89
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Characterization and stabilization of iron ore suspension and influence of the mixture of natural additive Sapindus mukorossi and SDS on the slurryability

ORCID Icon & ORCID Icon
Pages 1392-1404 | Received 12 Mar 2023, Accepted 06 May 2023, Published online: 22 May 2023

References

  • Schriek, W. Experimental Studies on the Hydraulic Transport of Iron Ore (Vol. 3). Engineering Division, Saskatchewan Research Council: Saskatoon, 1973.
  • Husband, W. H. W.; Lg, S.; Db, H.; Ca, S. Experimental Study of Iron Ore Concentrate Slurries in Pipelines. 1976, 69, 106–108.
  • Pitts, J. D.; Aude, T. C. Iron Concentrate Slurry Pipelines, Experience and Applications. Trans. Soc. Min. Eng. 1977, 262, 125–133.
  • Holmes, R. J.; Lu, Y.; Lu, L. Introduction: Overview of the Global Iron Ore Industry. Iron Ore, Woodhead Publishing: Sawston, UK, 2022; pp 1–56. DOI: 10.1016/B978-0-12-820226-5.00023-9.
  • Paterson, A. J. C. Pipeline Transport of High Density Slurries: A Historical Review of past Mistakes, Lessons Learned and Current Technologies. Mining Technology 2012, 121, 37–45. DOI: 10.1179/1743286311Y.0000000020.
  • Thomas, A. D.; Cowper, N. T. The Design of Slurry Pipelines–Historical Aspects. In Proc. Hydrotransport, 2017, Vol. 20, pp. 7–22.
  • Reddy, N. V. K.; Pothal, J. K.; Barik, R.; Senapati, P. K. Pipeline Slurry Transportation System: An Overview. J. Pipeline Syst. Eng. Pract. 2023, 14, 03123001. DOI: 10.1061/JPSEA2.PSENG-1391.
  • Usui, H.; Li, L.; Suzuki, H. Rheology and Pipeline Transportation of Dense Fly Ash-Water Slurry. Korea-Australia Rheol. J. 2001, 13, 47–54.
  • Cruz, N.; Forster, J.; Bobicki, E. R. Slurry Rheology in Mineral Processing Unit Operations: A Critical Review. Can. J. Chem. Eng. 2019, 97, 2102–2120. DOI: 10.1002/cjce.23476.
  • Silva, R. C. Experimental Characterisation Techniques for Solid-Liquid Slurry Flows in Pipelines: A Review. Processes 2022, 10, 597. DOI: 10.3390/pr10030597.
  • Biswas, A.; Gandhi, B. K.; Singh, S. N.; Seshadri, V. Characteristics of Coal Ash and Their Role in Hydraulic Design of Ash Disposal Pipelines. Indian J Eng Mater Sci. 2000, 7, 1–7.
  • Chandel, S.; Seshadri, V.; Singh, S. N. Effect of Additive on Pressure Drop and Rheological Characteristics of Fly Ash Slurry at High Concentration. Part. Sci. Technol. 2009, 27, 271–284. DOI: 10.1080/02726350902922036.
  • Gabrielli, G.; Caminati, G.; Carniani, E.; Righi, M.; Sard, G. The Effect of the Liquid-Solid Interface on the Preparation and Properties of Coal-Water Slurries. J. Dispers. Sci. Technol. 1994, 15, 207–246. DOI: 10.1080/01932699408943553.
  • Alam, M. S.; Ragupathy, R.; Mandal, A. B. The Self-Association and Mixed Micellization of an Anionic Surfactant, Sodium Dodecyl Sulfate, and a Cationic Surfactant, Cetyltrimethylammonium Bromide: Conductometric, Dye Solubilization, and Surface Tension Studies. J. Dispers. Sci. Technol. 2016, 37, 1645–1654. DOI: 10.1080/01932691.2015.1120677.
  • Hong, N.; Zhang, S.; Yi, C.; Qiu, X. Effect of Polycarboxylic Acid Used as High-Performance Dispersant on Low-Rank Coal-Water Slurry. J. Dispers. Sci. Technol. 2016, 37, 415–422. DOI: 10.1080/01932691.2015.1038349.
  • Du, L.; Zhang, G.; Hu, S.; Luo, J.; Zhang, W.; Zhang, C.; Li, J.; Zhu, J. Upgrade of Low Rank Coal by Using Emulsified Asphalt and Its Application for Preparation of Coal Water Slurry with High Concentration. J. Dispers. Sci. Technol. 2023, 44, 901–910. DOI: 10.1080/01932691.2021.1979998.
  • Singh, K. P.; Kumar, A.; Kaushal, D. R. Experimental Investigation on Effects of Solid Concentration, Chemical Additives, and Shear Rate on the Rheological Properties of Bottom Ash (BA) Slurry. Int. J. Coal Prep. Util. 2022, 42, 609–622. DOI: 10.1080/19392699.2019.1636787.
  • Jones, R. L.; Horsley, R. R. Viscosity Modifiers in the Mining Industry. Min. Process. Extr. Metall. Rev. 2000, 20, 215–223. DOI: 10.1080/08827509908962473.
  • Jennings, H. Y. Effect of Surfactants on the Rheology of Hematite Slurries. J. Am. Oil Chem. Soc. 1969, 46, 642–644. DOI: 10.1007/BF02540619.
  • Chand, P.; Adinaryana, B.; Singh, R. P. Effects of Drag Reduction Polymer on Slurry Pump Characteristic. Bulk Solid Handl. 1985, 5, 807–811.
  • Mabuza, N. T.; Pocock, J.; Loveday, B. K. The Use of Surface Active Chemicals in Heavy Medium Viscosity Reduction. Miner. Eng. 2005, 18, 25–31. DOI: 10.1016/j.mineng.2004.06.036.
  • Nsib, F.; Ayed, N.; Chevalier, Y. Dispersion of Hematite Suspensions with Sodium Polymethacrylate Dispersants in Alkaline Medium. Colloids Surf. A 2006, 286, 17–26. DOI: 10.1016/j.colsurfa.2006.02.035.
  • Lee, H. H.; Yamaoka, S.; Murayama, N.; Shibata, J. Dispersion of Fe3O4 Suspensions Using Sodium Dodecylbenzene Sulphonate as Dispersant. Mater. Lett. 2007, 61, 3974–3977. DOI: 10.1016/j.matlet.2006.12.091.
  • El-Shall, H.; Somasundaran, P. Physico-Chemical Aspects of Grinding: A Review of Use of Additives. Powder Technol. 1984, 38, 275–293. DOI: 10.1016/0032-5910(84)85009-3.
  • De Moraes, S. L.; de Lima, J. R. B.; Neto, J. B. F. Influence of Dispersants on the Rheological and Colloidal Properties of Iron Ore Ultrafine Particles and Their Effect on the Pelletizing Process—A Review. J. Mater. Res. Technol. 2013, 2, 386–391. DOI: 10.1016/j.jmrt.2013.04.003.
  • Assefa, K. M.; Kaushal, D. R. The Influence of Chemical Additives on the Flow Behaviours of Solid-Liquid Suspensions: A Review. In Conference Proceedings of RACEE-2015, International Journal of Engineering Research & Technology, 2015; Vol. 4, pp. 180–185.
  • Behari, M.; Das, D.; Mohanty, A. M. Influence of Surfactant for Stabilization and Pipeline Transportation of Iron Ore Water Slurry: A Review. ACS Omega 2022, 7, 28708–28722. DOI: 10.1021/acsomega.2c02534.
  • Abro, M. I.; Pathan, A. G.; Andreas, B.; Mallah, A. H. Effect of Various Parameters on the Dispersion of Ultra Fine Iron Ore Slurry. Part-2. Pak. J. Anal. Environ. Chem. 2010, 11, 5.
  • Marcos, G. V.; Antonio, E. C. P. Effect of Reagents on the Rheological Behavior of an Iron Ore Concentrate Slurry. Int. J. Mining Eng. Min. Process. 2012, 1, 38–42.
  • Melorie, A. K.; Kaushal, D. R. Experimental Investigations of the Effect of Chemical Additives on the Rheological Properties of Highly Concentrated Iron Ore Slurries. KONA 2018, 35, 186–199. DOI: 10.14356/kona.2018001.
  • Senapati, P. K.; Pothal, J. K.; Barik, R.; Kumar, R.; Bhatnagar, S. K. 2018 Effect of Particle Size, Blend Ratio and Some Selective Bio-Additives on Rheological Behaviour of High-Concentration Iron Ore Slurry. In Paste 2018: Proceedings of the 21st International Seminar on Paste and Thickened Tailings. Australian Centre for Geomechanics, p. 227–238. DOI: 10.36487/ACG_rep/1805_18_Senapati.
  • Behari, M.; Mohanty, A. M.; Das, D. Influence of a Plant-Based Surfactant on Improving the Stability of Iron Ore Particles for Dispersion and Pipeline Transportation. Powder Technol. 2022, 407, 117620. DOI: 10.1016/j.powtec.2022.117620.
  • Somasundaran, P.; Fu, E.; Xu, Q. Coadsorption of Anionic and Nonionic Surfactant Mixtures at the Alumina-Water Interface. Langmuir 1992, 8, 1065–1069. DOI: 10.1021/la00040a009.
  • Zhou, M.; Qiu, X.; Yang, D.; Lou, H. Properties of Different Molecular Weight Sodium Lignosulfonate Fractions as Dispersant of Coal‐Water Slurry. J. Dispers. Sci. Technol. 2006, 27, 851–856. DOI: 10.1080/01932690600719164.
  • Senapati, P. K.; Das, D.; Nayak, A.; Mishra, P. K. Studies on Preparation of Coal Water Slurry Using a Natural Additive. Energy Sources, Part A 2008, 30, 1788–1796. DOI: 10.1080/15567030701268484.
  • Zhou, M.; Wu, S.; Sun, Z.; Qiu, X.; Yang, D. Effect of the Interfacial Agents with Different Types of Hydrophilic Functional Groups on the Rheological Properties of Coal-Water Slurry. J. Dispers. Sci. Technol. 2013, 34, 1646–1655. DOI: 10.1080/01932691.2012.683980.
  • Kumar, S. Determination of Pressure Drop Characteristics of Fly Ash Suspension with Additive for Hydraulic Transportation. JAFM 2018, 11, 1387–1393. DOI: 10.29252/jafm.11.05.28821.
  • Das, D.; Dash, U.; Meher, J.; Misra, P. K. Improving Stability of Concentrated Coal–Water Slurry Using Mixture of a Natural and Synthetic Surfactants. Fuel Process. Technol. 2013, 113, 41–51. DOI: 10.1016/j.fuproc.2013.02.021.
  • Routray, A.; Senapati, P. K.; Padhy, M.; Das, D. Effect of Mixture of Natural and Synthetic Surfactant and Particle Size Distribution for Stabilized High-Concentrated Coal Water Slurry. Int. J. Coal Prep. Util. 2022, 42, 238–253. DOI: 10.1080/19392699.2019.1592166.
  • Das, D.; Mohapatra, R. K.; Belbsir, H.; Routray, A.; Parhi, P. K.; El-Hami, K. Combined Effect of Natural Dispersant and a Stabilizer in Formulation of High Concentration Coal Water Slurry: Experimental and Rheological Modeling. J. Mol. Liq. 2020, 320, 114441. DOI: 10.1016/j.molliq.2020.114441.
  • Behera, U.; Das, S. K.; Mishra, D. P.; Parhi, P. K.; Das, D. Sustainable Transportation, Leaching, Stabilization, and Disposal of Fly Ash Using a Mixture of Natural Surfactant and Sodium Silicate. ACS Omega. 2021, 6, 22820–22830. DOI: 10.1021/acsomega.1c03241.
  • Routray, A.; Senapati, P. K.; Padhy, M.; Das, D.; Mohapatra, R. K. Effect of Mixture of a Non-Ionic and a Cationic Surfactant for Preparation of Stabilized High Concentration Coal Water Slurry. Int. J. Coal Prep. Util. 2022, 42, 925–940. DOI: 10.1080/19392699.2019.1674843.
  • Behera, U.; Das, S. K.; Mishra, D. P.; Parhi, P. K.; Das, D. Enhancing the Rheology and Leachability of Fly Ash Slurry Using Natural–Synthetic Mixed Surfactant Systemfor Hydraulic Stowing in Underground Mines. Int. J. Coal Prep. Util. 2022, 42, 3724–3744. DOI: 10.1080/19392699.2021.1995374.
  • Muntaha, S. T.; Khan, M. N. Natural Surfactant Extracted from Sapindus Mukurossi as an Eco-Friendly Alternate to Synthetic Surfactant–a Dye Surfactant Interaction Study. J. Clean. Prod. 2015, 93, 145–150. DOI: 10.1016/j.jclepro.2015.01.023.
  • Chen, C.; Li, R.; Li, D.; Shen, F.; Xiao, G.; Zhou, J. Extraction and Purification of Saponins from Sapindus Mukorossi. New J. Chem. 2021, 45, 952–960. DOI: 10.1039/D0NJ04047A.
  • Sahu, A.; Choudhury, S.; Bera, A.; Kar, S.; Kumar, S.; Mandal, A. Anionic–Nonionic Mixed Surfactant Systems: Micellar Interaction and Thermodynamic Behavior. J. Dispers. Sci. Technol. 2015, 36, 1156–1169. DOI: 10.1080/01932691.2014.958852.
  • Zheng, Y.; Caicedo-Casso, E. A.; Davis, C. R.; Howarter, J. A.; Erk, K. A.; Martinez, C. J. Impact of Mixed Surfactant Composition on Emulsion Stability in Saline Environment: Anionic and Nonionic Surfactants. J. Dispers. Sci. Technol. 2021, 11, 1–13. DOI: 10.1080/01932691.2021.1999255.
  • Bai, J.; Pan, Z.; Shang, L.; Zhou, L.; Zhai, J.; Jing, Z.; Wang, S. Influence of a Nonionic Surfactant on Hydrate Growth in an Oil-Water Emulsion System. J. Dispers. Sci. Technol. 2022, 1–13. DOI: 10.1080/01932691.2022.2093737.
  • Kumari, R.; Kakati, A.; Nagarajan, R.; Sangwai, J. S. Synergistic Effect of Mixed Anionic and Cationic Surfactant Systems on the Interfacial Tension of Crude Oil-Water and Enhanced Oil Recovery. J. Dispers. Sci. Technol. 2019, 40, 969–981. DOI: 10.1080/01932691.2018.1489280.
  • Yang, Y.; Fang, J.; Sha, M.; Zhang, D.; Pan, R.; Jiang, B. Study on Foam Extinguishing Agent Based on Mixed System of Branched Short-Chain Fluorocarbon Anionic and Hydrocarbon Cationic Surfactants. J. Dispers. Sci. Technol. 2023, 44, 618–629. DOI: 10.1080/01932691.2021.1957923.
  • Noor, S.; Taj, M. B.; M, S.; Naz, I. Comparative Solubilization of Reactive Dyes in Single and Mixed Surfactants. J. Dispers. Sci. Technol. 2022, 43, 2058–2068. DOI: 10.1080/01932691.2021.1956528.
  • Mandal, A.; Kar, S.; Kumar, S. The Synergistic Effect of a Mixed Surfactant (Tween 80 and SDBS) on Wettability Alteration of the Oil Wet Quartz Surface. J. Dispers. Sci. Technol. 2016, 37, 1268–1276. DOI: 10.1080/01932691.2015.1089780.
  • Lim, C. J.; Lim, C. K.; Ee, G. C. L. Concentration-Dependent Physicochemical Behaviors and Micellar Interactions in Polyalkoxylated Fatty Alcohol-Based Binary Surfactant Systems. J. Dispers. Sci. Technol. 2021, 42, 1660–1672. DOI: 10.1080/01932691.2020.1777152.
  • Rattanaudom, P.; Shiau, B. J.; Suriyapraphadilok, U.; Charoensaeng, A. Stabilization of Foam Using Hydrophobic SiO2 Nanoparticles and Mixed Anionic Surfactant Systems in the Presence of Oil. J. Dispers. Sci. Technol. 2021, 42, 581–594. DOI: 10.1080/01932691.2020.1728299.
  • Piskunov, M.; Romanov, D.; Strizhak, P.; Yanovsky, V. Individual and Synergistic Effects of Modifications of the Carrier Medium of Carbon-Containing Slurries on the Viscosity and Sedimentation Stability. Chem. Eng. Res. Des. 2022, 184, 191–206. DOI: 10.1016/j.cherd.2022.06.005.
  • Zhang, W.; Gao, Z.; Zhu, H.; Zhang, Q. Mixed Micellization of Cationic/Anionic Amino Acid Surfactants: Synergistic Effect of Sodium Lauroyl Glutamate and Alkyl Tri-Methyl Ammonium Chloride. J. Dispers. Sci. Technol. 2022, 43, 2227–2239. DOI: 10.1080/01932691.2021.1929289.
  • Xu, Y.; Wang, T.; Zhang, L.; Tang, Y.; Huang, W.; Jia, H. Investigation on the Effects of Cationic Surface Active Ionic Liquid/Anionic Surfactant Mixtures on the Interfacial Tension of Water/Crude Oil System and Their Application in Enhancing Crude Oil Recovery. J. Dispers. Sci. Technol. 2023, 44, 214–224. DOI: 10.1080/01932691.2021.1942034.
  • Banipal, P. K.; Sohal, P.; Banipal, T. S. Physicochemical and Spectral Evaluation of the Interactional Behavior of Nicotinic Acid (Vitamin B3) with Mixed [Sodium Deoxycholate (Bile Salt) + Cetyltrimethylammonium Bromide] Surfactants. J. Dispers. Sci. Technol. 2021, 42, 373–385. DOI: 10.1080/01932691.2019.1699426.
  • Li, P.; Ren, X.; Chen, Y.; Zhang, Z.; Kang, J.; Li, Y. Equilibrium and Dynamic Surface Properties of Cationic/Anionic Surfactant Mixtures Based on Alcohol Ether Sulfate. J. Dispers. Sci. Technol. 2023, 1–10. DOI: 10.1080/01932691.2023.2188917.
  • Kumar, S.; Singh, M.; Singh, J.; Singh, J. P.; Kumar, S. Rheological Characteristics of Uni/bi-Variant Particulate Iron Ore Slurry: Artificial Neural Network Approach. J. Min. Sci. 2019, 55, 201–212. DOI: 10.1134/S1062739119025468.
  • Singh, H.; Kumar, S.; Mohapatra, S. K.; Prasad, S. B.; Singh, J. Slurryability and Flowability of Coal Water Slurry: Effect of Particle Size Distribution. J. Clean. Prod. 2021, 323, 129183. DOI: 10.1016/j.jclepro.2021.129183.
  • Addie, G. R. Slurry Pipeline Design for Operation with Centrifugal Pumps. In Proceedings of the 13th International Pump Users Symposium. Texas A&M University. Turbomachinery Laboratories, 1996. DOI: 10.21423/R1X694.
  • Silva, R.; Garcia, F. A.; Faia, P. M.; Rasteiro, M. G. Settling Suspensions Flow Modelling: A Review. KONA 2015, 32, 41–56. DOI: 10.14356/kona.2015009.
  • Das, D.; Panigrahi, S.; Misra, P. K.; Nayak, A. Effect of Organized Assemblies. Part 4. Formulation of Highly Concentrated Coal − Water Slurry Using a Natural Surfactant. Energy Fuels 2008, 22, 1865–1872. DOI: 10.1021/ef7006563.
  • Razi, M. M.; Razi, F. M. An Experimental Study of Influence of Salt Concentration, Mixing Time, and pH on the Rheological Properties of Pre-Hydrated Bentonite Slurries Treated by Polymers. J. Dispers. Sci. Technol. 2013, 34, 764–770. DOI: 10.1080/01932691.2012.695942.
  • Shrimali, K.; Jin, J.; Hassas, B. V.; Wang, X.; Miller, J. D. The Surface State of Hematite and Its Wetting Characteristics. J. Colloid Interface Sci 2016, 477, 16–24. DOI: 10.1016/j.jcis.2016.05.030.
  • Qiu, G.; Jiang, T.; Fa, K.; Zhu, D.; Wang, D. Interfacial Characterizations of Iron Ore Concentrates Affected by Binders. Powder Technol. 2004, 139, 1–6. DOI: 10.1016/j.powtec.2003.10.001.
  • Mohammed, I.; Al Shehri, D.; Mahmoud, M.; Kamal, M. S.; Alade, O. S. Impact of Iron Minerals in Promoting Wettability Alterations in Reservoir Formations. ACS Omega 2021, 6, 4022–4033. DOI: 10.1021/acsomega.0c05954.
  • Holman, J. P. Experimental Methods for Engineers EIGHTH EDITION. McGraw Hill: New York, United States, 2021.
  • Hurwitz, G.; Guillen, G. R.; Hoek, E. M. Probing Polyamide Membrane Surface Charge, Zeta Potential, Wettability, and Hydrophilicity with Contact Angle Measurements. J. Membr. Sci. 2010, 349, 349–357. DOI: 10.1016/j.memsci.2009.11.063.
  • Taqvi, S.; Bassioni, G. Understanding Wettability through Zeta Potential Measurements. In Wettability and Interfacial Phenomena-Implications for Material Processing, IntechOpen: United Kingdom; 2019. DOI: 10.5772/intechopen.84185.
  • Metzner, A. B.; Reed, J. C. Flow of Non‐Newtonian Fluids—Correlation of the Laminar, Transition, and Turbulent‐Flow Regions. AIChE J. 1955, 1, 434–440. DOI: 10.1002/aic.690010409.
  • Hashemi, S. A.; Wilson, K. C.; Sanders, R. S. Specific Energy Consumption and Optimum Operating Condition for Coarse-Particle Slurries. Powder Technol. 2014, 262, 183–187. DOI: 10.1016/j.powtec.2014.04.021.
  • Li, M. Z.; He, Y. P.; Liu, Y. D.; Huang, C. Effect of Interaction of Particles with Different Sizes on Particle Kinetics in Multi-Sized Slurry Transport by Pipeline. Powder Technol. 2018, 338, 915–930. DOI: 10.1016/j.powtec.2018.07.088.
  • Vlasak, P.; Chara, Z. Effect of Particle Size Distribution and Concentration on Flow Behavior of Dense Slurries. Part. Sci. Technol. 2011, 29, 53–65. DOI: 10.1080/02726351.2010.508509.
  • Buranasrisak, P.; Narasingha, M. H. Effects of Particle Size Distribution and Packing Characteristics on the Preparation of Highly-Loaded Coal-Water Slurry. IJCEA 2012, 3, 31–35. DOI: 10.7763/IJCEA.2012.V3.154.
  • Chang, C.; Powell, R. L. Effect of Particle Size Distributions on the Rheology of Concentrated Bimodal Suspensions. J. Rheol. 1994, 38, 85–98. DOI: 10.1122/1.550497.
  • Dash, U.; Misra, P. K. Organization of Amphiphiles XII. Evidence in Favor of Formation of Hydrophobic Complexes in Aqueous Solution. J. Colloid Interface Sci. 2011, 357, 407–418. DOI: 10.1016/j.jcis.2011.01.087.
  • Huang, J.; Xu, J.; Wang, D.; Li, L.; Guo, X. Effects of Amphiphilic Copolymer Dispersants on Rheology and Stability of Coal Water Slurry. Ind. Eng. Chem. Res. 2013, 52, 8427–8435. DOI: 10.1021/ie400681f.
  • Saha, R.; Uppaluri, R. V.; Tiwari, P. Impact of Natural Surfactant (Reetha), Polymer (Xanthan Gum), and Silica Nanoparticles to Enhance Heavy Crude Oil Recovery. Energy Fuels 2019, 33, 4225–4236. DOI: 10.1021/acs.energyfuels.9b00790.
  • Wojtoń, P.; Szaniawska, M.; Hołysz, L.; Miller, R.; Szcześ, A. Surface Activity of Natural Surfactants Extracted from Sapindus Mukorossi and Sapindus Trifoliatus Soapnuts. Colloids Interfaces 2021, 5, 7. DOI: 10.3390/colloids5010007.
  • Lu, Z.; Lei, Z.; Zafar, M. N. Synthesis and Performance Characterization of an Efficient Environmental-Friendly Sapindus Mukorossi Saponins Based Hybrid Coal Dust Suppressant. J. Clean. Prod. 2021, 306, 127261. DOI: 10.1016/j.jclepro.2021.127261.
  • Mishra, S. K.; Kanungo, S. B.; Rajeev, J. Adsorption of Sodium Dodecyl Benzenesulfonate onto Coal. J. Colloid Interface Sci. 2003, 267, 42–48. DOI: 10.1016/S0021-9797(03)00553-8.
  • Tiwari, K. K.; Basu, S. K.; Bit, K. C.; Banerjee, S.; Mishra, K. K. High-Concentration Coal–Water Slurry from Indian Coals Using Newly Developed Additives. Fuel Process. Technol. 2004, 85, 31–42. DOI: 10.1016/S0378-3820(03)00095-X.
  • Kumar, N.; Gopaliya, M. K.; Kaushal, D. R. Experimental Investigations and CFD Modeling for Flow of Highly Concentrated Iron Ore Slurry through Horizontal Pipeline. Part. Sci. Technol. 2019, 37, 232–250. DOI: 10.1080/02726351.2017.1364313.
  • Rao, N. D.; Thatoi, D. N.; Biswal, S. K. Rheological Study and Numerical Analysis of High Concentration Iron Ore Slurry Pipeline Transportation. Mater. Today: Proc. 2020, 22, 3197–3202.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.