165
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Water security in an Andean basin: an integrated socio-hydrological, multi-scenario and allocation assessment

ORCID Icon, ORCID Icon & ORCID Icon
Pages 551-571 | Received 30 Mar 2023, Accepted 08 Feb 2024, Published online: 05 Apr 2024

References

  • Abatzoglou, J.T., et al., 2018. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Scientific Data, 5 (1), 1–12. doi:10.1038/sdata.2017.191.
  • Abera Abdi, D. and Ayenew, T., 2021. Evaluation of the WEAP model in simulating subbasin hydrology in the Central Rift Valley basin, Ethiopia. Ecological Processes, 10 (1). doi:10.1186/s13717-021-00305-5.
  • Arias, P.A., et al., 2021. Colombian climatology in CMIP5/CMIP6 models: persistent biases and improvements. Revista Facultad de Ingenieria, 100, 75–96.
  • Bakker, K., 2012. Water security : research challenges and opportunities [online].
  • Bonilla, C.A. and Mesa, O.J., 2017. Validation of the precipitation estimated by CMIP5 climate models in Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Fisicas y Naturales, 41 (158), 107–118.
  • Braga, B., et al., others, 2014. Water and the future of humanity: revisiting water security. Lisboa: Springer International: Calouste Gulbenkian Foundation.
  • Buytaert, W., et al., 2006. Human impact on the hydrology of the Andean páramos [online]. Earth-Science Reviews, 79 (1–2), 53–72. doi:10.1016/j.earscirev.2006.06.002.
  • Buytaert, W. and De Bievre, B., 2012. Water for cities: the impact of climate change and demographic growth in the tropical Andes [online]. Water Resources Research, 48 (8). doi:10.1029/2011WR011755.
  • Cepeda, E. and Cañon, J., 2022. Performance of high-resolution precipitation datasets CHIRPS and TerraClimate in a Colombian high Andean Basin. Geocarto International, 37 (27), 17382–17402. doi:10.1080/10106049.2022.2129816.
  • Cepeda, E., Cañon, J., and Salazar, J.F., 2022. Changes of streamflow regulation in an Andean watershed with shrinking glaciers: implications for water security. Hydrological Sciences Journal, 67 (11), 1755–1770. doi:10.1080/02626667.2022.2105650.
  • Cook, C. and Bakker, K., 2011. Water security_ Debating an emerging paradigm [online]. Global Environmental Change, 21, 421–430. doi:10.1016/j.gloenvcha.2011.02.004
  • Cook, C. and Bakker, K., 2016. Water security: critical analysis of emerging trends and definitions. Handbook on Water Security, 19–37.
  • Corpoboyacá, 2018. Actualización Del Plan De Ordenación Y Manejo De La Cuenca Hidrográfica Del Río Alto Chicamocha – nss (2403-01) Fase Diagnostico [online].
  • Corpoboyacá, UNAL, and UPTC, 2006. Diagnóstico Capítulo II [online]. Plan De Ordenación Y Manejo Ambiental De La Cuenca Alta Del Río Chicamocha. Available from: http://www.corpoboyaca.gov.co/cms/wp-content/uploads/2015/11/diagnostico-capitulo2-pomca-chicamocha.pdf [Accessed 17 Sep 2022].
  • Dau, Q.V., Kuntiyawichai, K., and Adeloye, A.J., 2021. Future changes in water availability due to climate change projections for Huong Basin, Vietnam. Environmental Processes, 8 (1), 77–98. doi:10.1007/s40710-020-00475-y.
  • Ehret, U., et al., 2014. Advancing catchment hydrology to deal with predictions under change. Hydrology and Earth System Sciences, 18 (2), 649–671. doi:10.5194/hess-18-649-2014.
  • FAO, 1996. World food summit plan of action. Rome, Italy: World Food Summit.
  • Funk, C., et al., 2015. The climate hazards infrared precipitation with stations - A new environmental record for monitoring extremes. Scientific Data, 2 (1), 1–21. doi:10.1038/sdata.2015.66.
  • Gerlak, A.K., et al., 2018. Water security: a review of place-based research [online]. Environmental Science & Policy, 82, 79–89. doi:10.1016/j.envsci.2018.01.009.
  • Gerlak, A.K. and Mukhtarov, F., 2015. Ways of knowing’ water: integrated water resources management and water security as complementary discourses [online]. International Environmental Agreements: Politics, Law and Economics, 15 (3), 257–272. doi:10.1007/s10784-015-9278-5.
  • Grey, D. and Sadoff, C.W., 2007. Sink or Swim? Water security for growth and development. Water Policy, 9 (6), 545–571. doi:10.2166/wp.2007.021.
  • GWP, G.W.P., 2000. Integrated water resources management. TAC (Technical Advisory Committee) background paper no. 4. GWP. Stockholm.
  • Hausfather, Z., et al., 2022. Climate simulations: recognize the ‘hot model’ problem. Nature, 605 (7908), 26–29. doi:10.1038/d41586-022-01192-2.
  • IPCC, 2018. Global warming of 1.5° C: an IPCC special report on the impacts of global warming of 1.5° C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate chang. Intergovernmental Panel on Climate Change.
  • IPCC, 2021. Climate change 2021: the physical science basis. Working group I contribution to the IPCC sixth assessment report.
  • Johansen, K.S., et al., others, 2018. The Andean glacier and water atlas: the impact of glacier retreat on water resources. Paris and Arendal: UNESCO Publishing and GRID-Arendal.
  • Kang, M.-G. and Lee, G.-M., 2011. Multicriteria evaluation of water resources sustainability in the context of watershed management 1. JAWRA Journal of the American Water Resources Association, 47 (4), 813–827. doi:10.1111/j.1752-1688.2011.00559.x.
  • Kurian, M., 2017. The water-energy-food nexus: trade-offs, thresholds and transdisciplinary approaches to sustainable development [online]. Environmental Science & Policy, 68, 97–106. doi:10.1016/j.envsci.2016.11.006.
  • Marengo, J.A., et al., 2011. Climate change: evidence and future scenarios for the Andean region. In: Climate change and biodiversity in the tropical Andes. IAI-SCOPE-UNESCO. Paris: Scientific, Inter-American Institute for Global Change Research (IAI) and (SCOPE), Committee on Problems of the Environment, 110–127.
  • Mishra, B.K., et al., 2021. Water security in a changing environment: concept, challenges and solutions. Water (Switzerland), 13 (4), 490.
  • Molina, R.D., et al., 2019. Forest-induced exponential growth of precipitation along climatological wind streamlines over the Amazon. Journal of Geophysical Research: Atmospheres, 124 (5), 2589–2599. doi:10.1029/2018JD029534.
  • Moriasi, D.N., et al., 2015. Hydrologic and water quality models: performance measures and evaluation criteria. Transactions of the ASABE, 58 (6), 1763–1785.
  • Negasa Jaleta, T., Yesuf, M.B., and Hirko, D.B., 2019. Modeling surface water resources for effective water allocation using Water Evaluation and Planning (WEAP) model, a case study on finchaa sub basin, Ethiopia. Applied Journal of Environmental Engineering Science, 5, 402–419.
  • Norman, E., et al., 2010. Water security: a primer program on water governance. Vancouver: University of British Columbia.
  • Obahoundje, S., et al., 2021. Sensitivity of hydropower generation to changes in climate and land use in the mono basin (West Africa) using CORDEX dataset and WEAP model. Environmental Processes, 8 (3), 1073–1097.
  • Obahoundje, S., et al., 2017. Land use and land cover changes under climate uncertainty: modelling the impacts on hydropower production in Western Africa. Hydrology, 4 (1).
  • Octavianti, T. and Staddon, C., 2021. A review of 80 assessment tools measuring water security. Wiley Interdisciplinary Reviews: Water, 8 (3), 1–24.
  • OECD, 2011. Water governance in OECD countries: a multi-level approach. OECD Studies on Water. Paris: OECD Publishing.
  • Okyereh, S.A., Ofosu, E.A., and Kabobah, A.T., 2019. Modelling the impact of bui dam operations on downstream competing water uses [online]. Water-Energy Nexus, 2(1), 1–9. 10.1016/j.wen.2019.03.001.
  • Ortega, G., et al., 2021. Present-day and future climate over central and South America according to CMIP5/CMIP6 models. International Journal of Climatology, 41 (15), 6713–6735. doi:10.1002/joc.7221.
  • Pabón, J.D., et al., 2020. Observed and projected hydroclimate changes in the Andes. Frontiers in Earth Science, 8 (March), 1–29.
  • Pepin, N., et al., others, 2015. Elevation-dependent warming in mountain regions of the world. Nature Climate Change, 5 (5), 424–430.
  • Schwalm, C.R., Glendon, S., and Duffy, P.B., 2020. RCP8.5 tracks cumulative CO2 emissions. Proceedings of the National Academy of Sciences of the United States of America, 117 (33), 19656–19657. doi:10.1073/pnas.2007117117.
  • Scott, C.A., et al., 2013. Water security and adaptive management in the Arid Americas. Annals of the Association of American Geographers, 103 (2), 280–289. doi:10.1080/00045608.2013.754660.
  • Shao, D., et al., 2012. Evaluation of water security: an integrated approach applied in Wuhan urban agglomeration, China. Water Science & Technology, 66 (1), 79–87. doi:10.2166/wst.2012.147.
  • Sieber, J. and Purkey, D., 2011. Weap: water evaluation and planning system. user guide. Somerville, MA: Stockholm Environment Institute, US Center. http://weap21.org/downloads/WEAP_User_Guide.pdf [Accessed 20 Mar 2022].
  • Sieber, J. and Purkey, D., 2015. WEAP water evaluation and planning system user guide, stockholm environment institute, US Center. Somerville, MA, USA: EU, 343.
  • Sierra, J.P., Arias, P.A., and Vieira, S.C., 2015. Precipitation over Northern South America and its seasonal variability as simulated by the CMIP5 models. Advances in Meteorology, 2015, 1–22. doi:10.1155/2015/634720
  • Srinivasan, V., Konar, M., and Sivapalan, M., 2017. A dynamic framework for water security [online]. Water Security, 1, 12–20. doi:10.1016/j.wasec.2017.03.001.
  • Sullivan, C., 2001. The potential for calculating a meaningful water poverty index. Water International, 26 (4), 471–480. doi:10.1080/02508060108686948.
  • UNEP, 2009. Water security and ecosystem services: the critical connection. A contribution to the United Nations World Water Assessment Program.
  • Universidad de Antioquia, 1999. Estado de la calidad del recurso hídrico superficial en la Cuenca Alta del Río Chicamocha; Diagnóstico general de calidad del agua en la cuenca alta del río Chicamocha. Medellín: Faculty of Engineering, Center for Environmental and Engineering Research, Environmental Modeling and Management Research Group (GAIA).
  • UN-Water, 2013. Water security and the global water agenda: a UN-water analytical brief. Hamilton, ON: UN University.
  • Urrutia, R. and Vuille, M., 2009. Climate change projections for the tropical Andes using a regional climate model: temperature and precipitation simulations for the end of the 21st century. Journal of Geophysical Research: Atmospheres, 114 (2), 1–15. doi:10.1029/2008JD011021.
  • van Hateren, T.C., et al., 2023. Where should hydrology go? An early-career perspective on the next IAHS scientific decade: 2023-2032. Hydrological Sciences Journal, 68 (4), 529–541. doi:10.1080/02626667.2023.2170754.
  • Villegas, L.D., 2021. Proyecciones de cambio climático derivadas del proyecto CMIP5 para colombia y su comparación con las comunicaciones nacionales de cambio climático. Medellín: Universidad de Antioquia.
  • Viviroli, D., et al., 2011. Climate change and mountain water resources: overview and recommendations for research, management and policy [online]. Hydrology and Earth System Sciences, 15 (2), 471–504. doi:10.5194/hess-15-471-2011.
  • Voosen, P., 2022. ‘Hot’ climate models exaggerate Earth impacts. Science, 376 (6594), 685. doi:10.1126/science.adc9453.
  • Vuille, M., et al., 2018. Rapid decline of snow and ice in the tropical Andes – impacts, uncertainties and challenges ahead [online]. Earth-Science Reviews.10.1016/j.earscirev.2017.09.019.
  • Wagener, T., et al., 2010. The future of hydrology: an evolving science for a changing world [online]. Water Resources Research, 46 (5). doi:10.1029/2009WR008906.
  • Weng, W., et al., 2018. Aerial and surface rivers: downwind impacts on water availability from land use changes in Amazonia. Hydrology and Earth System Sciences, 22 (1), 911–927. doi:10.5194/hess-22-911-2018.
  • Wheater, H.S., and Gober, P., 2015. Water security and the science agenda. Water Resources Research, 51 (7), 5406–5424.
  • Yates, D.N., et al., 2005. WEAP21 – a demand-, priority-, and preference-driven water planning model part 1 : model characteristics. Water International, 30 (4), 487–500. doi:10.1080/02508060508691893.
  • Yimer, S.M., et al., 2022. Assessment of climate models performance and associated uncertainties in rainfall projection from CORDEX over the Eastern Nile Basin, Ethiopia. Climate, 10 (7), 95. doi:10.3390/cli10070095.
  • Yin, L., et al., 2013. How well can CMIP5 simulate precipitation and its controlling processes over tropical South America? Climate Dynamics, 41 (11–12), 3127–3143. doi:10.1007/s00382-012-1582-y.
  • Yoo, C. and Cho, E., 2018. Comparison of GCM precipitation predictions with their RMSEs and pattern correlation coefficients. Water (Switzerland), 10 (1), 28.
  • Zeitoun, M., et al., 2016. Reductionist and integrative research approaches to complex water security policy challenges [online]. Global Environmental Change, 39, 143–154. doi:10.1016/j.gloenvcha.2016.04.010
  • Zhao, Z.C., Luo, Y., and Huang, J.B., 2013. A review on evaluation methods of climate modeling. Advances in Climate Change Research, 4 (3), 137–144. doi:10.3724/SP.J.1248.2013.137.
  • Zhou, H.Z., 1999. Microeconomics. Shanghai: Shanghai People’s Publishing House, 110–120.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.