97
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Astaxanthin-loaded alginate-chitosan gel beads activate Nrf2 and pro-apoptotic signalling pathways against oxidative stress

, , , , , & show all
Pages 140-156 | Received 23 Apr 2023, Accepted 12 Feb 2024, Published online: 27 Feb 2024

References

  • Aceituno-Medina, M., et al., 2015. Improved antioxidant capacity of quercetin and ferulic acid during in-vitro digestion through encapsulation within food-grade electrospun fibers. Journal of functional foods, 12, 332–341. doi: 10.1016/j.jff.2014.11.028.
  • Ahuja, G. and Pathak, K., 2009. Porous carriers for controlled/modulated drug delivery. Indian journal of pharmaceutical sciences, 71 (6), 599–607. doi: 10.4103/0250-474X.59540.
  • Alioghli Ziaei, A., et al., 2023. In situ forming alginate/gelatin hybrid hydrogels containing doxorubicin loaded chitosan/AuNPs nanogels for the local therapy of breast cancer. International journal of biological macromolecules, 246, 125640. doi: 10.1016/j.ijbiomac.2023.125640.
  • Amiryaghoubi, N., et al., 2020. Injectable thermosensitive hybrid hydrogel containing graphene oxide and chitosan as dental pulp stem cells scaffold for bone tissue engineering. International journal of biological macromolecules, 162, 1338–1357. doi: 10.1016/j.ijbiomac.2020.06.138.
  • Amiryaghoubi, N., et al., 2022. The design of polycaprolactone-polyurethane/chitosan composite for bone tissue engineering. Colloids and surfaces A: physicochemical and engineering aspects, 634, 127895. doi: 10.1016/j.colsurfa.2021.127895.
  • Aqil, F., et al., 2013. Bioavailability of phytochemicals and its enhancement by drug delivery systems. Cancer letters, 334 (1), 133–141. doi: 10.1016/j.canlet.2013.02.032.
  • Breder, J.S.C., et al., 2020. Enhancement of cellular activity in hyperglycemic mice dermal wounds dressed with chitosan-alginate membranes. Brazilian journal of medical and biological research = revista brasileira de pesquisas medicas e biologicas, 53 (1), e8621. doi: 10.1590/1414-431X20198621.
  • Bushkalova, R., et al., 2019. Alginate-chitosan PEC scaffolds: a useful tool for soft tissues cell therapy. International journal of pharmaceutics, 571, 118692. doi: 10.1016/j.ijpharm.2019.118692.
  • Casella, P., et al., 2020. Smart method for carotenoids characterization in Haematococcus pluvialis red phase and evaluation of astaxanthin thermal stability. Antioxidants, 9 (5), 9. doi: 10.3390/antiox9050422.
  • Chaijan, M., et al., 2021. Role of antioxidants on physicochemical properties and in vitro bioaccessibility of β-carotene loaded nanoemulsion under thermal and cold plasma discharge accelerated tests. Food chemistry, 339, 128157. doi: 10.1016/j.foodchem.2020.128157.
  • Chen, S.-C., et al., 2004. A novel pH-sensitive hydrogel composed of N,O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. Journal of controlled release: official journal of the controlled release society, 96 (2), 285–300. doi: 10.1016/j.jconrel.2004.02.002.
  • Chen, Z., et al., 2020. Kidney-targeted astaxanthin natural antioxidant nanosystem for diabetic nephropathy therapy. European journal of pharmaceutics and biopharmaceutics: official journal of arbeitsgemeinschaft fur pharmazeutische verfahrenstechnik e.V, 156, 143–154. doi: 10.1016/j.ejpb.2020.09.005.
  • Chintong, S., et al., 2019. In vitro antioxidant, antityrosinase, and cytotoxic activities of astaxanthin from shrimp waste. Antioxidants, 8, 1–11. doi: 10.3390/antiox8050128.
  • Chun, K.S., Kim, D.H., and Surh, Y.J., 2021. Role of reductive versus oxidative stress in tumor progression and anticancer drug resistance. Cells, 10 (4), 758. doi: 10.3390/cells10040758.
  • Cuadrado, A., et al., 2019. Therapeutic targeting of the NRF2 and KEAP1 partnership in chronic diseases. Nature reviews. Drug discovery, 18 (4), 295–317. doi: 10.1038/s41573-018-0008-x.
  • Daemi, H., Barikani, M., and Barmar, M., 2013. Compatible compositions based on aqueous polyurethane dispersions and sodium alginate. Carbohydrate polymers, 92 (1), 490–496. doi: 10.1016/j.carbpol.2012.09.046.
  • De Aguiar Saldanha Pinheiro, A.C., et al., 2023. Pulsed electric fields (PEF) and accelerated solvent extraction (ASE) for valorization of red (Aristeus antennatus) and camarote (Melicertus kerathurus) shrimp side streams: antioxidant and HPLC evaluation of the carotenoid astaxanthin recovery. Antioxidants, 12 (2), 12. doi: 10.3390/antiox12020406.
  • Egbujor, M.C., et al., 2021. Activation of Nrf2 signaling pathway by natural and synthetic chalcones: a therapeutic road map for oxidative stress. Expert review of clinical pharmacology, 14 (4), 465–480. doi: 10.1080/17512433.2021.1901578.
  • Eleftheriadou, D., et al., 2020. Redox-responsive nanobiomaterials-based therapeutics for neurodegenerative diseases. Small, 16 (43), e1907308. doi: 10.1002/smll.201907308.
  • Fernandes, C., et al., 2014. Nanotechnology and antioxidant therapy: an emerging approach for neurodegenerative diseases. Current medicinal chemistry, 21 (38), 4311–4327. doi: 10.2174/0929867321666140915141836.
  • Finkel, T., 2011. Signal transduction by reactive oxygen species. The journal of cell biology, 194 (1), 7–15. doi: 10.1083/jcb.201102095.
  • Foroutan, R., et al., 2018. Studying the physicochemical characteristics and metals adsorptive behavior of CMC-g-HAp/Fe3O4 nanobiocomposite. Journal of environmental chemical engineering, 6 (5), 6049–6058. doi: 10.1016/j.jece.2018.09.030.
  • Gibis, M., Rahn, N., and Weiss, J., 2013. Physical and oxidative stability of uncoated and chitosan-coated liposomes containing grape seed extract. Pharmaceutics, 5 (3), 421–433. doi: 10.3390/pharmaceutics5030421.
  • Gibis, M., Vogt, E., and Weiss, J., 2012. Encapsulation of polyphenolic grape seed extract in polymer-coated liposomes. Food & function, 3 (3), 246–254. doi: 10.1039/c1fo10181a.
  • González-Alvarez, M., González-Alvarez, I., and Bermejo, M., 2013. Hydrogels: an interesting strategy for smart drug delivery. Therapeutic delivery, 4 (2), 157–160. doi: 10.4155/tde.12.142.
  • Goshtasbi, H., et al., 2022. Impacts of oxidants and antioxidants on the emergence and progression of Alzheimer’s disease. Neurochemistry international, 153, 105268. doi: 10.1016/j.neuint.2021.105268.
  • Goshtasbi, H., et al., 2023. Harnessing microalgae as sustainable cellular factories for biopharmaceutical production. Algal research, 74, 103237. doi: 10.1016/j.algal.2023.103237.
  • Gotoh, T., Matsushima, K., and Kikuchi, K., 2004. Preparation of alginate-chitosan hybrid gel beads and adsorption of divalent metal ions. Chemosphere, 55 (1), 135–140. doi: 10.1016/j.chemosphere.2003.11.016.
  • Grammatikakis, I., Abdelmohsen, K., and Gorospe, M., 2017. Posttranslational control of HuR function. Wiley interdisciplinary reviews. RNA, 8, 1–15. doi: 10.1002/wrna.1372.
  • Gu, L., et al., 2023. Preparation and in vitro characterization studies of astaxanthin-loaded nanostructured lipid carriers with antioxidant properties. Journal of biomaterials applications, 38 (2), 292–301. doi: 10.1177/08853282231189779.
  • Gu, Y., et al., 2021. Curcumin nanoparticles attenuate lipotoxic injury in cardiomyocytes through autophagy and endoplasmic reticulum stress signaling pathways. Frontiers in pharmacology, 12, 571482. doi: 10.3389/fphar.2021.571482.
  • Guo, Y., et al., 2015. Epigenetic regulation of Keap1-Nrf2 signaling. Free radical biology & medicine, 88 (Pt B), 337–349. doi: 10.1016/j.freeradbiomed.2015.06.013.
  • Hammad, M., et al., 2023. Roles of oxidative stress and Nrf2 signaling in pathogenic and non-pathogenic cells: a possible general mechanism of resistance to therapy. Antioxidants, 12 (7), 12. doi: 10.3390/antiox12071371.
  • He, L., et al., 2020a. Alginate-based platforms for cancer-targeted drug delivery. BioMed research international, 2020, 1487259. doi: 10.1155/2020/1487259.
  • He, T., et al., 2020b. Chemical composition and anti-oxidant potential on essential oils of Thymus quinquecostatus Celak. from Loess Plateau in China, regulating Nrf2/Keap1 signaling pathway in zebrafish. Scientific reports, 10 (1), 11280. doi: 10.1038/s41598-020-68188-8.
  • Heng, N., et al., 2021. Dietary supplementation with natural astaxanthin from Haematococcus pluvialis improves antioxidant enzyme activity, free radical scavenging ability, and gene expression of antioxidant enzymes in laying hens. Poultry science, 100 (5), 101045. doi: 10.1016/j.psj.2021.101045.
  • Ionita, M., Pandele, M.A., and Iovu, H., 2013. Sodium alginate/graphene oxide composite films with enhanced thermal and mechanical properties. Carbohydrate polymers, 94 (1), 339–344. doi: 10.1016/j.carbpol.2013.01.065.
  • Javanbakht, S. and Shaabani, A., 2019. Encapsulation of graphene quantum dot-crosslinked chitosan by carboxymethylcellulose hydrogel beads as a pH-responsive bio-nanocomposite for the oral delivery agent. International journal of biological macromolecules, 123, 389–397. doi: 10.1016/j.ijbiomac.2018.11.118.
  • Karimi, M., et al., 2016. pH-Sensitive stimulus-responsive nanocarriers for targeted delivery of therapeutic agents. Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology, 8 (5), 696–716. doi: 10.1002/wnan.1389.
  • Kaundal, R.K., Datusalia, A.K., and Sharma, S.S., 2022. Posttranscriptional regulation of Nrf2 through miRNAs and their role in Alzheimer’s disease. Pharmacological research, 175, 106018. doi: 10.1016/j.phrs.2021.106018.
  • Kensler, T.W., Wakabayashi, N., and Biswal, S., 2007. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annual review of pharmacology and toxicology, 47 (1), 89–116. doi: 10.1146/annurev.pharmtox.46.120604.141046.
  • Kheiri, K., et al., 2022. Preparation and characterization of magnetic nanohydrogel based on chitosan for 5-fluorouracil drug delivery and kinetic study. International journal of biological macromolecules, 202, 191–198. doi: 10.1016/j.ijbiomac.2022.01.028.
  • Kohandel, Z., et al., 2021. Nrf2 a molecular therapeutic target for astaxanthin. Biomedicine & pharmacotherapy = biomedecine & pharmacotherapie, 137, 111374. doi: 10.1016/j.biopha.2021.111374.
  • Li, J., et al., 2017. Relief of oxidative stress and cardiomyocyte apoptosis by using curcumin nanoparticles. Colloids and surfaces. B, biointerfaces, 153, 174–182. doi: 10.1016/j.colsurfb.2017.02.023.
  • Li, L., et al., 2014. Nrf2/ARE pathway activation, HO-1 and NQO1 induction by polychlorinated biphenyl quinone is associated with reactive oxygen species and PI3K/AKT signaling. Chemico-biological interactions, 209, 56–67. doi: 10.1016/j.cbi.2013.12.005.
  • Lim, E.K., et al., 2013. Chitosan-based intelligent theragnosis nanocomposites enable pH-sensitive drug release with MR-guided imaging for cancer therapy. Nanoscale research letters, 8 (1), 467. doi: 10.1186/1556-276X-8-467.
  • Lupa, L., Voda, R., and Popa, A., 2018. Adsorption behavior of cesium and strontium onto chitosan impregnated with ionic liquid. Separation science and technology, 53 (7), 1107–1115. doi: 10.1080/01496395.2017.1313274.
  • Ma, H., et al., 2020. Astaxanthin from Haematococcus pluvialis ameliorates the chemotherapeutic drug (doxorubicin) induced liver injury through the Keap1/Nrf2/HO-1 pathway in mice. Food & function, 11 (5), 4659–4671. doi: 10.1039/c9fo02429h.
  • Ma, Q., 2013. Role of nrf2 in oxidative stress and toxicity. Annual review of pharmacology and toxicology, 53 (1), 401–426. doi: 10.1146/annurev-pharmtox-011112-140320.
  • Mittal, N., et al., 2013. Unique posttranslational modifications in eukaryotic translation factors and their roles in protozoan parasite viability and pathogenesis. Molecular and biochemical parasitology, 187 (1), 21–31. doi: 10.1016/j.molbiopara.2012.11.001.
  • Mohammadi, S., et al., 2021. Astaxanthin protects mesenchymal stem cells from oxidative stress by direct scavenging of free radicals and modulation of cell signaling. Chemico-biological interactions, 333, 109324. doi: 10.1016/j.cbi.2020.109324.
  • Morry, J., Ngamcherdtrakul, W., and Yantasee, W., 2017. Oxidative stress in cancer and fibrosis: opportunity for therapeutic intervention with antioxidant compounds, enzymes, and nanoparticles. Redox biology, 11, 240–253. doi: 10.1016/j.redox.2016.12.011.
  • Moschona, A. and Liakopoulou-Kyriakides, M., 2018. Encapsulation of biological active phenolic compounds extracted from wine wastes in alginate-chitosan microbeads. Journal of microencapsulation, 35 (3), 229–240. doi: 10.1080/02652048.2018.1462415.
  • Nakhlband, A., et al., 2018. Marrubiin-loaded solid lipid nanoparticles’ impact on TNF-α treated umbilical vein endothelial cells: a study for cardioprotective effect. Colloids and surfaces. B, biointerfaces, 164, 299–307. doi: 10.1016/j.colsurfb.2018.01.046.
  • Noipitak, P., et al., 2021. Chitosan/alginate composite porous hydrogels reinforced with PHEMA/PEI core–shell particles and pineapple-leaf cellulose fibers: their physico-mechanical properties and ability to incorporate AgNP. Journal of polymer research, 28 (5), 182. doi: 10.1007/s10965-021-02476-3.
  • Omran, B. and Baek, K.H., 2021. Nanoantioxidants: pioneer types, advantages, limitations, and future insights. Molecules, 26 (22), 7031. doi: 10.3390/molecules26227031.
  • Öztürk, M., et al., 2011. Antioxidant and anticholinesterase active constituents from Micromeria cilicica by radical-scavenging activity-guided fractionation. Food chemistry, 126 (1), 31–38. doi: 10.1016/j.foodchem.2010.10.050.
  • Pourhanifeh, M.H., et al., 2019. The effect of resveratrol on neurodegenerative disorders: possible protective actions against autophagy, apoptosis, inflammation and oxidative stress. Current pharmaceutical design, 25 (19), 2178–2191. doi: 10.2174/1381612825666190717110932.
  • Queiroz, E., et al., 2017. Levan promotes antiproliferative and pro-apoptotic effects in MCF-7 breast cancer cells mediated by oxidative stress. International journal of biological macromolecules, 102, 565–570. doi: 10.1016/j.ijbiomac.2017.04.035.
  • Rahaiee, S., et al., 2020. Application of nano/microencapsulated phenolic compounds against cancer. Advances in colloid and interface science, 279, 102153. doi: 10.1016/j.cis.2020.102153.
  • Rahmani, Z., Sahraei, R., and Ghaemy, M., 2018. Preparation of spherical porous hydrogel beads based on ion-crosslinked gum tragacanth and graphene oxide: study of drug delivery behavior. Carbohydrate polymers, 194, 34–42. doi: 10.1016/j.carbpol.2018.04.022.
  • Ravishankara, M.N., et al., 2002. Evaluation of antioxidant properties of root bark of Hemidesmus indicus R. Br. (Anantmul). Phytomedicine: international journal of phytotherapy and phytopharmacology, 9 (2), 153–160. doi: 10.1078/0944-7113-00104.
  • Saheed, I.O., Oh, W.-D., and Suah, F.B.M., 2021. Removal of 1-Butyl-3-methylimidazolium bromide from an aqueous solution by using a spongy chitosan-activated carbon composite. Colloid and interface science communications, 42, 100393. doi: 10.1016/j.colcom.2021.100393.
  • Sajadimajd, S. and Khazaei, M., 2018. Oxidative stress and cancer: the role of Nrf2. Current cancer drug targets, 18 (6), 538–557. doi: 10.2174/1568009617666171002144228.
  • Samadarsi, R. and Dutta, D., 2020. Anti-oxidative effect of mangiferin-chitosan nanoparticles on oxidative stress-induced renal cells. International journal of biological macromolecules, 151, 36–46. doi: 10.1016/j.ijbiomac.2020.02.112.
  • Sechi, M., et al., 2016. Nanoencapsulation of dietary flavonoid fisetin: formulation and in vitro antioxidant and α-glucosidase inhibition activities. Materials science & engineering. C, materials for biological applications, 68, 594–602. doi: 10.1016/j.msec.2016.06.042.
  • Semiha, K., 2020. Synthesis of methacrylamide/chitosan polymeric cryogels and swelling/dye sorption properties. Polymer science, series A, 62, 481–493.
  • Sharma, V. and Mehdi, M.M., 2023. Oxidative stress, inflammation and hormesis: the role of dietary and lifestyle modifications on aging. Neurochemistry international, 164, 105490. doi: 10.1016/j.neuint.2023.105490.
  • Shilovsky, G.A., and Dibrova, D.V., 2023. Regulation of cell proliferation and Nrf2-mediated antioxidant defense: conservation of keap1 cysteines and Nrf2 binding site in the context of the evolution of KLHL family. Life, 13 (4), 13. doi: 10.3390/life13041045.
  • Sies, H., and Jones, D.P., 2020. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nature reviews. Molecular cell biology, 21 (7), 363–383. doi: 10.1038/s41580-020-0230-3.
  • Singh, R., Letai, A., and Sarosiek, K., 2019. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nature reviews. Molecular cell biology, 20 (3), 175–193. doi: 10.1038/s41580-018-0089-8.
  • Soheili, M., Alinaghipour, A., and Salami, M., 2022. Good bacteria, oxidative stress and neurological disorders: possible therapeutical considerations. Life sciences, 301, 120605. doi: 10.1016/j.lfs.2022.120605.
  • Stach, M., and Kolniak-Ostek, J., 2023. The influence of the use of different polysaccharide coatings on the stability of phenolic compounds and antioxidant capacity of chokeberry hydrogel microcapsules obtained by indirect extrusion. Foods, 12 (3), 515. doi: 10.3390/foods12030515.
  • Sun, Z., et al., 2020. Hydrogel-based controlled drug delivery for cancer treatment: a review. Molecular pharmaceutics, 17 (2), 373–391. doi: 10.1021/acs.molpharmaceut.9b01020.
  • Taksima, T., Limpawattana, M., and Klaypradit, W., 2015. Astaxanthin encapsulated in beads using ultrasonic atomizer and application in yogurt as evaluated by consumer sensory profile. LWT - Food science and technology, 62 (1), 431–437. doi: 10.1016/j.lwt.2015.01.011.
  • Wani, S.U.D., et al., 2023. A review on chitosan and alginate-based microcapsules: mechanism and applications in drug delivery systems. International journal of biological macromolecules, 248, 125875. doi: 10.1016/j.ijbiomac.2023.125875.
  • Xu, C., et al., 2018. pH-triggered charge-reversal and redox-sensitive drug-release polymer micelles codeliver doxorubicin and triptolide for prostate tumor therapy. International journal of nanomedicine, 13, 7229–7249. doi: 10.2147/IJN.S182197.
  • Xu, Y., et al., 2007. Preparation of dual crosslinked alginate-chitosan blend gel beads and in vitro controlled release in oral site-specific drug delivery system. International journal of pharmaceutics, 336 (2), 329–337. doi: 10.1016/j.ijpharm.2006.12.019.
  • Zhang, R., et al., 2018. Effects of sodium salt types on the intermolecular interaction of sodium alginate/antarctic krill protein composite fibers. Carbohydrate polymers, 189, 72–78. doi: 10.1016/j.carbpol.2018.02.013.
  • Zhang, X., et al., 2020. Astaxanthin encapsulated in biodegradable calcium alginate microspheres for the treatment of hepatocellular carcinoma in vitro. Applied biochemistry and biotechnology, 191 (2), 511–527. doi: 10.1007/s12010-019-03174-z.
  • Zhang, Y., et al., 2019. Nrf2-Keap1 pathway-mediated effects of resveratrol on oxidative stress and apoptosis in hydrogen peroxide-treated rheumatoid arthritis fibroblast-like synoviocytes. Annals of the New York academy of sciences, 1457 (1), 166–178. doi: 10.1111/nyas.14196.
  • Zhao, X., Wang, X., and Lou, T., 2021. Preparation of fibrous chitosan/sodium alginate composite foams for the adsorption of cationic and anionic dyes. Journal of hazardous materials, 403, 124054. doi: 10.1016/j.jhazmat.2020.124054.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.