. The Impact of Wetting-Heterogeneity Distribution on Capillary Pressure and Macroscopic Measures of Wettability. SPE J. 2019, 24, 200–214. DOI: 10.2118/194191-PA.
  • Lima, N. M.; Avendaño, J.; Carvalho, M. S. Effect of Viscoelasticity on Oil Displacement in a Microfluidic Porous Medium. J. Braz. Soc. Mech. Sci. Eng. 2022, 44, 144. DOI: 10.1007/s40430-022-03435-9.
  • Xiao, M.; Xu, A.; Zhang, T.; Hong, L. Tailoring the Wettability of Colloidal Particles for Pickering Emulsions via Surface Modification and Roughness. Front. Chem. 2018, 6, 225. DOI: 10.3389/fchem.2018.00225.
  • Almeida da Costa, A.; Jaeger, P.; Santos, J.; Soares, J.; Embiruçu, M.; Meyberg, G. The Influence of Rock Composition and pH on Reservoir Wettability for Low Salinity Water-CO2 EOR Applications in Brazilian Reservoirs. In SPE Annual Technical Conference and Exhibition; OnePetro, 2019. DOI: 10.2118/195982-MS.
  • Zhao, J.; Yao, G.; Wen, D. Pore-Scale Simulation of Water/Oil Displacement in a Water-Wet Channel. Front. Chem. Sci. Eng. 2019, 13, 803–814. DOI: 10.1007/s11705-019-1835-y.
  • Baba Hamed, S. Optimizing the Transport of Cuttings with Ecological Drilling Muds: Application to Directional Well. J. Braz. Soc. Mech. Sci. Eng. 2020, 42, 619. DOI: 10.1007/s40430-020-02698-4.
  • Lashari, N.; Ganat, T.; Kalam, S.; Chandio, T. A.; Sharma, T.; Qureshi, S. Impact of a Novel HPAM/GO-SiO2 Nanocomposite on Interfacial Tension: Application for Enhanced Oil Recovery. Pet. Sci. Technol. 2022, 40, 290–309. DOI: 10.1080/10916466.2021.1993915.
  • Saad, N. A. M.; Mohshim, D. F.; Malik, A. A. Temperature Effects on Anionic/Nonionic Surfactant Mixture and Silica Nanofluid Dispersion for foam-EOR. Mater. Today: Proc. 2022, 51, 1282–1287. DOI: 10.1016/j.matpr.2021.10.196.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.