149
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Synthesis and application of polyacrylamide grafted GO and MWCNT nanocomposites for enhanced oil recovery: a coreflooding study

, , , , , , & show all
Pages 1461-1471 | Received 27 Jan 2023, Accepted 24 May 2023, Published online: 15 Jun 2023

References

  • Rashidi, A.; Solaimany Nazar, A. R.; Radnia, H. Application of Nanoparticles for Chemical Enhanced Oil Recovery. Pet. Eng. Iran J. Oil Gas Sci. Technol. [Internet] 2018, 7, 1–19. http://ijogst.put.ac.ir.
  • Corredor, L. M.; Husein, M. M.; Maini, B. B. A Review of Polymer Nanohybrids for Oil Recovery. Adv. Colloid Interface Sci. [Internet] 2019, 272, 102018. https://www.sciencedirect.com/science/article/pii/S000186861930171X. DOI: 10.1016/j.cis.2019.102018.
  • Alomair, O. A.; Matar, K. M.; Alsaeed, Y. H. Experimental Study of Enhanced-Heavy-Oil Recovery in Berea Sandstone Cores by Use of Nanofluids Applications. SPE Reserv. Eval. Eng. 2015, 18, 387–399. DOI: 10.2118/171539-PA.
  • Huibers, B. M. J.; Pales, A. R.; Bai, L.; Li, C.; Mu, L.; Ladner, D.; et al. Wettability Alteration of Sandstones by Silica Nanoparticle Dispersions in Light and Heavy Crude Oil. J. Nanoparticle Res. 19, 323 (2017). DOI: 10.1007/s11051-017-4011-7
  • Yahya, N.; Kashif, M.; Nasir, N.; Akhtar, M. N.; Yusof, N. M. Cobalt Ferrite Nanoparticles: An Innovative Approach for Enhanced Oil Recovery Application. J. Nano R. 2012, 17, 115–126. DOI: 10.4028/www.scientific.net/JNanoR.17.115.
  • Alnarabiji, M. S.; Yahya, N.; Shafie, A.; Solemani, H.; Chandran, K.; Hamid, S. B. A.; Azizi, K. The Influence of Hydrophobic Multiwall Carbon Nanotubes Concentration on Enhanced Oil Recovery. Proc. Eng. [Internet] 2016, 148, 1137–1140. DOI: http://doi.org/10.1016/j.proeng.2016.06.564.
  • Soleimani, H.; Baig, M. K.; Yahya, N.; Khodapanah, L.; Sabet, M.; Demiral, B. M.; Burda, M. Impact of Carbon Nanotubes Based Nanofluid on Oil Recovery Efficiency Using Core Flooding. Results Phys. [Internet] 2018, 9, 39–48. DOI: 10.1016/j.rinp.2018.01.072.
  • Hosseini-Dastgerdi, Z.; Maleki, A.; Elyassi, E.; Rashidi, A. Silica/Polyacrylamide Nanocomposite for Inhibition of Asphaltene Precipitation from Unstable Crude Oils. Pet. Sci. Technol. 2022. DOI: 10.1080/10916466.2022.2118773.
  • Maleki, A.; Hosseini-Dastgerdi, Z.; Rashidi, A. Effect of Nanoparticle Modified Polyacrylamide on Wax Deposition, Crystallization and Flow Behavior of Light and Heavy Crude Oils. J. Dispers. Sci. Technol. 2021, 44, 1226–1236. DOI: 10.1080/01932691.2021.2010567.
  • Tabary, R.; Bazin, B.; Douarche, F.; Moreau, P.; Oukhemanou-Destremaut, F. Surfactant Flooding in Challenging Conditions: Towards Hard Brines and High Temperatures [Internet]. SPE Middle East Oil Gas Show Conf. 2013; SPE-164359-MS. DOI: 10.2118/164359-MS.
  • Sheng, J. J. Critical Review of Alkaline-Polymer Flooding. J. Petrol. Explor. Prod. Technol. 2017, 7, 147–153. DOI: 10.1007/s13202-016-0239-5.
  • Panthi, K.; Sharma, H.; Mohanty, K. K. ASP Flood of a Viscous Oil in a Carbonate Rock. Fuel [Internet] 2016, 164, 18–27. DOI: 10.1016/j.fuel.2015.09.072.
  • Mohsenatabar Firozjaii, A.; Derakhshan, A.; Shadizadeh, S. R. An Investigation into Surfactant Flooding and Alkaline-Surfactant-Polymer Flooding for Enhancing Oil Recovery from Carbonate Reservoirs: Experimental Study and Simulation. Energy Sources, Part A Recover Util. Environ. Eff. [Internet] 2018, 40, 2974–2985. DOI: 10.1080/15567036.2018.1514439.
  • Kumar, R.; Dao, E.; Mohanty, K. K. Heavy-Oil Recovery by in-Situ Emulsion Formation. Spe J. 2012, 17, 326–334. DOI: 10.2118/129914-PA.
  • Gao, C.; Shi, J.; Zhao, F. Successful Polymer Flooding and Surfactant-Polymer Flooding Projects at Shengli Oilfield from 1992 to 2012. J. Petrol. Explor. Prod. Technol. 2014, 4, 1–8. DOI: 10.1007/s13202-013-0069-7.
  • Kamal, M. S.; Hussein, I. A.; Sultan, A. S. Review on Surfactant Flooding: Phase Behavior, Retention, IFT, and Field Applications. Energy Fuels 2017, 31, 7701–7720. DOI: 10.1021/acs.energyfuels.7b00353.
  • Green, D. W.; Willhite, P. Enhanced Oil Recovery (Willhite).Pdf. 2018, 1, 896.
  • Jung, J. C.; Zhang, K.; Chon, B. H.; Choi, H. J. Rheology and Polymer Flooding Characteristics of Partially Hydrolyzed Polyacrylamide for Enhanced Heavy Oil Recovery. J. Appl. Polym. Sci. 2013, 127, 4833–4839. DOI: 10.1002/app.38070.
  • Sharma, T.; Sangwai, J. S. Silica Nanofluids in Polyacrylamide with and without Surfactant: Viscosity, Surface Tension, and Interfacial Tension with Liquid Paraffin. J. Pet. Sci. Eng. [Internet] 2017, 152, 575–585. DOI: 10.1016/j.petrol.2017.01.039.
  • Nguyen, B. D.; Ngo, T. K.; Bui, T. H.; Pham, D. K.; Dinh, X. L.; Nguyen, P. T. The Impact of Graphene Oxide Particles on Viscosity Stabilization for Diluted Polymer Solutions Using in Enhanced Oil Recovery at HTHP Offshore Reservoirs. Adv. Nat. Sci. Nanosci. Nanotechnol. 2015, 6, 015012. DOI 10.1088/2043-6262/6/1/015012.
  • Hu, Z.; Haruna, M.; Gao, H.; Nourafkan, E.; Wen, D. Rheological Properties of Partially Hydrolyzed Polyacrylamide Seeded by Nanoparticles. Ind. Eng. Chem. Res. 2017, 56, 3456–3463. DOI: 10.1021/acs.iecr.6b05036.
  • Bilal Khan, M. Effects of Nanoparticles on Rheological Behavior of Polyacrylamide Related to Enhance Oil Recovery. Acad. J. Polym. Sci. 2018, 1(5), 555573. DOI: 10.19080/AJOP.2018.01.555573.
  • Corredor, L.; Aliabadian, E.; Husein, M.; Chen, Z.; Maini, B.; Sundararaj, U. Heavy Oil Recovery by Surface Modified Silica Nanoparticle/HPAM Nanofluids. Fuel 2019, 252, 622–634. DOI: 10.1016/j.fuel.2019.04.145.
  • Sofia, G. B.; Djamel, A. A Rheological Study of Xanthan Polymer for Enhanced Oil Recovery. J. Macromol. Sci. Part B Phys. 2016, 55, 793–809.
  • Sheng, J. J. Status of Surfactant EOR Technology. Petroleum [Internet] 2015, 1, 97–105. DOI: 10.1016/j.petlm.2015.07.003.
  • Saien, J.; Moghaddamnia, F.; Bamdadi, H. Interfacial Tension of Methylbenzene-Water in the Presence of Hydrophilic and Hydrophobic Alumina Nanoparticles at Different Temperatures. J. Chem. Eng. Data 2013, 58, 436–440. DOI: 10.1021/je3011584.
  • Cheng, Y.; Zhao, M.; Zheng, C.; Guo, S.; Li, X.; Zhang, Z. Water-Dispersible Reactive Nanosilica and Poly(2-Acrylamido-2-Methyl-1-Propanesulfonic Acid Sodium) Nanohybrid as Potential Oil Displacement Agent for Enhanced Oil Recovery. Energy Fuels 2017, 31, 6345–6351. DOI: 10.1021/acs.energyfuels.7b00743.
  • Saigal, T.; Dong, H.; Matyjaszewski, K.; Tilton, R. D. Pickering Emulsions Stabilized by Nanoparticles with Thermally Responsive Grafted Polymer Brushes. Langmuir 2010, 26, 15200–15209. DOI: 10.1021/la1027898.
  • Kumar, S.; Mandal, A. Studies on Interfacial Behavior and Wettability Change Phenomena by Ionic and Nonionic Surfactants in Presence of Alkalis and Salt for Enhanced Oil Recovery. Appl. Surf. Sci. [Internet] 2016, 372, 42–51. DOI: 10.1016/j.apsusc.2016.03.024.
  • Kovscek, A. R.; Schembre, J. M.; Tang, G. Q. Author’s Reply to Discussion of Interrelationship of Temperature and Wettability on the Relative Permeability of Heavy Oil in Diatomaceous Rocks. SPE Reserv. Eval. Eng. 2008, 11, 437–438. DOI: 10.2118/93831-RE.
  • Alvarez-Berrios, M. P.; Aponte-Reyes, L. M.; Aponte-Cruz, L. M.; Loman-Cortes, P.; Vivero-Escoto, J. L. Effect of the Surface Charge of Silica Nanoparticles on Oil Recovery: Wettability Alteration of Sandstone Cores and Imbibition Experiments. Int. Nano Lett. [Internet] 2018, 8, 181–188. DOI: 10.1007/s40089-018-0243-5.
  • Sedaghat, M. H.; Mohammadi, H.; Razmi, R. Application of SiO2 and TiO2 Nano Particles to Enhance the Efficiency of Polymer-Surfactant Floods. Energy Sources, Part A Recover. Util. Environ. Eff. 2016, 38, 22–28. DOI: 10.1080/15567036.2012.740552.
  • Maghzi, A.; Mohebbi, A.; Kharrat, R.; Ghazanfari, M. H. Pore-Scale Monitoring of Wettability Alteration by Silica Nanoparticles during Polymer Flooding to Heavy Oil in a Five-Spot Glass Micromodel. Transp. Porous Med. 2011, 87, 653–664. DOI: 10.1007/s11242-010-9696-3.
  • Yousefvand, H. A.; Jafari, A. Stability and Flooding Analysis of Nanosilica/NaCl/HPAM/SDS Solution for Enhanced Heavy Oil Recovery. J. Pet. Sci. Eng. [Internet] 2018, 162, 283–291. DOI: 10.1016/j.petrol.2017.09.078.
  • Skauge, T.; Hetland, S.; Spildo, K.; Skauge, A. 2010 Nano-Sized Particles for EOR [Internet]. SPE Improv. Oil Recover. Symp. SPE-129933-MS. DOI: 10.2118/129933-MS.
  • Di, Q.; Shen, C.; Wang, Z.; Jing, B.; Gu, C.; Qian, Y. 2010 Innovative Drag Reduction of Flow in Rock’s Micro-Channels Using Nano Particles Adsorbing Method [Internet]. Int. Oil Gas Conf. Exhib. SPE-130994-MS, China. DOI: 10.2118/130994-MS.
  • Ju, B.; Fan, T. Experimental Study and Mathematical Model of Nanoparticle Transport in Porous Media. Powder Technol. 2009, 192, 195–202. DOI: 10.1016/j.powtec.2008.12.017.
  • Ju, B.; Fan, T.; Ma, M. Enhanced Oil Recovery by Flooding with Hydrophilic Nanoparticles. China Particuol. 2006, 4, 41–46. DOI: 10.1016/S1672-2515(07)60232-2.
  • Roustaei, A.; Moghadasi, J.; Iran, A.; Bagherzadeh, H.; Shahrabadi, A. 2012 An Experimental Investigation of Polysilicon Nanoparticles’ Recovery Efficiencies through Changes in Interfacial Tension and Wettability Alteration [Internet]. SPE Int. Oilf. Nanotechnol. Conf. Exhib.; Spe-156976-Ms. DOI: 10.2118/156976-MS.
  • Binshan, J.; Shugao, D.; Zhian, L.; Tiangao, Z.; Xiantao, S.; Xiaofeng, Q. 2002 A Study of Wettability and Permeability Change Caused by Adsorption of Nanometer Structured Polysilicon on the Surface of Porous Media [Internet]. SPE Asia Pacific Oil Gas Conf. Exhib.; SPE-77938-MS. DOI: 10.2118/77938-MS.
  • Seid Mohammadi, M.; Moghadasi, J.; Naseri, S. An Experimental Investigation of Wettability Alteration in Carbonate Reservoir Using γ-Al2O3 Nanoparticles. Iran J. Oil Gas Sci. Technol. 2014, 3, 18–26.
  • Roustaei, A.; Bagherzadeh, H. Experimental Investigation of SiO2 Nanoparticles on Enhanced Oil Recovery of Carbonate Reservoirs. J. Petrol. Explor. Prod. Technol. 2015, 5, 27–33. DOI: 10.1007/s13202-014-0120-3.
  • Luo, D.; Wang, F.; Zhu, J.; Cao, F.; Liu, Y.; Li, X.; Willson, R. C.; Yang, Z.; Chu, C.-W.; Ren, Z.; et al. Nanofluid of Graphene-Based Amphiphilic Janus Nanosheets for Tertiary or Enhanced Oil Recovery: High Performance at Low Concentration. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 7711–7716. DOI: 10.1073/pnas.1608135113.
  • Ahmadi, M. A.; Ahmad, Z.; Phung, L. T. K.; Kashiwao, T.; Bahadori, A. Evaluation of the Ability of the Hydrophobic Nanoparticles of SiO2 in the EOR Process through Carbonate Rock Samples. Pet Sci. Technol. 2016, 34, 1048–1054. DOI: 10.1080/10916466.2016.1148052.
  • Pei, H.; Zhang, G.; Ge, J.; Zhang, J.; Zhang, Q. Investigation of Synergy between Nanoparticle and Surfactant in Stabilizing Oil-in-Water Emulsions for Improved Heavy Oil Recovery. Colloids Surfaces A Physicochem. Eng. Asp [Internet] 2015, 484, 478–484. DOI: 10.1016/j.colsurfa.2015.08.025.
  • Yoon, K. Y.; Son, H. A.; Choi, S. K.; Kim, J. W.; Sung, W. M.; Kim, H. T. Core Flooding of Complex Nanoscale Colloidal Dispersions for Enhanced Oil Recovery by in Situ Formation of Stable Oil-in-Water Pickering Emulsions. Energy Fuels 2016, 30, 2628–2635. DOI: 10.1021/acs.energyfuels.5b02806.
  • Sharma, T.; Kumar, G. S.; Sangwai, J. S. Comparative Effectiveness of Production Performance of Pickering Emulsion Stabilized by Nanoparticle-Surfactant-Polymerover Surfactant-Polymer (SP) Flooding for Enhanced Oil Recoveryfor Brownfield Reservoir. J. Pet. Sci. Eng. [Internet] 2015, 129, 221–232. DOI: 10.1016/j.petrol.2015.03.015.
  • Hendraningrat, L.; Torsæter, O. Metal Oxide-Based Nanoparticles: Revealing Their Potential to Enhance Oil Recovery in Different Wettability Systems. Appl. Nanosci. 2015, 5, 181–199. DOI: 10.1007/s13204-014-0305-6.
  • Hendraningrat, L.; Li, S.; Torsæter, O. Journal of Petroleum Science and Engineering a Core fl Ood Investigation of Nano fluid Enhanced Oil Recovery. J. Pet. Sci. Eng. 2013, 111, 128–138. DOI: 10.1016/j.petrol.2013.07.003.
  • Joonaki, E.; Ghanaatian, S. The Application of Nanofluids for Enhanced Oil Recovery: Effects on Interfacial Tension and Coreflooding Process. Pet. Sci. Technol. 2014, 32, 2599–2607. DOI: 10.1080/10916466.2013.855228.
  • Ershadi, M.; Alaei, M.; Rashidi, A.; Ramazani, A.; Khosravani, S. Carbonate and Sandstone Reservoirs Wettability Improvement without Using Surfactants for Chemical Enhanced Oil Recovery (C-EOR). Fuel [Internet] 2015, 153, 408–415. DOI: 10.1016/j.fuel.2015.02.060.
  • Yu, F.; Jiang, H.; Xu, F.; Fan, Z.; Su, H.; Li, J. New Insights into Flow Physics in the EOR Process Based on 2.5D Reservoir Micromodels. J. Pet. Sci. Eng. 2019, 181, 106214.
  • Mehdizad, A.; Sedaee, B.; Pourafshary, P. Visual Investigation of the Effect of Clay-Induced Fluid Flow Diversion on Oil Recovery, as a Low-Salinity Water Flooding Mechanism. J. Pet. Sci. Eng. [Internet] 2022, 209, 109959. DOI: 10.1016/j.petrol.2021.109959.
  • Maleki, A.; Sedaee, B.; Bahramian, A.; Gharechelou, S.; Sarlak, N.; Mehdizad, A.; Rasaei, M. R.; Dehghan, A. Effect of Alumina and Silica Nanocomposite Based on Polyacrylamide on Light and Heavy Oil Recovery in Presence of Formation Water Using Micromodel. Petroleum 2023. DOI: 10.1016/j.petlm.2023.03.001.
  • Gharibshahi, R.; Jafari, A.; Omidkhah, M.; Nezhad, J. R. 1920 Performance Experimental Investigation of Novel Multifunctional Nanohybrids on Enhanced Oil Recovery. AIP Conf Proc 2018.
  • Tajik, S.; Shahrabadi, A.; Rashidi, A.; Jalilian, M.; Yadegari, A. Application of Functionalized Silica-Graphene Nanohybrid for the Enhanced Oil Recovery Performance. Colloids Surfaces A Physicochem. Eng. Asp [Internet] 2018, 556, 253–265. DOI: 10.1016/j.colsurfa.2018.08.029.
  • AfzaliTabar, M.; Alaei, M.; Bazmi, M.; Ranjineh Khojasteh, R.; Koolivand-Salooki, M.; Motiee, F.; Rashidi, A. M. Facile and Economical Preparation Method of Nanoporous Graphene/Silica Nanohybrid and Evaluation of Its Pickering Emulsion Properties for Chemical Enhanced Oil Recovery (C-EOR). Fuel [Internet] 2017, 206, 453–466. DOI: 10.1016/j.fuel.2017.05.102.
  • Razavirad, F.; Shahrabadi, A.; Dehkordi, P. B.; Rashidi, A. Experimental Pore-Scale Study of a Novel Functionalized Iron-Carbon Nanohybrid for Enhanced Oil Recovery (EOR). 2022.
  • Khalilinezhad, S. S.; Mohammadi, A. H.; Hashemi, A.; Ghasemi, M. Rheological Characteristics and Flow Dynamics of Polymer Nanohybrids in Enhancing Oil Recovery from Low Permeable Carbonate Oil Reservoirs. J. Pet. Sci. Eng. [Internet] 2021, 197, 107959. https://www.sciencedirect.com/science/article/pii/S0920410520310147. DOI: 10.1016/j.petrol.2020.107959.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.