81
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Gelatine nanoparticles encapsulating three edible plant extracts as potential nanonutraceutical agents against type 2 diabetes mellitus

ORCID Icon, ORCID Icon & ORCID Icon
Pages 94-111 | Received 07 Jul 2023, Accepted 22 Jan 2024, Published online: 27 Feb 2024

References

  • Abesundara, K.J., Matsui, T., and Matsumoto, K., 2004. Alpha-glucosidase inhibitory activity of some Sri Lankan plant extracts, one of which, Cassia auriculata, exerts a strong antihyperglycemic effect in rats comparable to the therapeutic drug acarbose. Journal of agricultural and food chemistry, 52 (9), 2541–2545. doi:10.1021/jf035330s.
  • Ammar, N.M., et al., 2021. Metabolomic profiling to reveal the therapeutic potency of Posidonia oceanica nanoparticles in diabetic rats. RSC advances, 11 (14), 8398–8410. doi:10.1039/d0ra09606g.
  • Arulselvan, P., and Subramanian, S.P., 2007. Beneficial effects of Murraya koenigii leaves on antioxidant defense system and ultra structural changes of pancreatic beta-cells in experimental diabetes in rats. Chemico-biological interactions, 165 (2), 155–164. doi:10.1016/j.cbi.2006.10.014.
  • Astiti, M.A., et al., 2021. LC-QTOF-MS/MS based molecular networking approach for the isolation of α-glucosidase inhibitors and virucidal agents from Coccinia grandis (L.) Voigt. Foods, 10 (12), 3041. doi:10.3390/foods10123041.
  • Attanayake, A.P., et al., 2013. Study of antihyperglycaemic activity of medicinal plant extracts in alloxan induced diabetic rats. Ancient science of life, 32 (4), 193–198. doi:10.4103/0257-7941.131970.
  • Attanayake, A.P., et al., 2019. β-cell regenerative potential of selected herbal extracts in alloxan induced diabetic rats. Current drug discovery technologies, 16 (3), 278–284. doi:10.2174/1570163815666180418153024.
  • Attia, K.A.M., Elabasawy, N.M., and Abolmagd, E., 2017. Simultaneous equation and area under the curve spectrophotometric methods for estimation of cefaclor in presence of its acid induced degradation product; A comparative study. Future journal of pharmaceutical sciences, 3 (2), 163–167. doi:10.1016/j.fjps.2017.06.001.
  • Bajpai, A.K., and Choubey, J., 2006. In vitro release dynamics of an anticancer drug from swellable gelatin nanoparticles. Journal of applied polymer science, 101 (4), 2320–2332. doi:10.1002/app.23761.
  • Balakrishnan, R., et al., 2020. Medicinal profile, phytochemistry, and pharmacological activities of Murraya koenigii and its primary bioactive compounds. Antioxidants, 9 (2), 101. doi:10.3390/antiox9020101.
  • Bodoira, R., and Maestri, D., 2020. Phenolic compounds from nuts: Extraction, chemical profiles, and bioactivity. Journal of agricultural and food chemistry, 68 (4), 927–942. doi:10.1021/acs.jafc.9b07160.
  • Chandra, S., et al., 2022. Nutraceuticals: Pharmacologically active potent dietary supplements. BioMed research international, 2022, 2051017–2051010. doi:10.1155/2022/2051017.
  • Coester, C.J., et al., 2000. Gelatin nanoparticles by two step desolvation–a new preparation method, surface modifications and cell uptake. Journal of microencapsulation, 17 (2), 187–193. doi:10.1080/026520400288427.
  • Croft, K.D., 2016. Dietary polyphenols: Antioxidants or not? Archives of biochemistry and biophysics, 595, 120–124. doi:10.1016/j.abb.2015.11.014.
  • Crozier, A., Jaganath, I.B., and Clifford, M.N., 2009. Dietary phenolics: chemistry, bioavailability and effects on health. Natural product reports, 26 (8), 1001–1043. doi:10.1039/b802662a.
  • Danaei, M., et al., 2018. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 10 (2), 57. doi:10.3390/pharmaceutics10020057.
  • Egbuna, C., et al., 2021. Bioactive compounds effective against type 2 diabetes mellitus: A systematic review. Current topics in medicinal chemistry, 21 (12), 1067–1095. doi:10.2174/18734294MTE1ENjAgx.
  • Emmulo, E., et al., 2021. Use of water and ethanol extracts from wine grape seed pomace to prepare an antioxidant toothpaste. Journal of the science of food and agriculture, 101 (14), 5813–5818. doi:10.1002/jsfa.11232.
  • Fang, Z., and Bhandari, B., 2010. Encapsulation of polyphenols – A review. Trends in food science & technology, 21 (10), 510–523. doi:10.1016/j.tifs.2010.08.003.
  • Farris, S., Song, J., and Huang, Q., 2010. Alternative reaction mechanism for the cross-linking of gelatin with glutaraldehyde. Journal of agricultural and food chemistry, 58 (2), 998–1003. doi:10.1021/jf9031603.
  • Forouhi, N.G., et al., 2018. Dietary and nutritional approaches for prevention and management of type 2 diabetes. BMJ, 361, k2234. doi:10.1136/bmj.k2234.
  • Furman, B.L., et al., 2020. Reduction of blood glucose by plant extracts and their use in the treatment of diabetes mellitus; discrepancies in effectiveness between animal and human studies. Journal of ethnopharmacology, 247, 112264. doi:10.1016/j.jep.2019.112264.
  • Gorantla, S., et al., 2022. Recent advances in nanocarriers for nutrient delivery. Drug delivery and translational research, 12 (10), 2359–2384. doi:10.1007/s13346-021-01097-z.
  • Hani, N., et al., 2016. Characterization of gelatin nanoparticles encapsulated with Moringa oleifera bioactive extract. International journal of food science & technology, 51 (11), 2327–2337. doi:10.1111/ijfs.13211.
  • Hathout, R.M., and Metwally, A.A., 2019. Gelatin nanoparticles. Methods in molecular biology, 2000, 71–78. doi:10.1007/978-1-4939-9516-5_6.
  • Horakova, O., et al., 2019. Metformin acutely lowers blood glucose levels by inhibition of intestinal glucose transport. Scientific reports, 9 (1), 6156. doi:10.1038/s41598-019-42531-0.
  • Hu, F., et al., 2021. Nanomedicine of plant origin for the treatment of metabolic disorders. Frontiers in bioengineering and biotechnology, 9, 811917. doi:10.3389/fbioe.2021.811917.
  • Husna, F., et al., 2018. Anti-diabetic potential of Murraya koenigii (l.) and its antioxidant capacity in nicotinamide-streptozotocin induced diabetic rats. Drug research, 68 (11), 631–636.), doi:10.1055/a-0620-8210.
  • International Diabetes Federation (IDF). 2021. IDF diabetes atlas. Belgium: International Diabetes Federation.
  • Ito, T., et al., 2012. Quantification of polyphenols and pharmacological analysis of water and ethanol-based extracts of cultivated agarwood leaves. Journal of nutritional science and vitaminology, 58 (2), 136–142. doi:10.3177/jnsv.58.136.
  • Jeyashanthi, N., and Ashok, V., 2010. Anti-oxidative effect of Cassia auriculata on streptozotocin induced diabetic rats. Indian journal of clinical biochemistry: IJCB, 25 (4), 429–434. doi:10.1007/s12291-010-0040-z.
  • Kesari, A.N., Gupta, R.K., and Watal, G., 2005. Hypoglycemic effects of Murraya koenigii on normal and alloxan-diabetic rabbits. Journal of ethnopharmacology, 97 (2), 247–251. doi:10.1016/j.jep.2004.11.006.
  • Kulandaivelu, K., and Mandal, A.K.A., 2017. Improved bioavailability and pharmacokinetics of tea polyphenols by encapsulation into gelatin nanoparticles. IET nanobiotechnology, 11 (4), 469–476. doi:10.1049/iet-nbt.2016.0147.
  • Kuo, F.Y., et al., 2021. Oral glucose tolerance test in diabetes, the old method revisited. World journal of diabetes, 12 (6), 786–793. doi:10.4239/wjd.v12.i6.786.
  • Kwon, M.C., et al., 2012. Enhancement of the skin-protective activities of Centella asiatica L. Urban by a nano-encapsulation process. Journal of biotechnology, 157 (1), 100–106. doi:10.1016/j.jbiotec.2011.08.025.
  • Latha, M., and Pari, L., 2003. Antihyperglycaemic effect of Cassia auriculata in experimental diabetes and its effects on key metabolic enzymes involved in carbohydrate metabolism. Clinical and experimental pharmacology & physiology, 30 (1-2), 38–43. doi:10.1046/j.1440-1681.2003.03785.x.
  • Le, Y., Wang, B., and Xue, M., 2022. Nutraceuticals use and type 2 diabetes mellitus. Current opinion in pharmacology, 62, 168–176. doi:10.1016/j.coph.2021.12.004.
  • Lu, Y., Kim, S., and Park, K., 2011. In vitro-in vivo correlation: perspectives on model development. International journal of pharmaceutics, 418 (1), 142–148. doi:10.1016/j.ijpharm.2011.01.010.
  • Machado, A.R., et al., 2019. Liposomes loaded with phenolic extracts of Spirulina LEB-18: Physicochemical characterization and behavior under simulated gastrointestinal conditions. Food research international, 120, 656–667. doi:10.1016/j.foodres.2018.11.023.
  • Magne, T.M., et al., 2023. Nano-nutraceuticals for health: Principles and applications. Revista brasileira de farmacognosia: orgao oficial da sociedade brasileira de farmacognosia, 33 (1), 73–88. doi:10.1007/s43450-022-00338-7.
  • Massella, D., et al., 2018. Overcoming the limits of flash nanoprecipitation: Effective loading of hydrophilic drug into polymeric nanoparticles with controlled structure. Polymers, 10 (10), 1092. doi:10.3390/polym10101092.
  • Medagama, A.B., and Senadhira, D., 2015. Use of household ingredients as complementary medicines for perceived hypoglycemic benefit among Sri Lankan diabetic patients; a cross-sectional survey. Journal of intercultural ethnopharmacology, 4 (2), 138–142. doi:10.5455/jice.20150202035223.
  • Mihiranie, S., et al., 2020. Indigenous and traditional foods of Sri Lanka. Journal of ethnic foods, 7 (1), 42. doi:10.1186/s42779-020-00075-z.
  • Munasinghe, M.A.A.K., et al., 2011. Blood sugar lowering effect of Coccinia grandis (l.) j. voigt: Path for a new drug for diabetes mellitus. Experimental diabetes research, 2011, 978762–978764. doi:10.1155/2011/978762.
  • Nair, A.B., and Jacob, S., 2016. A simple practice guide for dose conversion between animals and human. Journal of basic and clinical pharmacy, 7 (2), 27–31. doi:10.4103/0976-0105.177703.
  • Nakatani, N., 2000. Phenolic antioxidants from herbs and spices. BioFactors (oxford, England), 13 (1-4), 141–146. doi:10.1002/biof.5520130123.
  • Nambirajan, G., et al., 2018. Evaluation of antidiabetic activity of bud and flower of Avaram Senna (Cassia auriculata L.) In high fat diet and streptozotocin induced diabetic rats. Biomedicine & pharmacotherapy, 108, 1495–1506. doi:10.1016/j.biopha.2018.10.007.
  • Naveen, J., and Baskaran, V., 2018. Antidiabetic plant-derived nutraceuticals: A critical review. European journal of nutrition, 57 (4), 1275–1299. doi:10.1007/s00394-017-1552-6.
  • Nawirska-Olszańska, A., et al., 2022. Chemical characteristics of ethanol and water extracts of black alder (Alnus glutinosa l.) acorns and their antibacterial, anti-fungal and antitumor properties. Molecules, 27 (9), 2804. doi:10.3390/molecules27092804.
  • Pal, A., Bajpai, J., and Bajpai, A.K., 2018. Easy fabrication and characterization of gelatin nanocarriers and in vitro investigation of swelling controlled release dynamics of paclitaxel. Polymer bulletin, 75 (10), 4691–4711. doi:10.1007/s00289-018-2291-4.
  • Pandey, J., et al., 2014. Murraya koenigii (L.) Spreng. ameliorates insulin resistance in dexamethasone-treated mice by enhancing peripheral insulin sensitivity. Journal of the science of food and agriculture, 94 (11), 2282–2288. doi:10.1002/jsfa.6555.
  • Pandey, K.B., and Rizvi, S.I., 2009. Plant polyphenols as dietary antioxidants in human health and disease. Oxidative medicine and cellular longevity, 2 (5), 270–278. doi:10.4161/oxim.2.5.9498.
  • Pari, L., and Latha, M., 2002. Antidiabetic activity of Cassia auriculata flowers: Effect on lipid peroxidation in streptozotocin diabetes rats. Pharmaceutical biology, 40 (7), 512–517. doi:10.1076/phbi.40.7.512.14683.
  • Piacentini, E., 2016. Encapsulation efficiency. In: E. Drioli & L. Giorno, eds. Encyclopedia of Membranes. Berlin, Heidelberg: Springer Berlin Heidelberg, 706–707.
  • Polia, F., et al., 2022. Technological and biotechnological processes to enhance the bioavailability of dietary (poly)phenols in humans. Journal of agricultural and food chemistry, 70 (7), 2092–2107. doi:10.1021/acs.jafc.1c07198.
  • Ramkissoon, J.S., et al., 2013. Antioxidant and anti-glycation activities correlates with phenolic composition of tropical medicinal herbs. Asian pacific journal of tropical medicine, 6 (7), 561–569. doi:10.1016/S1995-7645(13)60097-8.
  • Reboredo, C., et al., 2022. Oral administration of zein-based nanoparticles reduces glycemia and improves glucose tolerance in rats. International journal of pharmaceutics, 628, 122255. doi:10.1016/j.ijpharm.2022.122255.
  • Saha, A., and Mazumder, S., 2013. An aqueous extract of Murraya koenigii leaves induces paraoxonase 1 activity in streptozotocin induced diabetic mice. Food & function, 4 (3), 420–425. doi:10.1039/c2fo30193h.
  • Sayyed-Alangi, S.Z., and Nematzadeh, M., 2019. Formulation, development and evaluation of bifunctionalized nanoliposomes containing Trifolium resupinatum sprout methanolic extract: as effective natural antioxidants on the oxidative stability of soybean oil. BMC chemistry, 13 (1), 77. doi:10.1186/s13065-019-0594-7.
  • Senadheera, A.S.S.P., and Ekanayake, S., 2013. Green leafy porridges: How good are they in controlling glycaemic response? International journal of food sciences and nutrition, 64 (2), 169–174. doi:10.3109/09637486.2012.710895.
  • Seo, Y.C., et al., 2011. Enhanced immunomodulatory activity of gelatin-encapsulated Rubus coreanus Miquel nanoparticles. International journal of molecular sciences, 12 (12), 9031–9056. doi:10.3390/ijms12129031.
  • Shao, X.R., et al., 2015. Independent effect of polymeric nanoparticle zeta potential/surface charge, on their cytotoxicity and affinity to cells. Cell proliferation, 48 (4), 465–474. doi:10.1111/cpr.12192.
  • Shen, S., et al., 2017. High drug-loading nanomedicines: progress, current status, and prospects. International journal of nanomedicine, 12, 4085–4109. doi:10.2147/IJN.S132780.
  • Shutava, T.G., et al., 2009. Layer-by-layer-coated gelatin nanoparticles as a vehicle for delivery of natural polyphenols. ACS nano, 3 (7), 1877–1885. doi:10.1021/nn900451a.
  • Siddhuraju, P., and Becker, K., 2003. Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves. Journal of agricultural and food chemistry, 51 (8), 2144–2155. doi:10.1021/jf020444+.
  • Siddiqui, S.A., et al., 2020. Biological efficacy of zinc oxide nanoparticles against diabetes: a preliminary study conducted in mice. Bioscience reports, 40 (4), BSR20193972. doi:10.1042/BSR20193972.
  • Singleton, V. L., Orthofer, R., and Lamuela-Raventós, R. M., 1999. [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 299, 152–178.
  • Song, X., et al., 2019. Preparation and characterization of general-purpose gelatin-based co-loading flavonoids nano-core structure. Scientific reports, 9 (1), 6365. doi:10.1038/s41598-019-42909-0.
  • Srinivasan, K., 2005. Plant foods in the management of diabetes mellitus: Spices as beneficial antidiabetic food adjuncts. International journal of food sciences and nutrition, 56 (6), 399–414. doi:10.1080/09637480500512872.
  • Sudha, P., et al., 2011. Potent α-amylase inhibitory activity of Indian Ayurvedic medicinal plants. BMC complementary and alternative medicine, 11, 5. doi:10.1186/1472-6882-11-5.
  • Surana, S.J., et al., 2008. Antihyperglycemic activity of various fractions of Cassia auriculata Linn. in alloxan diabetic rats. Indian journal of pharmaceutical sciences, 70 (2), 227–229. doi:10.4103/0250-474X.41461.
  • Tai, M.M., 1994. A mathematical model for the determination of total area under glucose tolerance and other metabolic curves. Diabetes care, 17 (2), 152–154. doi:10.2337/diacare.17.2.152.
  • Tembhurne, S.V., and Sakarkar, D.M., 2010. Influence of Murraya koenigii on experimental model of diabetes and progression of neuropathic pain. Research in pharmaceutical sciences, 5 (1), 41–47.
  • Thakur, L., et al., 2011. Novel approaches for stability improvement in natural medicines. Pharmacognosy reviews, 5 (9), 48–54. doi:10.4103/0973-7847.79099.
  • Tietel, Z., et al., 2021. Metabolomics of Cassia auriculata plant parts (leaf, flower, bud) and their antidiabetic medicinal potentials. Omics: a journal of integrative biology, 25 (5), 294–301. doi:10.1089/omi.2021.0010.
  • Trinder, P., 1969. Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen. Journal of clinical pathology, 22 (2), 158–161. doi:10.1136/jcp.22.2.158.
  • Upputuri, R.T.P., and Mandal, A.K.A., 2017. Sustained release of green tea polyphenols from liposomal nanoparticles; release kinetics and mathematical modelling. Iranian journal of biotechnology, 15 (4), 277–283.
  • Wasana, K.G.P., et al., 2021. Efficacy and safety of a herbal drug of Coccinia grandis (Linn.) Voigt in patients with type 2 diabetes mellitus: A double blind randomized placebo controlled clinical trial. Phytomedicine, 81, 153431. doi:10.1016/j.phymed.2020.153431.
  • Wickramasinghe, A.S.D., Attanayake, A.P., and Kalansuriya, P., 2022. Biochemical characterization of high-fat diet fed and low dose streptozotocin induced diabetic Wistar rat model. Journal of pharmacological and toxicological methods, 113, 107144. doi:10.1016/j.vascn.2021.107144.
  • Yang, X.N., and Kang, S.C., 2012. In vitro antioxidant activity of the water and ethanol extracts of Forsythia Koreana flowers. Natural product research, 26 (4), 375–379. doi:10.1080/14786419.2010.541880.
  • Yao, H., et al., 2020. Preparation of encapsulated resveratrol liposome thermosensitive gel and evaluation of its capability to repair sciatic nerve injury in rats. Journal of nanomaterials, 2020, 1–13. doi:10.1155/2020/2840162.
  • Zhang, L., Han, Z., and Granato, D., 2021. [1] - Polyphenols in foods: Classification, methods of identification, and nutritional aspects in human health. Advances in Food and Nutrition Research, 98, 1–33.
  • Zhang, Z., et al., 2022. Polyphenols as plant-based nutraceuticals: Health effects, encapsulation, nano-delivery, and application. Foods, 11 (15), 2189. doi:10.3390/foods11152189.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.