85
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Production and investigation of Pickering emulsion stabilised by casein-Qodume Shirazi (Alyssum homolocarpum) seed gum complex particles: gastrointestinal digestion

, , &
Pages 79-93 | Received 03 Jun 2023, Accepted 09 Nov 2023, Published online: 17 Jan 2024

References

  • Chen, K., et al., 2015. Fabrication of all‐water‐based self‐repairing superhydrophobic coatings based on UV‐responsive microcapsules. Advanced functional materials, 25 (7), 1035–1041. doi: 10.1002/adfm.201403496.
  • Chen, K., et al., 2021. Preparation of pH-responsive dual-compartmental microcapsules via Pickering emulsion and their application in multifunctional textiles. ACS applied materials & interfaces, 13 (1), 1234–1244. doi: 10.1021/acsami.0c18043.
  • Chen, X., et al., 2023. High internal phase Pickering emulsions stabilized by ultrasound-induced soy protein-β-glucan-catechin complex nanoparticles to enhance the stability and bioaccessibility of curcumin. Journal of microencapsulation, 40 (6), 456–474. doi: 10.1080/02652048.2023.2220387.
  • Cui, S., et al., 2023. Fabrication and characterization of low-fat Pickering emulsion gels stabilized by zein/phytic acid complex nanoparticles. Food chemistry, 402, 134179. doi: 10.1016/j.foodchem.2022.134179.
  • Dai, L., et al., 2018. Characterization of Pickering emulsion gels stabilized by zein/gum Arabic complex colloidal nanoparticles. Food hydrocolloids, 74, 239–248. doi: 10.1016/j.foodhyd.2017.07.040.
  • Du Le, H., et al., 2020. Gastrointestinal digestion of Pickering emulsions stabilised by hydrophobically modified cellulose nanocrystals: Release of short-chain fatty acids. Food chemistry, 320, 126650. doi: 10.1016/j.foodchem.2020.126650.
  • Gao, J., et al., 2021. Development of zein/soluble soybean polysaccharide nanoparticle-stabilized Pickering emulsions. Journal of food science, 86 (5), 1907–1916. doi: 10.1111/1750-3841.15730.
  • Ghadermazi, R., et al., 2019. Effect of ultrasonic bath, surfactant to oil ratio and quince seed mucilage concentration on spontaneous nanoemulsion properties.
  • Ghobadi, M., et al., 2020. Fabrication and characterization of Grass pea (Lathyrus sativus) protein isolate-Alyssum homolocarpum seed gum complex coacervate. Polymer testing, 89, 106636. doi: 10.1016/j.polymertesting.2020.106636.
  • Gonzalez Ortiz, D., et al., 2020. Current trends in Pickering emulsions: particle morphology and applications. Engineering, 6 (4), 468–482. doi: 10.1016/j.eng.2019.08.017.
  • Hedjazi, S., et al., 2019. Preparing Pickering emulsion of canthaxanthin and stabilization with cellulose nanocrystals. Iranian journal of biosystems engineering, 50 (1), 179–190.
  • Heidari, F., et al., 2022. Preparation of Pickering emulsions stabilized by modified silica nanoparticles via the Taguchi approach. Pharmaceutics, 14 (8), 1561. doi: 10.3390/pharmaceutics14081561.
  • Hesarinejad, M.A., Razavi, S.M.A., and Koocheki, A., 2015. The viscoelastic and thermal properties of Qodume shirazi seed gum (Alyssum homolocarpum). Iranian food science and technology research journal, 11 (2), 116–128.
  • Hossain, K.M.Z., Deeming, L., and Edler, K., 2021. Recent progress in Pickering emulsions stabilised by bioderived particles. RSC advances, 11 (62), 39027–39044. doi: 10.1039/d1ra08086e.
  • Jaramillo, D.P., Roberts, R.F., and Coupland, J.N., 2011. Effect of pH on the properties of soy protein–pectin complexes. Food research international, 44 (4), 911–916. doi: 10.1016/j.foodres.2011.01.057.
  • Khalili, H., and Huhtanen, P., 2002. Effect of casein infusion in the rumen, duodenum or both sites on factors affecting forage intake and performance of dairy cows fed red clover-grass silage. Journal of dairy science, 85 (4), 909–918. doi: 10.3168/jds.S0022-0302(02)74149-0.
  • Kong, X., et al., 2017. Characteristics of soy protein isolate/gum Arabic-stabilized oil-in-water emulsions: influence of different preparation routes and pH. RSC advances, 7 (51), 31875–31885. doi: 10.1039/C7RA01472D.
  • Koocheki, A., and Hesarinejad, M.A., 2019. Qodume Shirazi (Alyssum homolocarpum) seed gum: Rheology and functions. In: Emerging natural hydrocolloids, 205–223.
  • Kwieciński, W., et al., 2019. Evaporation of dilute sodium dodecyl sulfate droplets on a hydrophobic substrate. Langmuir: the ACS journal of surfaces and colloids, 35 (32), 10453–10460. doi: 10.1021/acs.langmuir.9b00824.
  • Li, S., et al., 2021. Fabrication and characterization of starch/zein nanocomposites with pH-responsive emulsion behavior. Food hydrocolloids. 112, 106341. doi: 10.1016/j.foodhyd.2020.106341.
  • Lima Cardial, M.R., et al., 2019. Pickering emulsions stabilized with cashew gum nanoparticles as indomethacin carrier. International journal of biological macromolecules, 132, 534–540. doi: 10.1016/j.ijbiomac.2019.03.198.
  • Liu, C., et al., 2018. Elaboration of curcumin-loaded rice bran albumin nanoparticles formulation with increased in vitro bioactivity and in vivo bioavailability. Food hydrocolloids, 77, 834–842. doi: 10.1016/j.foodhyd.2017.11.027.
  • Manzocco, L., et al., 2017. Exploitation of κ-carrageenan aerogels as template for edible oleogel preparation. Food hydrocolloids, 71, 68–75. doi: 10.1016/j.foodhyd.2017.04.021.
  • Mirzaei, M., et al., 2021. Effect of carboxymethylcellulose and locust bean gums on some of physicochemical, mechanical, and textural properties of extruded rice. Journal of texture studies, 52 (1), 91–100. doi: 10.1111/jtxs.12563.
  • Mwangi, W.W., et al., 2016. Effects of environmental factors on the physical stability of pickering-emulsions stabilized by chitosan particles. Food hydrocolloids, 60, 543–550. doi: 10.1016/j.foodhyd.2016.04.023.
  • Naji-Tabasi, S., et al., 2021a. Nanoparticles fabrication of soy protein isolate and basil seed gum (Ocimum bacilicum L.) complex as Pickering stabilizers in emulsions. Journal of dispersion science and technology, 42 (5), 633–640. doi: 10.1080/01932691.2019.1703736.
  • Naji-Tabasi, S., et al. 2021b. Preparation of cold gel emulsion system using isolated soy protein-Basil seed gum complex as a fat replacement in cream. Iranian food science and technology research journal, 17 (2), 365–378. doi: 10.22067/ifstrj.2020.39273.
  • Naji-Tabasi, S., Razavi, S.M.A., and Mehditabar, H., 2017. Fabrication of basil seed gum nanoparticles as a novel oral delivery system of glutathione. Carbohydrate polymers, 157, 1703–1713. doi: 10.1016/j.carbpol.2016.11.052.
  • Penalva, R., et al., 2015. Casein nanoparticles as carriers for the oral delivery of folic acid. Food hydrocolloids, 44, 399–406. doi: 10.1016/j.foodhyd.2014.10.004.
  • Pricilla, R.B., et al., 2022. Unravelling the highly efficient synthesis of individual carbon nanodots from casein micelles and the origin of their competitive constant-blue-red wavelength shift luminescence mechanism for versatile applications. RSC advances, 12 (25), 16277–16290. doi: 10.1039/d2ra01911f.
  • Rydström, C., 2012. Nanoparticles in Food-with a focus on the toxicity of titanium dioxide.
  • Sadeghian, T., et al., 2018. Structure, chaperone-like activity and allergenicity profile of bovine caseins upon peroxynitrite modification: New evidences underlying mastitis pathomechanisms. International journal of biological macromolecules, 106, 1258–1269. doi: 10.1016/j.ijbiomac.2017.08.120.
  • Sarmento, B., et al., 2007. Insulin-loaded nanoparticles are prepared by alginate ionotropic pre-gelation followed by chitosan polyelectrolyte complexation. Journal of nanoscience and nanotechnology, 7 (8), 2833–2841. doi: 10.1166/jnn.2007.609.
  • Sarraf, M., Naji‐Tabasi, S., and Beig‐babaei, A., 2021. Influence of calcium chloride and pH on soluble complex of whey protein‐basil seed gum and xanthan gum. Food science & nutrition, 9 (12), 6728–6736. doi: 10.1002/fsn3.2624.
  • Serin, S., and Sayar, S., 2016. The effect of the replacement of fat with carbohydrate-based fat replacers on the dough properties and quality of the baked pogaca: a traditional high-fat bakery product. Food science and technology, 37 (1), 25–32. doi: 10.1590/1678-457x.05516.
  • Shah, B.R., et al., 2016. Bioaccessibility and antioxidant activity of curcumin after encapsulated by nano and Pickering emulsion based on chitosan-tripolyphosphate nanoparticles. Food research international (ottawa, ont.), 89 (Pt 1), 399–407. doi: 10.1016/j.foodres.2016.08.022.
  • Shahbazizadeh, S., et al., 2021. Development of cress seed gum hydrogel and investigation of its potential application in the delivery of curcumin. Journal of the science of food and agriculture, 101 (15), 6505–6513. doi: 10.1002/jsfa.11322.
  • Shahbazizadeh, S., Naji-Tabasi, S., and Shahidi-Noghabi, M., 2022. Entrapment of curcumin in isolated soy protein-alginate nanogels: antioxidant stability and in vitro gastrointestinal digestion. Journal of food measurement and characterization, 16 (6), 4754–4770. doi: 10.1007/s11694-022-01562-4.
  • Song, L., Zhang, S., and Liu, B., 2022. The fabrication and characterization of Pickering emulsion gels stabilized by sorghum flour. Foods (basel, Switzerland), 11 (14), 2056. doi: 10.3390/foods11142056.
  • Sourki, A.H., Koocheki, A., and Elahi, M., 2017. Ultrasound-assisted extraction of β-d-glucan from hull-less barley: Assessment of physicochemical and functional properties. International journal of biological macromolecules, 95, 462–475. doi: 10.1016/j.ijbiomac.2016.10.111.
  • Tan, Y., et al., 2014. Triglyceride–water emulsions stabilised by starch-based nanoparticles. Food hydrocolloids, 36, 70–75. doi: 10.1016/j.foodhyd.2013.08.032.
  • Xiong, T., et al., 2022. Carrageenan-based Pickering emulsion gels stabilized by xanthan gum/lysozyme nanoparticle: microstructure, rheological, and texture perspective. Foods (basel, Switzerland), 11 (23), 3757. doi: 10.3390/foods11233757.
  • Xu, W., et al., 2021. High internal-phase pickering emulsions stabilized by xanthan gum/lysozyme nanoparticles: rheological and microstructural perspective. Frontiers in nutrition, 8, 744234. doi: 10.3389/fnut.2021.744234.
  • Zhou, F.-Z., et al., 2023. Pickering water in oil emulsions prepared from biocompatible gliadin/ethyl cellulose complex particles. Food hydrocolloids, 134, 108050. doi: 10.1016/j.foodhyd.2022.108050.
  • Zhou, Y., et al., 2018. Preparation and antimicrobial activity of oregano essential oil Pickering emulsion stabilized by cellulose nanocrystals. International journal of biological macromolecules, 112, 7–13. doi: 10.1016/j.ijbiomac.2018.01.102.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.