79
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Developing a model to assess the impact of farm dams and irrigation for data-scarce catchments

ORCID Icon, , , &
Pages 639-656 | Received 29 Sep 2023, Accepted 29 Feb 2024, Published online: 15 Apr 2024

References

  • Alkhatib, J., Engelhardt, I., and Sauter, M., 2021. Identification of suitable sites for managed aquifer recharge under semi-arid conditions employing a combination of numerical and analytical techniques. Environmental Earth Sciences, 80 (17), 1–14. doi:10.1007/s12665-021-09797-y.
  • Allen, R.G., et al., 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Vol. 300. Rome: American Society of Agronomy.
  • Amer, K.H. and Hatfield, J.L., 2004. Canopy resistance as affected by soil and meteorological factors in potato. Journal of Agronomy, 96 (4), 978–985. doi:10.2134/agronj2004.0978.
  • Archer, E., et al., 2018. Seasonal prediction and regional climate projections for Southern Africa [in: climate change and adaptive land management in Southern Africa – assessments, changes, challenges, and solutions]. In: R. Revermann, et al., eds., Biodiversity & Ecology. 6th ed., Vol. 6. Göttingen & Windhoek: Klaus Hess Publishers, 14–21. doi:10.7809/b-e.00296.
  • Archer, E., et al., 2019. South Africa’s winter rainfall region drought: a region in transition? Climate Change Risk Management, 25 (October 2018), 100188. doi:10.1016/j.crm.2019.100188.
  • Arnold, J.G. and Fohrer, N., 2005. SWAT2000: current capabilities and research opportunities in applied watershed modelling. Hydrological Processes Is an International Journal, 19 (3), 563–572. doi:10.1002/hyp.5611.
  • Arnold, J.G., et al., 1998. Large area hydrologic modeling and assessment part I: model development. Journal of the American Water Resources Association, 34 (1), 73–89. doi:10.1111/j.1752-1688.1998.tb05961.x.
  • Beven, K., 2012. Rainfall-Runoff Modelling: the primer. 2nd ed.
  • Bouteffeha, M., et al., 2015. A water balance approach for quantifying subsurface exchange fluxes and associated errors in hill reservoirs in semiarid regions. Hydrological Processes, 29 (7), 1861–1872. doi:10.1002/hyp.10308.
  • Bugan, R.D.H., 2014. Modeling and regulating hydrosalinity dynamics in the Sandspruit River Catchment (Western Cape). Stellenbosch: Stellenbosch University. Availiable from: http://hdl.handle.net/10019.1/86492 [Accessed 5 Jul 2020].
  • Chow, R., et al., 2023. Seasonal drivers and risks of aquatic pesticide pollution in drought and post-drought conditions in three Mediterranean Watersheds. Science of the Total Environment, 858, 159784. doi:10.1016/j.scitotenv.2022.159784.
  • Conrad, J., et al., 2019. The Malmesbury Group - an aquifer of surprising significance. The South African Journal of Geology, 122 (3), 331–342. doi:10.25131/sajg.122.0028.
  • Conrad, J., Nel, J., and Wentzel, J., 2004. The challenges and implications of assessing groundwater recharge: a study - Northern Sandveld, Western Cape, South Africa. Water SA, 30 (5), 623–629. doi:10.4314/wsa.v30i5.5171.
  • Crossman, N.D., et al., 2010. Reconfiguring an irrigation landscape to improve provision of ecosystem services. Ecological Economics, 69 (5), 1031–1042. doi:10.1016/j.ecolecon.2009.11.020.
  • CSIR, 2009. Development of the Verlorenvlei estuarine management plan: situation assessment. Report prepared for the C.A.P.E, Stellenbosch :Estuaries Programme. Availiable from: http://fred.csir.co.za/project/CAPE_Estuaries/documents/VerlorenvleiSituationAssesment_FinalDraft_Oct2009.pdf [Accessed 5 Jul 2020].
  • De Beer, C.H, 2003. The geology of the Sandveld area between Lambert’s Bay and Piketberg. CGS Report No. 2003-0032. Bellville: CGS report.
  • Deb, K., et al., 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6 (2), 182–197. doi:10.1109/4235.996017.
  • DHI, 1998. MIKE SHE water movement - user guide technical reference manual. Availiable from: https://manuals.mikepoweredbydhi.help/.
  • Dillon, P., et al., 2019. Sixty years of global progress in managed aquifer recharge. Hydrogeology Journal, 27 (1), 1–30. doi:10.1007/s10040-018-1841-z.
  • DWS, 2022. Hydrology verified hymain. Availiable from: https://www.dws.gov.za/Hydrology/Verified/hymain.aspx [Accessed 5 Mar 2020].
  • DWS, 2023. Registration Details of a Dam Registered in terms of Dam Safety Legislation in terms of Chapter 12 of the National Water Act (Act 36 of 1998). Pretoria, South Africa: DWS. Availiable from: https://www.dws.gov.za/DSO/ [Accessed 10 Mar 2020].
  • FAO, 2011. The state of the world’s land and water resources for food and agriculture: managing systems at risk. Routledge. https://www.fao.org/3/cb7654en/cb7654en.pdf [Accessed 5 Jul 2020].
  • Flügel, W.‐.A., 1995. Delineating hydrological response units by geographical information system analyses for regional hydrological modelling using PRMS/MMS in the drainage basin of the River Bröl, Germany. Hydrological Processes, 9 (3–4), 423–436. doi:10.1002/hyp.3360090313.
  • Folke, C., et al., 2004. Regime shifts, resilience, and biodiversity in ecosystem management. Annual Review of Ecology, Evolution, and Systematics, 35 (1), 557–581. doi:10.1146/annurev.ecolsys.35.021103.105711.
  • GeoTerraImage, 2015. 2013 – 2014 South African national land-cover dataset. Data user report and metaData. Pretoria, South Africa: Commercial Data Product Report by GeoTerra Image (S.Africa).
  • Gleeson, T. and Richter, B., 2018. How much groundwater can we pump and protect environmental flows through time? Presumptive standards for conjunctive management of aquifers and rivers. River Research and Applications, 34 (1), 83–92. doi:10.1002/rra.3185.
  • Gordon, L.J., Peterson, G.D., and Bennett, E.M., 2008. Agricultural modifications of hydrological flows create ecological surprises. Trends in Ecology & Evolution, 23 (4), 211–219. doi:10.1016/j.tree.2007.11.011.
  • Güntner, A., et al., 2004. Simple water balance modelling of surface reservoir systems in a large data-scarce semiarid region/Modélisation simple du bilan hydrologique de systèmes de réservoirs de surface dans une grande région semi-aride pauvre en données. Hydrological Sciences Journal, 49 (5), null–918. doi:10.1623/hysj.49.5.901.55139.
  • Gupta, H.V., et al., 2009. Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling. Journal of Hydrology, 377 (1–2), 80–91. doi:10.1016/j.jhydrol.2009.08.003.
  • Haddad, N.M., et al., 2015. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Science Advances, 1 (2), e1500052. doi:10.1126/sciadv.1500052.
  • Hornberger, G.M. and Spear, R.C., 1981. An approach to the preliminary analysis of environmental systems. Journal of Environmental Management, 12 (1), 7–18.
  • Hughes, D.A. and Mantel, S.K., 2010. Estimation des incertitudes lors de la simulation des impacts de petites retenues agricoles sur les régimes d’écoulement en Afrique du Sud. Hydrological Sciences Journal, 55 (4), 578–592. doi:10.1080/02626667.2010.484903.
  • Hughes, D.A., Mantel, S., and Farinosi, F., 2020. Assessing development and climate variability impacts on water resources in the Zambezi River basin: initial model calibration, uncertainty issues and performance. Journal of Hydrology: Regional Studies, 32 (December), 100765. doi:10.1016/j.ejrh.2020.100765.
  • Jiang, C., et al., 2022. A regional hydrological model for arid and semi-arid river basins with consideration of irrigation. Environmental Modeling Software, 157, 105531. doi:10.1016/j.envsoft.2022.105531
  • Johnson, P.A., 1983. Variations in albedo among natural and disturbed South Western Cape veld types. Cape Town: University of Cape Town.
  • Kingsford, R.T., 2000. Ecological impacts of dams, water diversions and river management on floodplain wetlands in Australia. Austral Ecology, 25 (2), 109–127. doi:10.1046/j.1442-9993.2000.01036.x.
  • Konzmann, M., Gerten, D., and Heinke, J., 2013. Impacts climatiques selon 19 MCG sur les besoins globaux en irrigation simulés par un modèle d’hydrologie et de végétation. Hydrological Sciences Journal, 58 (1), 88–105. doi:10.1080/02626667.2013.746495.
  • Kralisch, S. and Krause, P., 2006. JAMS - A framework for natural resource model development and application. In A. Voinov, A. Jakeman, and A.E. Rizzoli, (Eds.), Proc. iEMSs 3rd Bienn. Meet. Summit Environ. Model. Software”, Burlington, USA, 6–11 https://scholarsarchive.byu.edu/iemssconference/2006/all/9.
  • Krause, P., 2001. Das hydrologische Modellsystem J2000. Beschreibung und Anwendung in großen Flussgebieten. In: Schriften des Forschungszentrums Jülich, ed. Umwelt/Environment, Vol. 29. Jülich: research centre. Reihe Umwelt. Jülich: Forschungszentrum, Zentralbibliothek, 229.
  • Krause, P., 2002. Quantifying the impact of land use changes on the water balance of large catchments using the J2000 model. Physics and Chemistry of the Earth, 27 (9–10), 663–673. doi:10.1016/S1474-7065(02)00051-7.
  • Krause, P. and Kralisch, S., 2005. The hydrological modelling system J2000 - Knowledge core for JAMS. MODSIM05 - Int. Congress Modeling and Simulation Advance Applied Management Decision Making, Proceedings, 676–682.
  • Künne, A., et al., 2019. Ecohydrological Modeling and Scenario Impact Assessment in Rural Rio de Janeiro. In: U. Nehren, et al., eds. Strategies and Tools for a Sustainable Rural Rio de Janeiro. Springer Series on Environmental Management. Cham: Springer. doi:10.1007/978-3-319-89644-1_17.
  • Lebon, N., et al., 2022. A new agro-hydrological catchment model to assess the cumulative impact of small reservoirs. Environmental Modeling Software, 153, 105409. doi:10.1016/j.envsoft.2022.105409
  • Liu, W., et al., 2020. Quantifying the streamflow response to groundwater abstractions for irrigation or drinking water at catchment scale using SWAT and SWAT–MODFLOW. Environmental Sciences Europe, 32 (1). doi:10.1186/s12302-020-00395-6.
  • Lui, J., et al., 2019. Forest fragmentation in China and its effect on biodiversity. Biological Reviews, 94 (5), 1636–1657. doi:10.1111/brv.12519.
  • Lynch, S., 2004. Development of a raster database of annula, monthly and daily rainfall for Southern Africa. Water Research Communications [ WRC Report No. 1156/1/03, 1-78].
  • Mantel, S.K., Hughes, D.A., and Muller, N.W.J., 2010. Ecological impacts of small dams on South African rivers part 1: drivers of change - water quantity and quality. Water SA, 36 (3), 351–360.
  • McMillan, H.K. and Westerberg, I.K., 2015. Rating curve estimation under epistemic uncertainty. Hydrological Processes, 29 (7), 1873–1882. doi:10.1002/hyp.10419.
  • Miller, J.A., et al., 2022. Characterization of groundwater types and residence times in the Verlorenvlei catchment, South Africa to constrain recharge dynamics and hydrological resilience. Journal of Hydrometeorology, 613 (August), 128280. doi:10.1016/j.jhydrol.2022.128280.
  • Moriasi, D.N., et al., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Soil Water Division ASABE, 50 (3), 885–900.
  • Munitz, S., Netzer, Y., and Schwartz, A., 2017. Sustained and regulated deficit irrigation of field-grown Merlot grapevines. Australian Journal of Grape and Wine Research, 23 (1), 87–94. doi:10.1111/ajgw.12241.
  • Nachtergaele, F., et al., 2012. Harmonized world soil database (version 1.2). FAO, Rome, Italy IIASA, Laxenburg, Austria. Tech. rep., FAO and IIASA, Rome, Italy and Laxenburg, Austria. Availiable from: http://www.fao.org/nr/water/docs/harm-world-soil-dbv7cv.Pdf [Accessed 5 Jul 2020].
  • Nash, E. and Sutcliffe, V., 1970. River flow forecasting through conceptual models part I. A discussion of principles. Journal of Hydrometeorology, 10 (3), 282–290. doi:10.1016/0022-1694(70)90255-6.
  • NOAA/NCDC, 2006. Global surface summary of day. Available from: https://data.noaa.gov/dataset/global-surface-summary-of-the-day-gsodhttp://lwf.ncdc.noaa.gov/cgi-bin/res40.pl [Accessed 5 Jul 2020].
  • Oblinger, J.A., et al., 2010. A pragmatic method for estimating seepage losses for small reservoirs with application in rural India. Journal of Hydrometeorology, 385 (1–4), 230–237. doi:10.1016/j.jhydrol.2010.02.023.
  • Penman, H.L., 1948. Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 193 (1032), 120–145.
  • Pepin, N., et al., 2015. Elevation-dependent warming in mountain regions of the world. National Climate Change, 5 (5), 424–430. doi:10.1038/nclimate2563.
  • Rangwala, I. and Miller, J.R., 2012. Climate change in mountains: a review of elevation-dependent warming and its possible causes. Climate Changege, 114 (3–4), 527–547. doi:10.1007/s10584-012-0419-3.
  • Rozendaal, A., et al., 1994. Structural setting of the Riviera W-Mo deposit, western Cape, South Africa. The South African Journal of Geology, 97 (2), 184–195. doi:10.1016/0148-9062(96)86877-x.
  • Sawunyama, T., 2013. Small farm dam capacity estimations from simple geometric relationships in support of the water use verification process in the Inkomati Water Management Area. IAHS-AISH Proceedings Reports, 362 (July), 57–63.
  • Schaap, M.G., Leij, F.J., and Van Genuchten, M.T., 2001. Rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of Hydrometeorology, 251 (3–4), 163–176. doi:10.1016/S0022-1694(01)00466-8.
  • Schwartze, C., 2008. Deriving Hydrological Response Units (HRUs) using a Web processing service implementation based on GRASS GIS. Geoinformatics FCE CTU, 3, 67–78. doi:10.14311/gi.3.6
  • Siebert, S. and Döll, P., 2008. The global crop water model (GCWM): documentation and first results for irrigated crops. Frankfurt Hydrology Paper 07, Institute of Physical Geography, University of Frankfurt, Frankfurt am Main, Germany.
  • Sigidi, N.T., 2018. Geochemical and isotopic tracing of salinity loads into the Ramsar listed Verlorenvlei freshwater estuarine lake. Western Cape, South Africa. Stellenbosch: Stellenbosch University.
  • Sigidi, N.T., et al., 2017. Geochemical and Isotopic Tracing of Salt Loads into the Ramsar Listed Verlorenvlei Estuarine Lake, South Africa. Procedia Earth and Planetary Science, 17 (March), 909–912. doi:10.1016/j.proeps.2017.01.015.
  • Simunek, J., Van Genuchten, M.T., and Sejna, M., 2011. The HYDRUS software package for simulating the two- and three-dimensions movement of water, heat, and multiple solutes in variably-saturated media. Technical Man. Prague, 1–230.
  • SRK. 2009. Preliminary assessment of impact of the proposed riviera tungsten mine on groundwater resources preliminary assessment of impact of the proposed riviera tungsten mine on groundwater resources.
  • Tang, Q., 2020. Global change hydrology: terrestrial water cycle and global change. Science China Earth Sciences, 63 (3), 459–462. doi:10.1007/s11430-019-9559-9.
  • Teng, J., et al., 2012. Estimating the relative uncertainties sourced from GCMs and hydrological models in modeling climate change impact on runoff. Journal of Hydrometeorology, 13 (1), 122–139. doi:10.1175/JHM-D-11-058.1.
  • Thornton, P.K., et al., 2014. Climate variability and vulnerability to climate change: a review. Global Change Biology, 20 (11), 3313–3328. doi:10.1111/gcb.12581.
  • Treumer, L. (2016) Bachelor Thesis Application of MODIS Global Terrestrial Evapotranspiration Data for hydrological modelling in the Western Cape Region, South Africa. Author : Friedrich-Schiller-University Jena.
  • Van Niekerk, A., 2014. Stellenbosch university digital elevation model (SUDEM). Central Geographical Analysis SU. https://www.geosmart.space/Products/5-m-stellenbosch-university-digital-elevation-model-sudem/ [Accessed 5 Jul 2020].
  • van Niekerk, A., et al., 2018. An earth observation approach towards mapping irrigated areas and quantifying water use by irrigated crops in South Africa. Research Communications, TT754, 1–190.
  • van Oorschot, M., et al., 2018. Combined effects of climate change and dam construction on riverine ecosystems. Ecological Engineering, 120 (June), 329–344. doi:10.1016/j.ecoleng.2018.05.037.
  • Van Zyl, J.L, 1984. Interrelationship, among soil water regime, irrigation and water stress in the Grapevine (Vitis vinifera L.) (December), 276. Available from: https://scholar.sun.ac.za [Accessed 5 Jul 2020].
  • Vaze, J., et al., 2010. Climate non-stationarity - Validity of calibrated rainfall-runoff models for use in climate change studies. Journal of Hydrometeorology, 394 (3–4), 447–457. doi:10.1016/j.jhydrol.2010.09.018.
  • Voit, P., Francke, T., and Bronstert, A., 2023. Accounting for operational irrigation options in mesoscale hydrological modelling of dryland environments. Hydrological Sciences Journal, 68 (5), 670–684. doi:10.1080/02626667.2023.2187296.
  • Vystavna, Y., et al., 2021. Stable isotopes in global lakes integrate catchment and climatic controls on evaporation. Nature Communications, 12 (1), 1–7.
  • Waal, J., de Miller, J., and Van Niekerk, A., 2023. The impact of agricultural transformation on water quality in a data ‑ scarce, dryland landscape — a case study in the Bot River, South Africa. Environmental Monitoring and Assessment, 196 (1), 1–18. doi:10.1007/s10661-022-10776-4.
  • Wada, Y., van Beek, L.P.H., and Bierkens, M.F.P., 2012. Nonsustainable groundwater sustaining irrigation: a global assessment. Water Resources Research, 48 (6). doi:10.1029/2011WR010562.
  • Watson, A., Eilers, A., and Miller, J., 2020a. Recharge estimation using cmb and environmental isotopes in the verlorenvlei estuarine system, South Africa and implications for groundwater sustainability in a semi-arid agricultural region. Water (Switzerland). 12. doi:10.3390/w12051362.
  • Watson, A., et al., 2018. Estimation of groundwater recharge via percolation outputs from a rainfall/runoff model for the Verlorenvlei estuarine system, west coast, South Africa. Journal of Hydrometeorology, 558, 238–254. doi:10.1016/j.jhydrol.2018.01.028
  • Watson, A., et al., 2019. Distributive rainfall-runoff modelling to understand runoff-to-baseflow proportioning and its impact on the determination of reserve requirements of the Verlorenvlei estuarine lake, west coast, South Africa. Hydrology and Earth System Sciences, 23 (6), 2679–2697. doi:10.5194/hess-23-2679-2019.
  • Watson, A., et al., 2020b. Impact of precipitation data density and duration on simulated flow dynamics and implications for ecohydrological modelling in semi-arid catchments in Southern Africa. Journal of Hydrometeorology, 590 (July), 125280. Elsevier. doi:10.1016/j.jhydrol.2020.125280.
  • Watson, A., et al., 2022a. How climate extremes influence conceptual rainfall-runoff model performance and uncertainty. Frontiers in Climate, 4 (June), 1–19. doi:10.3389/fclim.2022.859303.
  • Watson, A., et al., 2022b. Using soil-moisture drought indices to evaluate key indicators of agricultural drought in semi-arid Mediterranean Southern Africa. Science of the Total Environment, 812 (152464). Elsevier B.V. doi:10.1016/j.scitotenv.2021.152464.
  • Yates, D., et al., 2005. WEAP21—A demand-, priority-, and preference-driven water planning model: part 1: model characteristics. Water International, 30 (4), 487–500. doi:10.1080/02508060508691893.
  • Yin, Z., et al., 2021. Irrigation, damming, and streamflow fluctuations of the Yellow River. Hydrology and Earth System Sciences, 25 (3), 1133–1150. doi:10.5194/hess-25-1133-2021.
  • Zeng, R. and Cai, X., 2014. Analyzing streamflow changes: irrigation-enhanced interaction between aquifer and streamflow in the Republican River basin. Hydrology and Earth System Sciences, 18 (2), 493–502. doi:10.5194/hess-18-493-2014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.