83
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Spray dried acerola (Malpighia emarginata DC) juice particles to produce phytochemical-rich starch-based edible films

, , &
Pages 112-126 | Received 13 Sep 2023, Accepted 29 Jan 2024, Published online: 12 Feb 2024

References

  • Ahumada, J., et al., 2017. Compuestos bioactivos de níspero (Eriobotrya japonica lindl) cv. golden nugget y análisis de su funcionalidad in vitro para el manejo de la hiperglicemia. Ciencia e investigacion agraria, 44 (3), 272–284. doi:10.7764/rcia.v44i3.1816.
  • Al-Qurashi, A.D., et al., 2017. Postharvest chitosan, trans-resveratrol and glycine betaine dipping affect quality, antioxidant compounds, free radical scavenging capacity and enzymes activities of “Sukkari” bananas during shelf life. Scientia horticulturae, 219, 173–181. doi:10.1016/j.scienta.2017.02.046.
  • Ao, L., et al., 2021. Characterization of soybean protein isolate-food polyphenol interaction via virtual screening and experimental studies. Foods, 10 (11), 2813. doi:10.3390/foods10112813.
  • Araujo-Díaz, S.B., et al., 2017. Evaluation of the physical properties and conservation of the antioxidants content, employing inulin and maltodextrin in the spray drying of blueberry juice. Carbohydrate polymers, 167, 317–325. doi:10.1016/j.carbpol.2017.03.065.
  • Aryee, A.N.A., Agyei, D., and Udenigwe, C.C., 2018. Impact of processing on the chemistry and functionality of food proteins. Proteins in food processing, 1, 27–45. doi:10.1016/B978-0-08-100722-8.00003-6.
  • Bazaria, B., and Kumar, P., 2016. Effect of whey protein concentrate as drying aid and drying parameters on physicochemical and functional properties of spray dried beetroot juice concentrate. Food bioscience, 14, 21–27. doi:10.1016/j.fbio.2015.11.002.
  • Bhusari, S.N., et al., 2014. Effect of carrier agents on physical and microstructural properties of spray dried tamarind pulp powder. Powder technology, 266, 354–364. doi:10.1016/j.powtec.2014.06.038.
  • Čakarević, J., et al., 2019. Encapsulation of beetroot juice: a study on the application of pumpkin oil cake protein as new carrier agent. Journal of microencapsulation, 37 (2), 121–133. doi:10.1080/02652048.2019.1705408.
  • Carmo, E.L., et al., 2018. Stability of spray-dried beetroot extract using oligosaccharides and whey proteins. Food chemistry, 249, 51–59. doi:10.1016/j.foodchem.2017.12.076.
  • Castro-Muñoz, R., Barragán-Huerta, B.E., and Yáñez-Fernández, J., 2015. Use of gelatin-maltodextrin composite as an encapsulation support for clarified juice from purple cactus pear (Opuntia stricta). LWT - Food science and technology, 62 (1), 242–248. doi:10.1016/j.lwt.2014.09.042.
  • Chollakup, R., et al., 2020. Antioxidant and antibacterial activities of cassava starch and whey protein blend films containing rambutan peel extract and cinnamon oil for active packaging. LWT, 130, 109573. doi:10.1016/j.lwt.2020.109573.
  • Correia, R., et al., 2017. Wild blueberry polyphenol-protein food ingredients produced by three drying methods: Comparative physico-chemical properties, phytochemical content, and stability during storage. Food chemistry, 235, 76–85. doi:10.1016/j.foodchem.2017.05.042.
  • De Oliveira, G.L.R., et al., 2021. Antioxidant stability enhancement of carotenoid rich-extract from Cantaloupe melon (Cucumis melo L.) nanoencapsulated in gelatin under different storage conditions. Food chemistry, 348, 129055. doi:10.1016/j.foodchem.2021.129055
  • Djordjevic, T.M., Šiler-Marinkovic, S.S., and Dimitrijevic-Brankovic, S.I., 2012. Antioxidant activity and total phenolic content in some cereals and legumes. International journal of food properties, 14 (1), 175–184. doi:10.1080/10942910903160364.
  • Fang, Z., and Bhandari, B., 2012. Comparing the efficiency of protein and maltodextrin on spray drying of bayberry juice. Food research international, 48 (2), 478–483. doi:10.1016/j.foodres.2012.05.025.
  • Feng, Y., et al., 2023. Collagen hydrolysates improve the efficiency of sodium alginate-encapsulated tea polyphenols in beads and the storage stability after commercial sterilization. International journal of biological macromolecules, 231, 123314. doi:10.1016/j.ijbiomac.2023.123314.
  • Ferreira, R.R., Souza, A.G., and Rosa, D.S., 2021. Essential oil-loaded nanocapsules and their application on PBAT biodegradable films. Journal of molecular liquids, 337, 116488. doi:10.1016/j.molliq.2021.116488.
  • Filho, E., and do, N., et al., 2022. Microencapsulation of acerola (Malpighia emarginata DC) and ciriguela (Spondias purpurea L) mixed juice with different wall materials. Food chemistry advances, 1, 100046. doi:10.1016/j.focha.2022.100046.
  • Food and Agriculture Organization, 2002. Food and Agriculture Organization (FAO). Available from: http://www.fao.org/3/y2809e/y2809e0c.htm [Accessed 20 February 2023].
  • GEA Niro Research Laboratory, 2005. Analytical methods dry milk products., a 14 a - hygroscopicity. Available from: http://www.niro.com/methods [Accessed 20 January 2023].
  • Grace, M.H., et al., 2013. Stable binding of alternative protein-enriched food matrices with concentrated cranberry bioflavonoids for functional food applications. Journal of agricultural and food chemistry, 61 (28), 6856–6864. doi:10.1021/jf401627m.
  • Grace, M.H., et al., 2021. Whey and soy proteins as wall materials for spray drying rosemary : Effects on polyphenol composition, antioxidant activity, bioaccessibility after in vitro gastrointestinal digestion and stability during storage. LWT, 149, 111901. doi:10.1016/j.lwt.2021.111901.
  • Grace, M.H., et al., 2022. Spray-dried and freeze-dried protein-spinach particles; effect of drying technique and protein type on the bioaccessibility of carotenoids, chlorophylls, and phenolics. Food chemistry, 388, 133017. doi:10.1016/j.foodchem.2022.133017.
  • Hagerman, A.E., and Butler, L.G., 1981. The specificity of proanthocyanidin-protein interactions. The journal of biological chemistry, 256 (9), 4494–4497. doi:10.1016/S0021-9258(19)69462-7.
  • Hanani, Z.A.N., et al., 2018. Effect of different fruit peels on the functional properties of gelatin/polyethylene bilayer films for active packaging. Food packaging and shelf life, 18, 201–211. doi:10.1016/j.fpsl.2018.11.004.
  • Hoskin, R.T., et al., 2019. Blueberry polyphenol-protein food ingredients: the impact of spray drying on the in vitro antioxidant activity, anti-inflammatory markers, glucose metabolism and fibroblast migration. Food chemistry, 280, 187–194. doi:10.1016/j.foodchem.2018.12.046.
  • Hoskin, R.T., et al., 2022. Continuous flow microwave-assisted aqueous extraction of pomace phytoactives for production of protein-polyphenol particles and a protein-enriched ready-to-drink beverage. Future foods, 5, 100137. doi:10.1016/j.fufo.2022.100137.
  • Hoskin, R.T., et al., 2023. Spray-drying microencapsulation of blackcurrant and cocoa polyphenols using underexplored plant-based protein sources. Journal of food science, 88 (6), 2665–2678. doi:10.1111/1750-3841.16590.
  • Jafari, S., et al., 2023. A decade overview and prospect of spray drying encapsulation of bioactives from fruit products : characterization, food application and in vitro gastrointestinal digestion. Food hydrocolloids. 134, 108068. doi:10.1016/j.foodhyd.2022.108068.
  • Júnior, S.D., and de, O., et al., 2021. Exploiting films based on pectin extracted from yellow mombin (Spondias mombin L.) peel for active food packaging. Biomass conversion and biorefinery, 13 (3), 1565–1579. doi:10.1007/s13399-021-01321-3.
  • Khalifa, I., et al., 2019. Maltodextrin or gum Arabic with whey proteins as wall-material blends increased the stability and physiochemical characteristics of mulberry microparticles. Food bioscience, 31 (1), 100445. doi:10.1016/j.fbio.2019.100445.
  • Leites, L.C., et al., 2021. Influence of the incorporation form of waste from the production of orange juice in the properties of cassava starch-based films. Food hydrocolloids. 117, 106730. doi:10.1016/j.foodhyd.2021.106730.
  • León-López, A., et al., 2019. Hydrolyzed collagen—sources and applications. Molecules, 24 (22), 4031. doi:10.3390/molecules24224031.
  • Liu, W., et al., 2016. On enhancing the solubility of curcumin by microencapsulation in whey protein isolate via spray drying. Journal of food engineering, 169, 189–195. doi:10.1016/j.jfoodeng.2015.08.034.
  • Lu, W., et al., 2021. Choosing the appropriate wall materials for spray-drying microencapsulation of natural bioactive ingredients : taking phenolic compounds as examples. Powder technology, 394, 562–574. doi:10.1016/j.powtec.2021.08.082.
  • Luchese, C.L., et al., 2015. Synthesis and characterization of biofilms using native and modified starch pinhão. Food hydrocolloids. 45, 203–210. doi:10.1016/j.foodhyd.2014.11.015.
  • Luchese, C.L., Spada, J.C., and Tessaro, I.C., 2017. Starch content affects physicochemical properties of corn and cassava starch-based films. Industrial crops and products, 109 (May), 619–626. doi:10.1016/j.indcrop.2017.09.020.
  • Maniglia, B.C., et al., 2017. Bioactive films based on babassu mesocarp flour and starch. Food hydrocolloids, 70, 383–391. doi:10.1016/j.foodhyd.2017.04.022.
  • Meng, Y., and Cloutier, S., 2014. Gelatin and other proteins for microencapsulation. In: A.G. Gaonkar et al., eds. Microencapsulation in the food industry. Nova Scotia: Academic Press, 227–239. doi:10.1016/B978-0-12-404568-2.00020-0.
  • Mezadri, T., et al., 2008. Antioxidant compounds and antioxidant activity in acerola (Malpighia emarginata DC.) fruits and derivatives. Journal of food composition and analysis, 21 (4), 282–290. doi:10.1016/j.jfca.2008.02.002.
  • Mezadri, T., Pérez-GáLvez, A., and Hornero-Méndez, D., 2005. Carotenoid pigments in acerola fruits (Malpighia emarginata DC.) and derived products. European food research and technology, 220 (1), 63–69. doi:10.1007/s00217-004-1042-y.
  • Mishra, P., Brahma, A., and Seth, D., 2017. Physicochemical, functionality and storage stability of hog plum (Spondia pinnata) juice powder produced by spray drying. Journal of food science and technology, 54 (5), 1052–1061. doi:10.1007/s13197-017-2531-x28416854
  • Miskinis, R.D.A., Nascimento, L. Á. d., and Colussi, R., 2023. Bioactive compounds from acerola pomace : a review. Food chemistry, 404 (Pt A), 134613. doi:10.1016/j.foodchem.2022.134613.
  • Moraes, F.P., et al., 2017. Freeze dried acerola (Malpighia emarginata) pulp and pomace: physicochemical attributes, phytochemical content and stability during storage. Journal of food industry, 1 (1), 17. doi:10.5296/jfi.v1i1.11795.
  • Narciso, J.O., and Brennan, C., 2018. Whey and pea protein fortification of rice starches : effects on protein and starch digestibility and starch pasting properties. Starch - Stärke, 70 (9-10), 1–6. doi:10.1002/star.201700315.
  • Nogueira, G.F., Fakhouri, F.M., and Oliveira, R. A. D., 2019a. Incorporation of spray dried and freeze dried blackberry particles in edible films: morphology, stability to pH, sterilization and biodegradation. Food packaging and shelf life, 20 (July 2018), 100313. doi:10.1016/j.fpsl.2019.100313.
  • Nogueira, G.F., et al., 2019b. Bioactive films of arrowroot starch and blackberry pulp: Physical, mechanical and barrier properties and stability to pH and sterilization. Food chemistry, 275, 417–425. doi:10.1016/j.foodchem.2018.09.054.
  • Nouri, L., and Nafchi, A.M., 2014. Antibacterial, mechanical, and barrier properties of sago starch film incorporated with betel leaves extract. International journal of biological macromolecules, 66, 254–259. doi:10.1016/j.ijbiomac.2014.02.044.
  • Nunes, G.L., et al., 2015. Microencapsulation of freeze concentrated Ilex paraguariensis extract by spray drying. Journal of food engineering, 151, 60–68. doi:10.1016/j.jfoodeng.2014.10.031.
  • Oliveira, L. A. D., 2010. Manual de Laboratório: Análises Físico-químicas de Frutas e Mandioca. Embrapa, Vicosa: UFV.
  • Pan, L.-H., et al., 2022. Microencapsulation of blueberry anthocyanins by spray drying with soy protein isolates/high methyl pectin combination: physicochemical properties, release behavior in vitro and storage stability. Food chemistry, 395, 133626. doi:10.1016/j.foodchem.2022.133626.
  • Patras, A., Tiwari, B.K., and Brunton, N.P., 2011. Influence of blanching and low temperature preservation strategies on antioxidant activity and phytochemical content of carrots, green beans and broccoli. LWT - Food science and technology, 44 (1), 299–306. doi:10.1016/j.lwt.2010.06.019.
  • Piñeros-Hernandez, D., et al., 2016. Edible cassava starch films carrying rosemary antioxidant extracts for potential use as active food packaging. Food hydrocolloids, 63, 488–495. doi:10.1016/j.foodhyd.2016.09.034.
  • Qin, Y., et al., 2020a. Comparison of the physical and functional properties of starch/polyvinyl alcohol films containing anthocyanins and/or betacyanins. International journal of biological macromolecules, 163, 898–909. doi:10.1016/j.ijbiomac.2020.07.065.
  • Qin, Y., et al., 2020b. Development of active and intelligent packaging by incorporating betalains from red pitaya (Hylocereus polyrhizus) peel into starch/polyvinyl alcohol films. Food hydrocolloids, 100 (August 2019), 105410. doi:10.1016/j.foodhyd.2019.105410.
  • Queiroz, E.L., et al., 2021. Chemical and mechanical properties of bioactive cassava starch film with added jamelon extract (Syzygium cumini L.). Brazilian journal of food technology, 24, 1–11. doi:10.1590/1981-6723.21620.
  • Rama, G.R., et al., 2021. Ricotta whey supplemented with gelatin and collagen for the encapsulation of probiotic lactic acid bacteria. Food science and technology, 41 (3), 576–586. doi:10.1590/fst.19720.
  • Rashid, R., et al., 2022. Nanoencapsulation of pomegranate peel extract using maltodextrin and whey protein isolate. Characterisation, release behaviour and antioxidant potential during simulated invitro digestion. Food bioscience, 50, 102135. doi:10.1016/j.fbio.2022.102135.
  • Ravichandran, K.S., et al., 2023. Spray drying to produce novel phytochemical-rich ingredients from juice and pomace of American elderberry. Food bioscience, 55, 102981. doi:10.1016/j.fbio.2023.102981.
  • Reinaldo, S., et al., 2021. Influence of grape and acerola residues on the antioxidant, physicochemical and mechanical properties of cassava starch biocomposites. Polymer testing, 93, 107015. doi:10.1016/j.polymertesting.2020.107015.
  • Rezende, Y.R.R.S., Nogueira, J.P., and Narain, N., 2018. Microencapsulation of extracts of bioactive compounds obtained from acerola (Malpighia emarginata DC) pulp and residue by spray and freeze drying: chemical, morphological and chemometric characterization. Food chemistry, 254, 281–291. doi:10.1016/j.foodchem.2018.02.026.
  • Rohasmizah, H., and Azizah, M., 2022. Pectin-based edible coatings and nanoemulsion for the preservation of fruits and vegetables: a review. Applied food research, 2 (2), 100221. doi:10.1016/j.afres.2022.100221.
  • Salin, N.S.M., et al., 2022. Effect of storage temperatures on physico-chemicals, phytochemicals and antioxidant properties of watermelon juice (Citrullus lanatus). Metabolites, 12 (1), 75. doi:10.3390/metabo12010075.
  • Sganzerla, W.G., et al., 2021. Bioactive and pH-sensitive films based on carboxymethyl cellulose and blackberry (Morus nigra L.) anthocyanin-rich extract : a perspective coating material to improve the shelf life of cherry tomato (Solanum lycopersicum L. var. cerasiforme). Biocatalysis and agricultural biotechnology, 33 (March), 101989. doi:10.1016/j.bcab.2021.101989.
  • Silva, E. S. d., Nunes, A.O., and Hoskin, R.T., 2023. Ultrasound-assisted polyphenol extraction of acerola and jambolan pomaces: comparison of extraction protocols, kinetic modeling, and life cycle assessment. Chemical engineering and processing - process intensification, 191, 109443. doi:10.1016/j.cep.2023.109443.
  • Stinco, C.M., et al., 2015. Hydrophilic antioxidant compounds in orange juice from different fruit cultivars : composition and antioxidant activity evaluated by chemical and cellular based (Saccharomyces cerevisiae) assays. Journal of food composition and analysis, 37, 1–10. doi:10.1016/j.jfca.2014.09.006.
  • Strauch, R.C., and Lila, M.A., 2021. Pea protein isolate characteristics modulate functional properties of pea protein – cranberry polyphenol particles. Food science & nutrition, 9 (7), 3740–3751. doi:10.1002/fsn3.2335.
  • Tao, Y., et al., 2017. Combining various wall materials for encapsulation of blueberry anthocyanin extracts: optimization by artificial neural network and genetic algorithm and a comprehensive analysis of anthocyanin powder properties. Powder technology, 311, 77–87. doi:10.1016/j.powtec.2017.01.078.
  • Tessaro, L., et al., 2021. Gelatin and/or chitosan-based films activated with “Pitanga” (Eugenia uniflora L.) leaf hydroethanolic extract encapsulated in double emulsion. Food hydrocolloids, 113, 106523. doi:10.1016/j.foodhyd.2020.106523.
  • Wang, H., et al., 2021. Edible films from chitosan-gelatin : physical properties and food packaging application. Food bioscience, 40 (September 2020), 100871. doi:10.1016/j.fbio.2020.100871.
  • Wang, R., et al., 2023. A comparative study of binding interactions between proteins and flavonoids in Angelica keiskei : stability, α-glucosidase inhibition and interaction mechanisms. International journal of molecular sciences, 24 (7), 6582. doi:10.3390/ijms24076582.
  • Xu, Y.Y., et al., 2012. Investigation of relationship between surface tension of feed solution containing various proteins and surface composition and morphology of powder particles. Drying technology, 30 (14), 1548–1562. doi:10.1080/07373937.2012.696571.
  • Yepes, O.O., et al., 2019. Influence of process (extrusion/thermo-compression, casting) and lentil protein content on physicochemical properties of starch films. Carbohydrate polymers, 208, 221–231. doi:10.1016/j.carbpol.2018.12.030.
  • Zhang, K., et al., 2020. Novel pH-sensitive films based on starch/polyvinyl alcohol and food anthocyanins as a visual indicator of shrimp deterioration. International journal of biological macromolecules, 145, 768–776. doi:10.1016/j.ijbiomac.2019.12.159.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.