118
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Modelling hydrologic processes of a karst region in Southern China using coupled hydrological models

, , , , &
Pages 528-550 | Received 29 Oct 2022, Accepted 06 Feb 2024, Published online: 02 Apr 2024

References

  • Arnold, J.G., et al., 1998. Large area hydrologic modeling and assessment. I. Model development[J]. Journal of the American Water Resources Association (USA), 34 (1), 73–89. doi:10.1111/j.1752-1688.1998.tb05961.x
  • Bittner, D., et al., 2018. Modeling the hydrological impact of land use change in a dolomite-dominated karst system[J]. Journal of Hydrology, 567, 267–279. doi:10.1016/j.jhydrol.2018.10.017
  • Brkić, Ž., Kuhta, M., and Hunjak, T., 2018. Groundwater flow mechanism in the well-developed karst aquifer system in the western Croatia: insights from spring discharge and water isotopes [J]. Catena, 161, 14–26. doi:10.1016/j.catena.2017.10.011
  • Chang, Y., et al., 2019. Modelling spring discharge and solute transport in conduits by coupling CFPv2 to an epikarst reservoir for a karst aquifer [J]. Journal of Hydrology, 569, 587–599. doi:10.1016/j.jhydrol.2018.11.075
  • Chen, S., 2018. Quantitative evaluation method of groundwater resources in karst peak forest area in Southwest China[D]. Beijing of China: China University of Geosciences (Beijing).
  • Chen, Z. and Goldscheider, N., 2014. Modeling spatially and temporally varied hydraulic behavior of a folded karst system with dominant conduit drainage at catchment scale, Hochifen-Gottesacker, Alps [J]. Journal of Hydrology, 514, 41–52. doi:10.1016/j.jhydrol.2014.04.005
  • Cheng, J.M. and Chen, C.X., 2005. An integrated linear/non-linear flow model for the conduit-fissure-pore media in the karst triple void aquifer system [J]. Environmental Geology, 47 (2), 163–174. doi:10.1007/s00254-004-1128-7
  • Ebabu, K., et al., 2019. Effects of land use and sustainable land management practices on runoff and soil loss in the Upper Blue Nile basin, Ethiopia [J]. Science of the Total Environment, 648, 1462–1475. doi:10.1016/j.scitotenv.2018.08.273
  • Epting, J., et al., 2018. Process-based monitoring and modeling of Karst springs-Linking intrinsic to specific vulnerability [J]. Science of the Total Environment, 625, 403–415. doi:10.1016/j.scitotenv.2017.12.272
  • He, Z.H., et al., 2018. Water system characteristics of Karst river basins in South China and their driving mechanisms of hydrological drought[J]. Natural Hazards, 92 (2), 1155–1178. doi:10.1007/s11069-018-3275-2
  • Kassem, A.A., et al., 2020. Predicting of daily Khazir basin flow using SWAT and hybrid SWAT-ANN models[J]. Ain Shams Engineering Journal, 11 (2), 435–443. doi:10.1016/j.asej.2019.10.011
  • Kazakis, N., et al., 2018. Management and research strategies of karst aquifers in Greece: literature overview and exemplification based on hydrodynamic modelling and vulnerability assessment of a strategic karst aquifer[J]. Science of the Total Environment, 643, 592–609. doi:10.1016/j.scitotenv.2018.06.184
  • Ke, T.T., Shu, L.C., and Chen, X.H., 2013. Modeling the groundwater recharge in karst aquifers by using a reservoir model[J]. Water Science & Technology, 68 (2), 406–412. doi:10.2166/wst.2013.266
  • Kong-A-Siou, L., et al., 2014. Performance and complementarity of two systemic models (reservoir and neural networks) used to simulate spring discharge and piezometry for a karst aquifer [J]. Journal of Hydrology, 519 (D), 3178–3192. doi:10.1016/j.jhydrol.2014.10.041
  • Kourgialas, N.N., Karatzas, G.P., and Nikolaidis, N.P., 2010. An integrated framework for the hydrologic simulation of a complex geomorphological river basin [J]. Journal of Hydrology, 381 (3–4), 308–321. doi:10.1016/j.jhydrol.2009.12.003
  • Li, J., et al., 2021. Elaborate simulations and forecasting of the effects of urbanization on karst flood events using the improved Karst-Liuxihe model[J. Catena, 197, 104990. doi:10.1016/j.catena.2020.104990
  • Li, Z.Y., et al., 2020. Risk assessment of water inrush caused by karst cave in tunnels based on reliability and GA-BP neural network[J]. Geomatics, Natural Hazards and Risk, 11 (1), 1212–1232. doi:10.1080/19475705.2020.1785956
  • Lin, Y., et al., 2021. Temporal variations in karst spring flow and its response to climate change in the Taihang Mountains, China[J]. Journal of Hydrologic Engineering, 26 (10), 05021026. doi:10.1061/(ASCE)HE.1943-5584.0002120
  • Liu, L.Y., 2021. Assessment of water resource security in karst area of Guizhou Province, China[J]. Scientific Reports, 11 (1), 7641. doi:10.1038/s41598-021-87066-5
  • Liu, W.D., 2013. Study on structuring ANN-and-TOPMODEL-based new rainfall-runoff model[D]. Chengdu Sichuan of China: Sichuan Agricultural University.
  • Lu, C.P., et al., 2013. Interpretation of a short-duration pumping test in the mixed flow karst system using a three-reservoir model[J]. Carbonates & Evaporites, 28 (1–2), 149–158. doi:10.1007/s13146-013-0130-0
  • Luo, L.C., et al., 2021. A karst networks generation model based on the Anisotropic Fast Marching Algorithm[J]. Journal of Hydrology, 600, 126507. doi:10.1016/j.jhydrol.2021.126507
  • Luo, M.M., et al., 2016. Identifying structure and function of karst aquifer system using multiple field methods in karst trough valley area, South China[J]. Environmental Earth Sciences, 75 (9), 1–13. doi:10.1007/s12665-016-5630-5
  • Lv, Z.H., Zuo, J.J., and Rodriguez, D., 2020. Predicting of runoff using an optimized SWAT-ANN: a case study [J]. Journal of Hydrology: Regional Studies, 29, 100688.
  • Malagò, A., et al., 2016. Regional scale hydrologic modeling of a karst-dominant geomorphology: the case study of the Island of Crete [J]. Journal of Hydrology, 540 (540), 64–81. doi:10.1016/j.jhydrol.2016.05.061
  • Mazzilli, N., et al., 2019. KarstMod: a modelling platform for rainfall – discharge analysis and modelling dedicated to karst systems [J]. Environmental Modelling & Software, 122, 103927. doi:10.1016/j.envsoft.2017.03.015
  • Mendes, H.A., Cecílio, R.A., and Zanetti, S.S., 2021. Influence of soil depth and spatial resolution on the performance of the DHSVM hydrological model in basins with low input data availability[J]. Journal of South American Earth Sciences, 105, 102993. doi:10.1016/j.jsames.2020.102993
  • Moriasi, D.N., et al., 2015. hydrologic and water quality models: performance measures and evaluation crieria [J]. Transactions of the Asabe, 58 (6), 1763–1785. Available from: https://www.researchgate.net/publication/289540757
  • Nerantzaki, S.D. and Nikolaidis, N.P., 2020. The response of three Mediterranean karst springs to drought and the impact of climate change[J]. Journal of Hydrology, 591, 125296. doi:10.1016/j.jhydrol.2020.125296
  • Nikolaidis, N.P., Bouraoui, F., and Bidoglio, G., 2013. Hydrologic and geochemical modeling of a karstic Mediterranean watershed [J]. Journal of Hydrology, 477 (1), 129–138. doi:10.1016/j.jhydrol.2012.11.018
  • Noori, V., Kalin, L., and Isik, S., 2020. Water quality prediction using SWAT-ANN coupled approach[J]. Journal of Hydrology, 590, 125220. doi:10.1016/j.jhydrol.2020.125220
  • Paleologos, E.K., et al., 2013. Neural network simulation of spring flow in karst environments [J]. Stochastic Environmental Research and Risk Assessment, 27 (8), 1829–1837. doi:10.1007/s00477-013-0717-y
  • Shi, P., et al., 2013. Testing a conceptual lumped model in karst area, Southwest China [J]. Journal of Applied Mathematics, 827980. doi:10.1155/2013/827980
  • Tritz, S., Guinot, V., and Jourde, H., 2011. Modelling the behaviour of a karst system catchment using non-linear hysteretic conceptual model [J]. Journal of Hydrology (Amsterdam), 397 (3–4), 250–262. doi:10.1016/j.jhydrol.2010.12.001
  • Tzoraki, O. and Nikolaidis, N.P., 2007. A generalized framework for modeling the hydrologic and biogeochemical response of a Mediterranean temporary river basin [J]. Journal of Hydrology, 346 (3), 112–121. doi:10.1016/j.jhydrol.2007.08.025
  • Valdes-Abellan, J., et al., 2018. Validating the KAGIS black‐box GIS‐based model in a Mediterranean karst aquifer: case of study of Mela aquifer (SE Spain) [J]. Hydrological Processes, 32 (16), 2584–2596. doi:10.1002/hyp.13215
  • Wu, J., et al., 2024. Comprehensive effects of climate, land use/cover and management practices on runoff and nutrient variations in a rapidly urbanizing watershed[J]. Chemosphere, 349, 140934. doi:10.1016/j.chemosphere.2023.140934
  • Xu, Y., et al., 2018. Runoff response to climate change and human activities in a typical karst watershed, SW China[J]. Plos One, 13 (3), e0193073. doi:10.1371/journal.pone.0193073
  • Yan, Y.J., et al., 2021. Epikarst shallow fissure soil systems are key to eliminating karst drought limitations in the karst rocky desertification area of SW China [J]. Ecohydrology. doi:10.1002/eco.2372
  • Yang, W.Z., et al., 2020. Application of an improved distributed Xinanjiang hydrological model for flood prediction in a karst catchment in South-Western China[J]. Flood Risk Management, 13 (4), e12649. doi:10.1111/jfr3.12649
  • Zhang, K., et al., 2022. Grid-based karst distributed hydrological model[J]. Water Resources Protection, 38 (1), 43–51.
  • Zhang, R.R., et al., 2016. Storage and drainage characteristics of a highly heterogeneous karst aquifer in Houzhai basin[J]. Groundwater, 54 (6), 878–887. doi:10.1111/gwat.12437
  • Zhang, Z.C., et al., 2011. Modelling hydrological processes influenced by soil, rock and vegetation in a small karst basin of southwest China[J]. Hydrological Processes, 25 (15), 2456–2470. doi:10.1002/hyp.8022
  • Zhang, Z.C., Chen, X., and Soulsby, C., 2017. Catchment‐scale conceptual modelling of water and solute transport in the dual flow system of the karst critical zone[J]. Hydrological Processes, 31 (19), 3421–3436. doi:10.1002/hyp.11268
  • Zhao, L.J., et al., 2018. Evaluation of a hydrodynamic threshold in the Zhaidi karst aquifer (Guangxi Province, China) [J]. Environmental Earth Sciences, 77 (12), 424. doi:10.1007/s12665-018-7599-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.