48
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Construction of various lipid carriers to study the transdermal penetration mechanism of sinomenine hydrochloride

, , , , , , & show all
Pages 157-169 | Received 23 Sep 2023, Accepted 22 Feb 2024, Published online: 07 Mar 2024

References

  • Agrawal, M.B., and Patel, M.M., 2020. Optimization and in vivo evaluation of quetiapine-loaded transdermal drug delivery system for the treatment of schizophrenia. Drug development and industrial pharmacy, 46 (11), 1819–1831. doi: 10.1080/03639045.2020.1821051.
  • Agrawal, S.S., and Aggarwal, A., 2010. Randomised, cross-over, comparative bioavailability trial of matrix type transdermal drug delivery system (TDDS) of carvedilol and hydrochlorothiazide combination in healthy human volunteers: a pilot study. Contemporary clinical trials, 31 (4), 272–278. doi: 10.1016/j.cct.2010.03.013.
  • Ahad, A., et al., 2011. Interactions between novel terpenes and main components of rat and human skin: mechanistic view for transdermal delivery of propranolol hydrochloride. Current drug delivery, 8 (2), 213–224. doi: 10.2174/156720111794479907.
  • Ali, M.K., et al., 2021. Biocompatible ionic liquid-mediated micelles for enhanced transdermal delivery of paclitaxel. ACS applied materials & interfaces, 13 (17), 19745–19755. doi: 10.1021/acsami.1c03111.
  • Almeida-Souza, L., et al., 2018. A Flat BAR protein promotes actin polymerization at the base of clathrin-coated pits. Cell, 174 (2), 325–337. doi: 10.1016/j.cell.2018.05.020.
  • Avadhani, K.S., et al., 2017. Skin delivery of epigallocatechin-3-gallate (EGCG) and hyaluronic acid loaded nano-transfersomes for antioxidant and anti-aging effects in UV radiation induced skin damage. Drug delivery, 24 (1), 61–74. doi: 10.1080/10717544.2016.1228718.
  • Bartosova, L., and Bajgar, J., 2012. Transdermal drug delivery in vitro using diffusion cells. Current medicinal chemistry, 19 (27), 4671–4677. doi: 10.2174/092986712803306358.
  • Bhia, M., et al., 2021. Naringenin nano-delivery systems and their therapeutic applications. Pharmaceutics, 13 (2), 291. doi: 10.3390/pharmaceutics13020291.
  • Bhosale, S.S., and Avachat, A.M., 2013. Design and development of ethosomal transdermal drug delivery system of valsartan with preclinical assessment in Wistar albino rats. Journal of liposome research, 23 (2), 119–125. doi: 10.3109/08982104.2012.753457.
  • Brotzu, G., et al., 2019. A liposome-based formulation containing equol, dihomo-gamma-linolenic acid and propionyl-l-carnitine to prevent and treat hair loss: A prospective investigation. Dermatologic therapy, 32 (1), e12778. doi: 10.1111/dth.12778.
  • Chatterjee, S., et al., 2020. Drug delivery system of dual-responsive PF127 hydrogel with polysaccharide-based nano-conjugate for textile-based transdermal therapy. Carbohydrate polymers, 236, 116074. doi: 10.1016/j.carbpol.2020.116074.
  • Chaudhary, H., et al., 2013. Optimization and formulation design of carbopol loaded Piroxicam gel using novel penetration enhancers. International journal of biological macromolecules, 55, 246–253. doi: 10.1016/j.ijbiomac.2013.01.015.
  • Chu, X., et al., 2018. Characterization and in vitro permeation study of cubic liquid crystal containing sinomenine hydrochloride. AAPS PharmSciTech, 19 (5), 2237–2246. doi: 10.1208/s12249-018-1018-z.
  • Chu, X., et al., 2019. Dual drug-loaded cubic liquid crystal gels for transdermal delivery: inner structure and percutaneous mechanism evaluations. Drug development and industrial pharmacy, 45 (12), 1879–1888. doi: 10.1080/03639045.2019.1672716.
  • Chu, X.Q., et al., 2018. On the structure and transdermal profile of liquid crystals based on phytantriol. Current drug delivery, 15 (10), 1439–1448. doi: 10.2174/1567201815666180910142516.
  • Constable, P.D., 2014. Acid-base assessment: when and how to apply the Henderson-Hasselbalch equation and strong ion difference theory. The veterinary clinics of North America. Food animal practice, 30 (2), 295–316, v. doi: 10.1016/j.cvfa.2014.03.001.
  • D'Amico, F., et al., 2021. Chemical constitution of polyfurfuryl alcohol investigated by FTIR and Resonant Raman spectroscopy. Spectrochimica acta A, 262, 120090. doi: 10.1016/j.saa.2021.120090.
  • Eeman, M., et al., 2014. Interaction of fengycin with stratum corneum mimicking model membranes: a calorimetry study. Colloids and surfaces B, 121, 27–35. doi: 10.1016/j.colsurfb.2014.05.019.
  • Eichner, A., et al., 2017. Influence of the penetration enhancer isopropyl myristate on stratum corneum lipid model membranes revealed by neutron diffraction and (2)H NMR experiments. Biochimica et biophysica acta Biomembranes, 1859 (5), 745–755. doi: 10.1016/j.bbamem.2017.01.029.
  • El Hajj, F., et al., 2021. Molecular study of ultrasound-triggered release of fluorescein from liposomes. Langmuir, 37 (13), 3868–3881. doi: 10.1021/acs.langmuir.0c03444.
  • Eum, J., et al., 2021. Solvent-free polycaprolactone dissolving microneedles generated via the thermal melting method for the sustained release of capsaicin. Micromachines, 12 (2), 167. doi: 10.3390/mi12020167.
  • Fardous, J., et al., 2021. Development of a gel-in-oil emulsion as a transdermal drug delivery system for successful delivery of growth factors. Journal of bioscience and bioengineering, 132 (1), 95–101. doi: 10.1016/j.jbiosc.2021.03.015.
  • Furuishi, T., et al., 2010. Synergistic effect of isopropyl myristate and glyceryl monocaprylate on the skin permeation of pentazocine. Biological & pharmaceutical bulletin, 33 (2), 294–300. doi: 10.1248/bpb.33.294.
  • Ganti, S.S., and Banga, A.K., 2016. Non-ablative fractional laser to facilitate transdermal delivery. Journal of pharmaceutical sciences, 105 (11), 3324–3332. doi: 10.1016/j.xphs.2016.07.023.
  • González-Fernández, F.M., et al., 2021. Lipid-based nanocarriers for ophthalmic administration: towards experimental design implementation. Pharmaceutics, 13 (4), 447. doi: 10.3390/pharmaceutics13040447.
  • Gopi, S., and Balakrishnan, P., 2021. Evaluation and clinical comparison studies on liposomal and non-liposomal ascorbic acid (vitamin C) and their enhanced bioavailability. Journal of liposome research, 31 (4), 356–364. doi: 10.1080/08982104.2020.1820521.
  • Grapentin, C., Barnert, S., and Schubert, R., 2015. Monitoring the stability of perfluorocarbon nanoemulsions by Cryo-TEM image analysis and dynamic light scattering. PLOS one, 10 (6), e0130674. doi: 10.1371/journal.pone.0130674.
  • Guo, S.Y., et al., 2019. Study on physicochemical properties of paeonol-Helix aspersa muller nanogel and its inhibitory effects on hypertrophic scar tissue in rabbit ear. zhongguo zhong yao Za zhi, 44 (22), 4857–4863.
  • Gupta, S., Wairkar, S., and Bhatt, L.K., 2020. Isotretinoin and alpha-tocopherol acetate-loaded solid lipid nanoparticle topical gel for the treatment of acne. Journal of microencapsulation, 37 (8), 557–565. doi: 10.1080/02652048.2020.1823499.
  • Han, S.B., et al., 2014. Physical characterization and in vitro skin permeation of solid lipid nanoparticles for transdermal delivery of quercetin. International journal of cosmetic science, 36 (6), 588–597. doi: 10.1111/ics.12160.
  • Hänel, K.H., et al., 2013. Cytokines and the skin barrier. International journal of molecular sciences, 14 (4), 6720–6745. doi: 10.3390/ijms14046720.
  • Hatziantoniou, S., et al., 2007. Scanning electron microscopy study on nanoemulsions and solid lipid nanoparticles containing high amounts of ceramides. Micron, 38 (8), 819–823. doi: 10.1016/j.micron.2007.06.010.
  • He, J., et al., 2023. Wearable patches for transdermal drug delivery. Acta pharmaceutica sinica B, 13 (6), 2298–2309. doi: 10.1016/j.apsb.2023.05.009.
  • Hung, W.H., et al., 2021. Preparation and evaluation of azelaic acid topical microemulsion formulation: In vitro and in vivo study. Pharmaceutics, 13 (3), 410. doi: 10.3390/pharmaceutics13030410.
  • Iliopoulos, F., Chapman, A., and Lane, M.E., 2021. A comparison of the in vitro permeation of 3-O-ethyl-l-ascorbic acid in human skin and in a living skin equivalent (LabSkin). International journal of cosmetic science, 43 (1), 107–112. doi: 10.1111/ics.12675.
  • Jain, S., et al., 2007. Formulation and evaluation of ethosomes for transdermal delivery of lamivudine. AAPS PharmSciTech, 8 (4), E111. doi: 10.1208/pt0804111.
  • Kang, J.H., et al., 2019. Preparation and evaluation of tacrolimus-loaded thermosensitive solid lipid nanoparticles for improved dermal distribution. International journal of nanomedicine, 14, 5381–5396. doi: 10.2147/IJN.S215153.
  • Kaur, S., Babbar, H.S., and Mahmood, A., 1993. Effect of pH and sodium ions on intestinal uptake of lysine in rats. Indian J exp biol, 31 (6), 529–532.
  • Keurentjes, A.J., Jakasa, I., and Kezic, S., 2021. Research techniques made simple: stratum corneum tape stripping. The journal of investigative dermatology, 141 (5), 1129–1133. doi: 10.1016/j.jid.2021.01.004.
  • Kitaoka, M., Nguyen, T.C., and Goto, M., 2021. Water-in-oil microemulsions composed of monoolein enhanced the transdermal delivery of nicotinamide. International journal of cosmetic science, 43 (3), 302–310. doi: 10.1111/ics.12695.
  • Li, L., et al., 2022. Preparation, characterization, ex vivo transdermal properties and skin irritation evaluation of 1,8-cineole nanoemulsion gel. International journal of pharmaceutics, 624, 121982. doi: 10.1016/j.ijpharm.2022.121982.
  • Lima, C., et al., 2019. Heat-damaged evaluation of virgin hair. Journal of cosmetic dermatology, 18 (6), 1885–1892. doi: 10.1111/jocd.12892.
  • Lin, Y.K., et al., 2023. Lipid-based nanoformulation optimization for achieving cutaneous targeting: Niosomes as the potential candidates to fulfill this aim. European journal of pharmaceutical sciences, 186, 106458. doi: 10.1016/j.ejps.2023.106458.
  • Malipeddi, V.R., et al., 2017. Preparation and characterization of metoprolol tartrate containing matrix type transdermal drug delivery system. Drug delivery and translational research, 7 (1), 66–76. doi: 10.1007/s13346-016-0334-7.
  • Mao, S.R., et al., 2003. Preparation of solid lipid nanoparticles by microemulsion technique. yao xue xue bao, 38 (8), 624–626.
  • Momose, A., et al., 2004. Calcium ions are abnormally distributed in the skin of haemodialysis patients with uraemic pruritus. Nephrology, dialysis, transplantation, 19 (8), 2061–2066. doi: 10.1093/ndt/gfh287.
  • Nguyen, N.A., et al., 1994. Physicochemical characterization of the various solid forms of carbovir, an antiviral nucleoside. Journal of pharmaceutical sciences, 83 (8), 1116–1123. doi: 10.1002/jps.2600830810.
  • Offerta, A., et al., 2016. In vitro percutaneous absorption of niacinamide and phytosterols and in vivo evaluation of their effect on skin barrier recovery. Current drug delivery, 13 (1), 111–120. doi: 10.2174/1567201812666150722123218.
  • Oliveira, P.M., et al., 2020. LC-MS bioanalytical method for simultaneous determination of latanoprost and minoxidil in the skin. Journal of pharmaceutical and biomedical analysis, 187, 113373. doi: 10.1016/j.jpba.2020.113373.
  • Palassi, S., et al., 2021. Preparation and In vitro characterization of enoxaparin nano-liposomes through different methods. Adv pharm bull, 11 (2), 295–300.
  • Paweloszek, R., et al., 2016. Skin absorption of anions: Part two. Skin absorption of halide ions. Pharmaceutical research, 33 (7), 1576–1586. doi: 10.1007/s11095-016-1898-0.
  • Ragab, T.I.M., et al., 2022. Cytoprotective potentialities of carvacrol and its nanoemulsion against cisplatin-induced nephrotoxicity in rats: development of nano-encasulation form. Heliyon, 8 (3), e09198. doi: 10.1016/j.heliyon.2022.e09198.
  • Raut, P., et al., 2021. Development and optimization of mirabegron solid lipid nanoparticles as an oral drug delivery for overactive bladder. Pharmaceutical nanotechnology, 9 (2), 120–129. doi: 10.2174/2211738509666210127143107.
  • Riquelme, N., et al., 2020. Influence of the particle size and hydrocolloid type on lipid digestion of thickened emulsions. Food & function, 11 (7), 5955–5964. doi: 10.1039/d0fo01202e.
  • Schleusener, J., et al., 2021. Retaining skin barrier function properties of the stratum corneum with components of the natural moisturizing factor-a randomized, placebo-controlled double-blind in vivo study. Molecules, 26 (6), 1649. doi: 10.3390/molecules26061649.
  • Seki, T., et al., 2010. Analysis of the rat skin permeation of hydrophilic compounds using the Renkin function. Biological & pharmaceutical bulletin, 33 (11), 1915–1918. doi: 10.1248/bpb.33.1915.
  • Shen, Q., et al., 2020. Sinomenine hydrochloride loaded thermosensitive liposomes combined with microwave hyperthermia for the treatment of rheumatoid arthritis. International journal of pharmaceutics, 576, 119001. doi: 10.1016/j.ijpharm.2019.119001.
  • Shu, Z., et al., 2020. Polyvinylpyrrolidone microneedles for localized delivery of sinomenine hydrochloride: preparation, release behavior of in vitro & in vivo, and penetration mechanism. Drug delivery, 27 (1), 642–651. doi: 10.1080/10717544.2020.1754524.
  • Soltani, A., and Pakravan, P., 2023. Preparation and characterization of magnetic solid lipid nanoparticles as a targeted drug delivery system for doxorubicin. Advanced pharmaceutical bulletin, 13 (2), 301–308. doi: 10.34172/apb.2023.033.
  • Swain, S., et al., 2011. Advanced techniques for penetration enhancement in transdermal drug delivery system. Current drug delivery, 8 (4), 456–473. doi: 10.2174/156720111795767979.
  • Tagavifar, M., et al., 2017. Spontaneous and flow-driven interfacial phase change: Dynamics of microemulsion formation at the pore scale. Langmuir, 33 (45), 13077–13086. doi: 10.1021/acs.langmuir.7b02856.
  • Takasu, Y., et al., 2015. Prediction of the stability of meropenem in intravenous mixtures. Chemical & pharmaceutical bulletin, 63 (4), 248–254. doi: 10.1248/cpb.c14-00516.
  • Tian, C., et al., 2020. The evaluations of menthol and propylene glycol on the transdermal delivery system of dual drug-loaded lyotropic liquid crystalline Gels. AAPS PharmSciTech, 21 (6), 224. doi: 10.1208/s12249-020-01762-5.
  • Tsai, M.J., et al., 2015. Preparation and characterization of naringenin-loaded elastic liposomes for topical application. PLOS One, 10 (7), e0131026. doi: 10.1371/journal.pone.0131026.
  • Vaddi, H.K., et al., 2002. Terpenes in ethanol: haloperidol permeation and partition through human skin and stratum corneum changes. Journal of controlled release, 81 (1-2), 121–133. doi: 10.1016/S0168-3659(02)00057-3.
  • Wang, Y., et al., 2016. Formulation and evaluation of novel glycyrrhizic acid micelles for transdermal delivery of podophyllotoxin. Drug delivery, 23 (5), 1623–1635. doi: 10.3109/10717544.2015.1135489.
  • Woodward, C.K., and Hilton, B.D., 1980. Hydrogen isotope exchange kinetics of single protons in bovine pancreatic trypsin inhibitor. Biophysical journal. 32 (1), 561–575. doi: 10.1016/S0006-3495(80)84990-3.
  • Xiao, Y., et al., 2014. Enhancing the intestinal absorption of low molecular weight chondroitin sulfate by conjugation with alpha-linolenic acid and the transport mechanism of the conjugates. International journal of pharmaceutics. 465 (1-2), 143–158. doi: 10.1016/j.ijpharm.2014.02.009.
  • Xie, Y., et al., 2014. The pharmacokinetic study of sinomenine, paeoniflorin and paeonol in rats after oral administration of a herbal product Qingfu Guanjiesu capsule by HPLC. Biomedical chromatography. 28 (9), 1294–1302. doi: 10.1002/bmc.3165.
  • Xu, M., et al., 2018. Combined treatment with sinomenine and acupuncture on collagen-induced arthritis through the NF-kappaB and MAPK signaling pathway. Oncol lett, 15 (6), 8770–8776.
  • Xu, Q., et al., 2023. Promoting activity of terpenes on skin permeation of famotidine. Chemical and pharmaceutical bulletin, 71 (2), 111–119. doi: 10.1248/cpb.c22-00568.
  • Xu, W., et al., 2022. Preparation, characterization and pharmacokinetics of tolfenamic acid-loaded solid lipid nanoparticles. Pharmaceutics, 14 (9), 1929. doi: 10.3390/pharmaceutics14091929.
  • Yu, Q., et al., 2013. Effects of sinomenine on the expression of microRNA-155 in 2,4,6-trinitrobenzenesulfonic acid-induced colitis in mice. PLOS One. 8 (9), e73757. doi: 10.1371/journal.pone.0073757.
  • Zhang, K., et al., 2020. Preparation of Cangai oil transfersomes patches and its in vitro evaluation. zhongguo zhong yao Za zhi, 45 (4), 854–860.
  • Zoubari, G., et al., 2017. Effect of drug solubility and lipid carrier on drug release from lipid nanoparticles for dermal delivery. European journal of pharmaceutics and biopharmaceutics, 110, 39–46. doi: 10.1016/j.ejpb.2016.10.021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.