1,311
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Simulation of national-scale groundwater dynamics in geologically complex aquifer systems: an example from Great Britain

ORCID Icon, , ORCID Icon, ORCID Icon, , , ORCID Icon, , , & show all
Pages 572-591 | Received 01 Nov 2023, Accepted 24 Jan 2024, Published online: 10 Apr 2024

References

  • Alattar, M.H., et al., 2020. Modeling the surface water and groundwater budgets of the US using MODFLOW-OWHM. Advances in Water Resources, 143, 103682. doi:10.1016/j.advwatres.2020.103682
  • Allen, D.J., et al., 1997. The physical properties of major aquifers in England and Wales. Keyworth, Nottingham: British Geological Survey. Technical Report No. WD/97/34.
  • Anderson, M.P., Woessner, W.W., and Hunt, R.J., 2015. Applied groundwater modeling, 2nd edition. 2nd. San Diego: Academic Press.
  • Ascott, M.J., et al., 2021. Managing groundwater supplies subject to drought: perspectives on current status and future priorities from England (UK). Hydrogeology Journal, 29 (3), 921–924. doi:10.1007/s10040-020-02249-0.
  • Bell, V.A., et al., 2009. Use of soil data in a grid-based hydrological model to estimate spatial variation in changing flood risk across the UK. Journal of Hydrology, 377 (3), 335–350. doi:10.1016/j.jhydrol.2009.08.031.
  • Bell, V.A., et al., 2021. Long term simulations of macronutrients (C, N and P) in UK freshwaters. Science of the Total Environment, 776, 145813. doi:10.1016/j.scitotenv.2021.145813
  • Berrie, A.D., 1992. The chalk-stream environment. Hydrobiologia, 248 (1), 3–9. doi:10.1007/BF00008881.
  • Best, M.J., et al., 2011. The Joint UK Land Environment Simulator (JULES), model description – part 1: energy and water fluxes. Geoscientific Model Development, 4 (3), 677–699. doi:10.5194/gmd-4-677-2011.
  • Bianchi, M., et al., 2023. Using numerical modelling to test the geological and groundwater conceptual understanding of a complex, layered aquifer: a case study from the Fell Sandstone, Northumbria. Quarterly Journal of Engineering Geology and Hydrogeology, (ja), qjegh2022–077.
  • Bierkens, M.F.P. and Wada, Y., 2019. Non-renewable groundwater use and groundwater depletion: a review. Environmental Research Letters, 14 (6), 63002.
  • Bloomfield, J.P., Bricker, S.H., and Newell, A.J., 2011. Some relationships between lithology, basin form and hydrology: a case study from the Thames basin, UK. Hydrological Processes, 25 (16), 2518–2530. doi:10.1002/hyp.8024.
  • Bloomfield, J.P., et al., 2020. Characterising variations in the salinity of deep groundwater systems: a case study from Great Britain (GB). Journal of Hydrology: Regional Studies, 28. doi:10.1016/j.ejrh.2020.100684.
  • Bloomfield, J.P. and Marchant, B.P., 2013. Analysis of groundwater drought building on the standardised precipitation index approach. Hydrology and Earth System Sciences, 17 (12), 4769–4787. doi:10.5194/hess-17-4769-2013.
  • Butler, A.P., et al., 2012. Advances in modelling groundwater behaviour in Chalk catchments. Geological Society, London, Special Publications, 364 (1), 113–127. doi:10.1144/SP364.9.
  • Condon, L.E., et al., 2021. Global groundwater modeling and monitoring: opportunities and challenges. Water Resources Research, 57 (12), e2020WR029500. doi:10.1029/2020WR029500.
  • de Graaf, I.E.M., et al., 2019. Environmental flow limits to global groundwater pumping. Nature, 574 (7776), 90–94. doi:10.1038/s41586-019-1594-4.
  • de Graaf, I.E.M. and Stahl, K., 2022. A model comparison assessing the importance of lateral groundwater flows at the global scale. Environmental Research Letters, 17 (4), 44020. doi:10.1088/1748-9326/ac50d2.
  • Delsman, J.R., et al., 2023. Reproducible construction of a high-resolution national variable-density groundwater salinity model for the Netherlands. Environmental Modelling and Software, 164, 105683. doi:10.1016/j.envsoft.2023.105683
  • Doherty, J., 2018. PEST - model-independent parameter estimation. User manual. 7th ed. Brisbane, Australia: Watermark Numercal Computing.
  • Doherty, J.E. and Hunt, R.J., 2010. Approaches to highly parameterized inversion-A guide to using PEST for groundwater-model calibration. Report No. 2010–5169.
  • Famiglietti, J.S., 2014. The global groundwater crisis. Nature Climate Change, 4 (11), 945–948. doi:10.1038/nclimate2425.
  • Fan, Y., et al., 2007. Incorporating water table dynamics in climate modeling: 1. Water table observations and equilibrium water table simulations. Journal of Geophysical Research: Atmospheres, 112 (D10). doi:10.1029/2006JD008111.
  • Furusho-Percot, C., et al., 2019. Pan-European groundwater to atmosphere terrestrial systems climatology from a physically consistent simulation. Scientific Data, 6 (1), 320. doi:10.1038/s41597-019-0328-7.
  • Gleeson, T., et al., 2016. The global volume and distribution of modern groundwater. Nature Geoscience, 9 (2), 161–167. doi:10.1038/ngeo2590.
  • Gleeson, T., et al., 2021. GMD perspective: the quest to improve the evaluation of groundwater representation in continental- to global-scale models. Geoscientific Model Development, 14 (12), 7545–7571. doi:10.5194/gmd-14-7545-2021.
  • Gnann, S.J., et al., 2021. Including regional knowledge improves baseflow signature predictions in large sample hydrology. Water Resources Research, 57 (2), e2020WR028354. doi:10.1029/2020WR028354.
  • Gustard, A., Bullock, A., and Dixon, J.M., 1992. Low flow estimation in the United Kingdom. Wallingford, UK: Institute of Hydrology. IH Report No. 108.
  • Guzy, A. and Malinowska, A.A., 2020. State of the art and recent advancements in the modelling of land subsidence induced by groundwater withdrawal. Water, 12 (7), 2051. doi:10.3390/w12072051.
  • Hannaford, J., et al., 2023. The enhanced future Flows and Groundwater dataset: development and evaluation of nationally consistent hydrological projections based on UKCP18. Earth System Science Data, 15, 2391–2415. doi:10.5194/essd-15-2391-2023.
  • Harbaugh, A.W., 1990. A computer program for calculating subregional water budgets using results from the U.S. geological survey modular three-dimensional finite- difference ground-water flow model. Report No. 90–392.
  • Hellwig, J., et al., 2020. Large-scale assessment of delayed groundwater responses to drought. Water Resources Research, 56 (2), e2019WR025441. doi:10.1029/2019WR025441.
  • Henriksen, H.J., et al., 2003. Methodology for construction, calibration and validation of a national hydrological model for Denmark. Journal of Hydrology, 280 (1), 52–71. doi:10.1016/S0022-1694(03)00186-0.
  • Hough, M.N. and Jones, R.J.A., 1997. The United Kingdom meteorological office rainfall and evaporation calculation system: MORECS version 2.0-an overview. Hydrology and Earth System Sciences, 1 (2), 227–239. doi:10.5194/hess-1-227-1997.
  • Hughes, A.G., et al., 2011. Flood risk from groundwater: examples from a Chalk catchment in southern England. Journal of Flood Risk Management, 4 (3), 143–155. doi:10.1111/j.1753-318X.2011.01095.x.
  • Hunt, R.J., et al., 2021. Evaluating lower computational burden approaches for calibration of large environmental models. Groundwater, 59 (6), 788–798. doi:10.1111/gwat.13106.
  • Hunt, R.J., Fienen, M.N., and White, J.T., 2020. Revisiting “An exercise in groundwater model calibration and prediction” after 30 years: insights and new directions. Groundwater, 58 (2), 168–182. doi:10.1111/gwat.12907.
  • Huntingford, C., et al., 2014. Potential influences on the United Kingdom’s floods of winter 2013/14. Nature Climate Change, 4 (9), 769–777. doi:10.1038/nclimate2314.
  • Ireson, A.M. and Butler, A.P., 2013. A critical assessment of simple recharge models: application to the UK Chalk. Hydrology and Earth System Sciences, 17, 2083–2096. doi:10.5194/hess-17-2083-2013.
  • Jackson, C.R., et al., 2005. Numerical testing of conceptual models of groundwater flow: a case study using the Dumfries Basin aquifer. Scottish Journal of Geology, 41 (1), 51–60. doi:10.1144/sjg41010051.
  • Jackson, C.R., Meister, R., and Prudhomme, C., 2011. Modelling the effects of climate change and its uncertainty on UK chalk groundwater resources from an ensemble of global climate model projections. Journal of Hydrology, 399 (1), 12–28. doi:10.1016/j.jhydrol.2010.12.028.
  • Jain, M., et al., 2021. Groundwater depletion will reduce cropping intensity in India. Science Advances, 7 (9), eabd2849. doi:10.1126/sciadv.abd2849.
  • Jasechko, S. and Perrone, D., 2021. Global groundwater wells at risk of running dry. Science, 372 (6540), 418–421. doi:10.1126/science.abc2755.
  • Jones, H.K., et al., 2000. The physical properties of minor aquifers in England and Wales. Keyworth, Nottingham: British Geological Survey, Technical Report No. WD/00/4.
  • Krause, P., Boyle, D.P., and Bäse, F., 2005. Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences, 5, 89–97. doi:10.5194/adgeo-5-89-2005
  • Lafare, A.E.A., Peach, D.W., and Hughes, A.G., 2021. Use of point scale models to improve conceptual understanding in complex aquifers: an example from a sandstone aquifer in the Eden valley, Cumbria, UK. Hydrological Processes, 35 (5), e14143. doi:10.1002/hyp.14143.
  • Lancia, M., et al., 2022. The China groundwater crisis: a mechanistic analysis with implications for global sustainability. Sustainable Horizons, 4, 100042. doi:10.1016/j.horiz.2022.100042
  • Langevin, C.D., et al., 2017. Documentation for the MODFLOW 6 groundwater flow model. Reston, VA: U.S. Geological Survey, USGS Numbered Series No. 6-A55.
  • Lee, J.R., 2021. Permeability classification for UK natural superficial deposits – a hydro-JULES dataset. Nottingham, UK: British Geological Survey. Open Report No. OR/21/050.
  • Lee, J.R., Candy, I., and Haslam, R., 2018. The neogene and quaternary of England: landscape evolution, tectonics, climate change and their expression in the geological record. Proceedings of the Geologists’ Association, 129 (3), 452–481.
  • Liu, P.-W., et al., 2022. Groundwater depletion in California’s Central Valley accelerates during megadrought. Nature Communications, 13 (1), 7825. doi:10.1038/s41467-022-35582-x.
  • Mackay, J.D., et al., 2015. Seasonal forecasting of groundwater levels in principal aquifers of the United Kingdom. Journal of Hydrology, 530, 815–828. doi:10.1016/j.jhydrol.2015.10.018
  • Mansour, M.M. and Hughes, A.G., 2004. User’s manual for the distributed recharge model ZOODRM. Keyworth, Nottingham: British Geological Survey. Internal Report No. IR/04/150.
  • Mansour, M.M., et al., 2012. The role of numerical modelling in understanding groundwater flow in Scottish alluvial aquifers. Geological Society, London, Special Publications, 364 (1), 85–98. doi:10.1144/SP364.7.
  • Mansour, M.M., et al., 2018. Estimation of spatially distributed groundwater potential recharge for the United Kingdom. Quarterly Journal of Engineering Geology and Hydrogeology, 51 (2), 247–263. doi:10.1144/qjegh2017-051.
  • Marchant, B.P., et al., 2022. Temporal interpolation of groundwater level hydrographs for regional drought analysis using mixed models. Hydrogeology Journal, 30 (6), 1801–1817. doi:10.1007/s10040-022-02528-y.
  • Marchant, B.P. and Bloomfield, J.P., 2018. Spatio-temporal modelling of the status of groundwater droughts. Journal of Hydrology, 564, 397–413.
  • Marsh, T., 2007. The 2004–2006 drought in Southern Britain. Weather, 62 (7), 191–196. doi:10.1002/wea.99.
  • Marsh, T.J. and Dale, M., 2002. The UK floods of 2000–2001: a hydrometeorological appraisal. Water and Environment Journal, 16 (3), 180–188. doi:10.1111/j.1747-6593.2002.tb00392.x.
  • Mather, B., et al., 2022. Constraining the response of continental-scale groundwater flow to climate change. Scientific Reports, 12 (1), 4539. doi:10.1038/s41598-022-08384-w.
  • Maxwell, R.M., Condon, L.E., and Kollet, S.J., 2015. A high-resolution simulation of groundwater and surface water over most of the continental US with the integrated hydrologic model ParFlow v3. Geoscientific Model Development, 8 (3), 923–937. doi:10.5194/gmd-8-923-2015.
  • McKenzie, A.A., 2015. User guide for the British geological survey national depth to groundwater dataset. Keyworth, Nottingham: British Geological Survey, Open Report No. OR/15/006.
  • Medici, G. and West, L.J., 2022. Review of groundwater flow and contaminant transport modelling approaches for the Sherwood Sandstone aquifer, UK; insights from analogous successions worldwide. Quarterly Journal of Engineering Geology and Hydrogeology, 55 (4), qjegh2021–176. doi:10.1144/qjegh2021-176.
  • Medici, G., West, L.J., and Banwart, S.A., 2019. Groundwater flow velocities in a fractured carbonate aquifer-type: implications for contaminant transport. Journal of Contaminant Hydrology, 222, 1–16. doi:10.1016/j.jconhyd.2019.02.001
  • Medici, G., West, L.J., and Mountney, N.P., 2016. Characterizing flow pathways in a sandstone aquifer: tectonic vs sedimentary heterogeneities. Journal of Contaminant Hydrology, 194, 36–58. doi:10.1016/j.jconhyd.2016.09.008
  • Medici, G., West, L.J., and Mountney, N.P., 2017. Characterization of a fluvial aquifer at a range of depths and scales: the Triassic St Bees Sandstone Formation, Cumbria, UK. Hydrogeology Journal, 26, 565–591. doi:10.1007/s10040-017-1676-z.
  • Moriasi, D.N., et al., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50 (3), 885–900. doi:10.13031/2013.23153.
  • Morris, D., Flavin, R., and Morris, R., 1990. A digital terrain model for hydrology. In: Proceedings of 4th International Symposium on Spatial Data Handling. Presented at the 4th International Symposium on Spatial Data Handling, Zurich, 250–262.
  • Nair, A.S. and Indu, J., 2021. Assessment of groundwater sustainability and identifying factors inducing groundwater depletion in India. Geophysical Research Letters, 48 (3), e2020GL087255. doi:10.1029/2020GL087255.
  • Newell, A.J., 2018. Implicit geological modelling: a new approach to 3D volumetric national-scale geological models [online]. Available from: https://nora.nerc.ac.uk/id/eprint/527473/ [ Accessed 18 April 2023].
  • O’Dochartaigh, B.E., et al., 2015. Scotland’s aquifers and groundwater bodies. Edinburgh: British Geological Survey. Open Report No. OR/15/028.
  • Piggott, A.R., Moin, S., and Southam, C., 2005. A revised approach to the UKIH method for the calculation of baseflow/Une approche améliorée de la méthode de l’UKIH pour le calcul de l’écoulement de base. Hydrological Sciences Journal, 50 (5), null–920. doi:10.1623/hysj.2005.50.5.911.
  • Price, M., 1987. Fluid flow in the Chalk of England. Geological Society, London, Special Publications, 34 (1), 141–156. doi:10.1144/GSL.SP.1987.034.01.10.
  • Prudic, D.E., Konikow, L.F., and Banta, E.R., 2004. A new Streamflow-Routing (SFR1) package to simulate stream-aquifer interaction with MODFLOW-2000. U.S. Geological Survey. Open-File Report No. 2004–1042.
  • Rahman, M., Pianosi, F., and Woods, R., 2023. Simulating spatial variability of groundwater table in England and Wales. Hydrological Processes, 37 (3), e14849. doi:10.1002/hyp.14849.
  • Rameshwaran, P., et al., 2022. Use of abstraction and discharge data to improve the performance of a national-scale hydrological model. Water Resources Research, 58 (1), e2021WR029787. doi:10.1029/2021WR029787.
  • Reinecke, R., et al., 2021. Uncertainty of simulated groundwater recharge at different global warming levels: a global-scale multi-model ensemble study. Hydrology and Earth System Sciences, 25 (2), 787–810. doi:10.5194/hess-25-787-2021.
  • Rodda, J.C. and Marsh, T.J., 2011. The 1975-76 drought – a contemporary and retrospective review. Wallingford, UK: Centre for Ecology & Hydrology. Open Report.
  • Rohde, M.M., Froend, R., and Howard, J., 2017. A global synthesis of managing groundwater dependent ecosystems under sustainable groundwater policy. Groundwater, 55 (3), 293–301. doi:10.1111/gwat.12511.
  • Rushton, K.R., Connorton, B.J., and Tomlinson, L.M., 1989. Estimation of the groundwater resources of the berkshire downs supported by mathematical modeling. Quarterly Journal of Engineering Geology and Hydrogeology, 22 (4), 329–341. doi:10.1144/GSL.QJEG.1989.022.04.06.
  • Rushton, K.R. and Skinner, A.C., 2012. A national approach to groundwater modelling: developing a programme and establishing technical standards. Geological Society, London, Special Publications, 364 (1), 7–17. doi:10.1144/SP364.2.
  • Scanlon, B.R., et al., 2023. Global water resources and the role of groundwater in a resilient water future. Nature Reviews Earth & Environment, 4, 87–101. doi:10.1038/s43017-022-00378-6.
  • Sechu, G.L., et al., 2022. Mapping groundwater-surface water interactions on a national scale for the stream network in Denmark. Journal of Hydrology: Regional Studies, 40, 101015.
  • Sefton, C., et al., 2023. Hydrological summary for the United Kingdom: February 2023 [online]. Available from: http://nrfa.ceh.ac.uk/monthly-hydrological-summary-uk [ Accessed 25 April 2023].
  • Seidenfaden, I.K., et al., 2022. Quantification of climate change sensitivity of shallow and deep groundwater in Denmark. Journal of Hydrology: Regional Studies, 41, 101100.
  • Streetly, M.J., 2023. A personal perspective of 20 years of regional groundwater resource modelling of the Permo–Triassic Sandstone aquifers in England. Quarterly Journal of Engineering Geology and Hydrogeology, 56 (3), qjegh2022–090. doi:10.1144/qjegh2022-090.
  • Tarboton, D.G. and Ames, D.P., 2012. Advances in the mapping of flow networks from digital elevation data. Civil and Environmental Engineering Faculty Publications. Paper 2577. https://digitalcommons.usu.edu/cee_facpub/2577
  • Taylor, R.G., et al., 2013. Ground water and climate change. Nature Climate Change, 3 (4), 322–329. doi:10.1038/nclimate1744.
  • Tetzlaff, D. and Soulsby, C., 2008. Sources of baseflow in larger catchments – using tracers to develop a holistic understanding of runoff generation. Journal of Hydrology, 359 (3), 287–302. doi:10.1016/j.jhydrol.2008.07.008.
  • United Nations, 2022. The United Nations world water development report 2022: groundwater: making the invisible visible. Paris, France.
  • Vergnes, J.-P., Caballero, Y., and Lanini, S., 2022. Assessing climate change impact on French groundwater resources using a spatially distributed hydrogeological model. Hydrological Sciences Journal, 68 (2), 209–227. doi:10.1080/02626667.2022.2150553.
  • Westerhoff, R., White, P., and Miguez-Macho, G., 2018. Application of an improved global-scale groundwater model for water table estimation across New Zealand. Hydrology and Earth System Sciences, 22 (12), 6449–6472. doi:10.5194/hess-22-6449-2018.
  • White, J.T., 2018. A model-independent iterative ensemble smoother for efficient history-matching and uncertainty quantification in very high dimensions. Environmental Modelling and Software, 109, 191–201. doi:10.1016/j.envsoft.2018.06.009
  • Whiteman, M.I., et al., 2012. Start, development and status of the regulator-led national groundwater resources modelling programme in England and Wales. Geological Society, London, Special Publications, 364 (1), 19–37. doi:10.1144/SP364.3.
  • Zhang, H. and Hiscock, K.M., 2010. Modelling the impact of forest cover on groundwater resources: a case study of the Sherwood Sandstone aquifer in the East Midlands, UK. Journal of Hydrology, 392 (3), 136–149. doi:10.1016/j.jhydrol.2010.08.002.
  • Zheng, C. and Guo, Z., 2022. Plans to protect China’s depleted groundwater. Science, 375 (6583), 827. doi:10.1126/science.abn8377.