118
Views
18
CrossRef citations to date
0
Altmetric
Original

Novel factor-loaded polyphosphazene matrices: Potential for driving angiogenesis

, , , , &
Pages 544-555 | Published online: 21 Aug 2009

References

  • Allcock HR. Chemistry and applications of polyphosphazenes. Wiley-Interscience, New York 2003, Ch 15
  • Allcock HR, Fuller TJ, Mack DP, Matsumura K, Smeltz KM. Synthesis of poly[(amino acid alkyl ester)phosphazenes]. Macromolecules 1977; 10: 824–830
  • Allcock HR, Fuller TJ, Matsumura K. Hydrolysis pathways for aminophosphazenes. Inorg Chem 1982; 21: 515–521
  • Allcock HR, Kwon S. Glyceryl polyphosphazenes: Synthesis, properties and hydrolysis. Macromolecules 1988; 21: 1980–1985
  • Allcock HR, Pucher SR. Polyphosphazenes with glycosyl and methyl amino, trifluoroethoxy, phenoxy or (methoxyethoxy)ethoxy side groups. Macromolecules 1991; 24: 23–34
  • Allcock HR, Pucher SR, Scopelianos AG. Poly[(amino acid ester)phosphazenes]: synthesis, crystallinity and hydrolytic sensitivity in solution and the solid state. Macromolecules 1994; 27: 1071–1075
  • Allcock HR, Pucher SR, Scopelianos AG. Synthesis of poly(organophosphazenes) with glycolic acid ester and lactic acid ester side groups: prototypes for new bioerodible polymers. Macromolecules 1994; 27: 1–4
  • Bell AJ, Talbot-Stern JK, Hennessy A. Characteristics and outcomes of older patients presenting to the emergency department after a fall: a retrospective analysis. Med J Aust 2000; 173: 176–177
  • Borden M, Attawia M, Khan Y, El-Amin S F, Laurencin CT. Tissue-engineered bone formation in vivo using a novel sintered polymeric microsphere matrix. J Bone Joint Surg Brit Vol 2004; 86B: 1200–1208
  • Borden M, Attawia M, Laurencin CT. The sintered microsphere matrix for bone tissue engineering: in vitro osteoconductivity studies. J Biomed Mater Res 2002; 61: 421–442
  • Borden M, El-Amin SF, Attawia M, Laurencin CT. Structural and human cellular assessment of a novel microsphere-based tissue engineered scaffold for bone repair. Biomaterials 2003; 24: 597–609
  • Brown JL, Nair LS, Laurencin CT. Solvent/non-solvent sintering: A novel route to create porous microsphere scaffolds for tissue regeneration. J Biomed Mater Res B Appl Biomater 2007; 86B(2)396–306
  • Carter DR, Hayes WC. The compressive behavior of bone as a two-phase porous structure. J Bone Joint Surg Am 1977; 59: 954–962
  • Crommen JHL, Schacht EH, Mense EHG. Biodegradable polymers I. Synthesis of hydrolysis-sensitive poly[(organo)phosphazenes]. Biomaterials 1992; 13: 511–520
  • Einhorn T. Biomechanics of bone. Principles of bone biology, JP Bilezikian, LG Raisz, GA Rodan. Academic Press, San Diego 1996; 25–38, Chapter 3
  • Hornbrook MC, Stevens VJ, Wingfield DJ, Hollis JF, Greenlick MR, Ory MG. Preventing falls among community-dwelling older persons: Results from a randomized trial. Gerontologist 1994; 34: 16–23
  • Jiang W, Schwendeman SP. Stabilization and controlled release of bovine serum albumin encapsulated in poly(D, L-lactide and poly(ethylene glycol) microsphere blends. Pharm Res 2001; 18: 878–885
  • Kleinheinz J, Stratmann U, Joos U, Wiesmann H-P. VEGF-activated angiogenesis during bone regeneration. J Oral Maxillofac Surg 2005; 63: 1310–1316
  • Langer R, Moses M. Biocompatible controlled release polymers for delivery of polypeptides and growth factors. J Cell Biochem 1991; 45: 340–345
  • Laurencin CT, El-Amin SF, Ibim SE, Willoughby DA, Attawia M, Allcock HR, et al. A highly porous 3-dimensional polyphosphazene polymer matrix for skeletal tissue regeneration. J Biomed Mater Res 1996; 30: 133–138
  • Laurencin CT, Koh HJ, Neenan TX, Allcock HR, Langer R. Controlled release using a new bioerodible polyphosphazene matrix system. J Biomed Mater Res 1987; 21: 1231–1246
  • Laurencin CT, Morris C, Pierre-Jacques H, Schwartz E. Osteoblast culture on bioerodible polymers: Studies of initial cell adhesion and spread. Polym Adv Tech 1992; 3: 359–364
  • Laurencin CT, Norman ME, Elgendy HM, El-Amin SF, Allcock HR, Pucher SR, et al. Use of polyphosphazenes for skeletal tissue regeneration. J Biomed Mater Res 1993; 27: 963–973
  • Laurencin CT, Norman ME, Elgendy HM, El-Amin SF, Allcock HR, Pucher SR, et al. Use of polyphosphazenes for skeletal tissue regeneration. J Biomed Mater Res 1993; 27: 963–973
  • Laurenicin CT, Ambrosio AMA, Bauer TW, Allcock HR, Attawia MA, Borden MD, Gorum WJ, Frank D. The biocompatibility of polyphosphazenes, Evaluation in bone. Society for Biomaterials 24th annual meeting in conjunction with 30th international symposium. CA, San Diego 1998
  • Liu X, Ma PX. Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 2004; 32: 477–486
  • Matsumoto T, Okazaki M, Inoue M, Yamaguchi S, Kusunose T, Toyonaga T, et al. Hydroxyapatite particles as a controlled release carrier of protein. Biomaterials 2004; 25: 3807–3812
  • Midy V, Hollande E, Rey C, Dard M, Plouet J. Adsorption of vascular endothelial growth factor to two different apatitic materials and its release. J Mater Sci Mater Med 2001; 12: 293–298
  • Murphy WL, Simmons CA, Kaigler D, Mooney DJ. Bone regeneration via a mineral substrate and induced angiogenesis. J Dent Res 2004; 83: 204–210
  • Nukavarapu SP, Kumbar SG, Brown JL, Krogman NR, Weikel AL, Hindenlang MD, Nair LS, Allcock HR, Laurencin CT. Polyphosphazene/nano-hydroxyapatite composite microsphere scaffolds for bone tissue engineering. Biomacromolecules 2008; 9(7)1818–1825
  • Passi P, Zadro A, Marsilio F, Lora S, Caliceti P, Veronese FM. Plain and drug loaded polyphosphazene membranes and microspheres in the treatment of rabbit bone defects. J Mater Sci Mater Med 2000; 11: 643–654
  • Peters MC, Polverini PJ, Mooney DJ. Engineering vascular networks in porous polymer matrices. J Biomed Mater Res 2002; 60: 668–678
  • Ramchandania M, Robinson D. In vitro and in vivo release of ciprofloxacin from PLGA 50:50 implants. J Contr Rel 1998; 54: 167–175
  • Ruiz EM, Ramirex CA, Aponte MA, Barbosa-Canovas GV. Degradation of poly[bis(glycine ethyl ester)]phosphazene in aqueous media. Biomaterials 1993; 14: 491–496
  • Schrier JA, DeLuca PP. Recombinant human bone morphogenetic protein-2 binding and incorporation in vitro PLGA microsphere delivery systems. Pharm Dev Tech 1999; 4: 611–621
  • Siepmann J, Göpferich A. Mathematical modeling of bioerodible, polymeric drug delivery systems. Adv Drug Del Rev 2001; 48: 229–247
  • Stevens JA, Olson S. Reducing falls and resulting hip fractures among older women. National Center for Injury Prevention and Control Division of Unintentional Injury Prevention; MMWR Recomm Rep. 49(RR-2):3-12 2000
  • Street J, Bao M, deGuzman S, Peale FV, Ferrara N, Steinmetz H, Hoeffel J, Cleland JL, Daugherty A, van Bruggen N, Redmond HP, Carano RAD, Filvaroff EH. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. PNAS 2002; 99: 9656–9661
  • Uchida T, Yoshida K, Goto S. Preparation and characterization of polylactic acid microspheres containing water-soluble dyes using a novel w/o/w emulsion solvent evaporation method. J Microencapsulation 1996; 13: 219–228

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.