82
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Advancements and prospects of lipid-based nanoparticles: dual frontiers in cancer treatment and vaccine development

, , , , , & show all
Pages 226-254 | Received 22 Oct 2023, Accepted 28 Feb 2024, Published online: 01 Apr 2024

References

  • A snapshot of cancer vaccine development | MIT News | Massachusetts Institute of Technology, 2024 . [online]. Available from: https://news.mit.edu/2023/snapshot-cancer-vaccine-development-0815 [Accessed 4 Feb ruary 2024].
  • Akbari, J., et al., 2022. Solid lipid nanoparticles and nanostructured lipid carriers: a review of the methods of manufacture and routes of administration. Pharmaceutical development and technology, 27 (5), 525–544. doi: 10.1080/10837450.2022.2084554.
  • Akbarzadeh, A., et al., 2013. Liposome: classification, preparation, and applications. Nanoscale research letters, 8 (1), 102. doi: 10.1186/1556-276X-8-102.
  • Alavi, M., and Hamidi, M., 2019. Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles. Drug metabolism and personalized therapy, 34 (1), 1–8. doi: 10.1515/dmpt-2018-0032.
  • Alavi, M., Karimi, N., and Safaei, M., 2017. Application of various types of liposomes in drug delivery systems. Advanced pharmaceutical bulletin, 7 (1), 3–9. doi: 10.15171/apb.2017.002.
  • Amasya, G., et al., 2019. QbD guided early pharmaceutical development study: production of lipid nanoparticles by high pressure homogenisation for skin cancer treatment. International journal of pharmaceutics, 563, 110–121. doi: 10.1016/j.ijpharm.2019.03.056.
  • Anselmo, A.C., and Mitragotri, S., 2019. Nanoparticles in the clinic: an update. Bioengineering & translational medicine, 4 (3), 1–16. doi: 10.1002/btm2.10143.
  • Arranja, A.G., et al., 2017. Tumor-targeted nanomedicines for cancer theranostics. Pharmacological research, 115, 87–95. doi: 10.1016/j.phrs.2016.11.014.
  • Ashrafizadeh, M., et al., 2022. Stimuli-responsive liposomal nanoformulations in cancer therapy: pre-clinical & clinical approaches. Journal of controlled release, 351 (January), 50–80. doi: 10.1016/j.jconrel.2022.08.001.
  • Ashrafizadeh, M., et al., 2021. Hyaluronic acid-based nanoplatforms for Doxorubicin: a review of stimuli-responsive carriers, co-delivery and resistance suppression. Carbohydrate polymers, 272 (March), 118491. doi: 10.1016/j.carbpol.2021.118491.
  • Baek, J.S., and Cho, C.W., 2017. A multifunctional lipid nanoparticle for co-delivery of paclitaxel and curcumin for targeted delivery and enhanced cytotoxicity in multidrug-resistant breast cancer cells. Oncotarget, 8 (18), 30369–30382. doi: 10.18632/oncotarget.16153.
  • Baghbani, F., et al., 2017a. Novel ultrasound-responsive chitosan/perfluorohexane nanodroplets for image-guided smart delivery of an anticancer agent: curcumin. Materials science and engineering: C, 74, 186–193. doi: 10.1016/j.msec.2016.11.107.
  • Bahari, L.A.S., and Hamishehkar, H., 2016. The impact of variables on particle size of solid lipid nanoparticles and nanostructured lipid carriers; a comparative literature review. Advanced pharmaceutical bulletin, 6 (2), 143–151. doi: 10.15171/apb.2016.021.
  • Bahutair, W.N., Abuwatfa, W.H., and Husseini, G.A., 2022. Ultrasound triggering of liposomal nanodrugs for cancer therapy: a review. Nanomaterials (Basel, Switzerland), 12 (17), 3051. doi: 10.3390/nano12173051.
  • Bailey-Hytholt, C.M., et al., 2021. Formulating and characterizing lipid nanoparticles for gene delivery using a microfluidic mixing platform. Journal of visualized experiments : JoVE, 2021 (168), doi: 10.3791/62226-v.
  • Bangham, A.D., and Horne, R.W., 1964. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. Journal of molecular biology, 8 (5), 660–IN10. doi: 10.1016/S0022-2836(64)80115-7.
  • Belfiore, L., et al., 2018. Towards clinical translation of ligand-functionalized liposomes in targeted cancer therapy: challenges and opportunities. Journal of controlled release, 277, 1–13. doi: 10.1016/j.jconrel.2018.02.040.
  • Benteyn, D., et al., 2014. mRNA-based dendritic cell vaccines. Expert review of vaccines, 14 (2), 161–176. doi: 10.1586/14760584.2014.957684.
  • Billingsley, M.M., et al., 2020. Ionizable lipid nanoparticle-mediated mRNA delivery for human CAR T cell engineering. Nano letters, 20 (3), 1578–1589. doi: 10.1021/acs.nanolett.9b04246.
  • Billingsley, M.M., et al., 2022. Orthogonal design of experiments for optimization of lipid nanoparticles for mRNA engineering of CAR T cells. Nano letters, 22 (1), 533–542. doi: 10.1021/acs.nanolett.1c02503.
  • Blakney, A.K., et al., 2019. The skin you are in: design-of-experiments optimization of lipid nanoparticle self-amplifying RNA formulations in human skin explants. ACS nano, 13 (5), 5920–5930. doi: 10.1021/acsnano.9b01774.
  • Bobo, D., et al., 2016. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharmaceutical research, 33 (10), 2373–2387. doi: 10.1007/s11095-016-1958-5.
  • Bray, F., et al., 2018. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 68 (6), 394–424. doi: 10.3322/caac.21492.
  • Bros, M., et al., 2018. The protein corona as a confounding variable of nanoparticle-mediated targeted vaccine delivery. Frontiers in immunology, 9 (AUG), 1760. doi: 10.3389/fimmu.2018.01760.
  • Bulbake, U., et al., 2017. Liposomal formulations in clinical use: an updated review. Pharmaceutics, 9 (2), 12. doi: 10.3390/pharmaceutics9020012.
  • Cancer, 2023. [online]. Available from: https://www.who.int/news-room/fact-sheets/detail/cancer?ssp=1&darkschemeovr=1&setlang=en-US&safesearch=moderate [Accessed 4 July 2023].
  • Cancer Statistics - NCI, 2023. [online]. Available from: https://www.cancer.gov/about-cancer/understanding/statistics?ssp=1&darkschemeovr=1&setlang=en-US&safesearch=moderate [Accessed 4 July 2023].
  • Cancer Treatment Vaccines - Immunotherapy - NCI, 2024. [online]. Available from: https://www.cancer.gov/about-cancer/treatment/types/immunotherapy/cancer-treatment-vaccines [Accessed 4 February 2024].
  • Cancer Worldwide - Statistics & Facts | Statista, 2023. [online]. Available from: https://www.statista.com/topics/8292/cancer-worldwide/?ssp=1&darkschemeovr=1&setlang=en-US&safesearch=moderate#topicOverview [Accessed 4 July 2023].
  • Chaudhuri, A., et al., 2022. Lipid-based nanoparticles as a pivotal delivery approach in triple negative breast cancer (TNBC) therapy. International journal of molecular sciences, 23 (17), 10068. doi: 10.3390/ijms231710068.
  • Chen, S., et al., 2019. Recent advances in non-ionic surfactant vesicles (niosomes): fabrication, characterisation, pharmaceutical and cosmetic applications. European journal of pharmaceutics and biopharmaceutics: official journal of arbeitsgemeinschaft fur pharmazeutische verfahrenstechnik e.V, 144, 18–39. doi: 10.1016/j.ejpb.2019.08.015.
  • Chen, Y., et al., 2015. Improved antioxidant capacity of optimisation of a self-micro emulsifying drug delivery system for resveratrol. Molecules (Basel, Switzerland), 20 (12), 21167–21177. doi: 10.3390/molecules201219750.
  • Cheng, Z., et al., 2021. Nanomaterials for cancer therapy: current progress and perspectives. Journal of hematology & oncology, 14 (1), 85. doi: 10.1186/s13045-021-01096-0.
  • Clinical Considerations for Therapeutic Cancer Vaccines | FDA. 2024. [online]. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/clinical-considerations-therapeutic-cancer-vaccines [Accessed 4 February 2024].
  • Corti, C., et al., 2022. Therapeutic vaccines for breast cancer: has the time finally come? European journal of cancer (Oxford, England: 1990), 160, 150–174.), doi: 10.1016/j.ejca.2021.10.027.
  • Crommelin, D., Metselaar, J., and Storm, G., 2015. Liposomes: the science and the regulatory landscape. In: D. Crommelin and J. de Vlieger, Eds. Non-biological complex drugs. AAPS advances in the pharmaceutical sciences series, vol. 20. Cham: Springer. doi: 10.1007/978-3-319-16241-6_3.
  • Cunha, S., et al., 2020a. Double optimization of rivastigmine-loaded nanostructured lipid carriers (NLC) for nose-to-brain delivery using the quality by design (QbD) approach: formulation variables and instrumental parameters. Pharmaceutics, 12 (7), 599. doi: 10.3390/pharmaceutics12070599.
  • Cunha, S., Costa, C. P., Moreira, J. N., Sousa Lobo, J. M., and Silva, A. C., 2020b. Using the quality by design (QbD) approach to optimise formulations of lipid nanoparticles and nanoemulsions: a review. Nanomedicine : nanotechnology, biology, and medicine, 28, 102206. doi: 10.1016/j.nano.2020.102206.
  • Curcio, M., et al., 2022. Smart lipid–polysaccharide nanoparticles for targeted delivery of doxorubicin to breast cancer cells. International journal of molecular sciences, 23 (4), 2386. doi: 10.3390/ijms23042386.
  • Danaei, M., et al., 2018. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 10 (2), 57. doi: 10.3390/pharmaceutics10020057.
  • Danhier, F., Feron, O., and Préat, V., 2010. To exploit the tumour microenvironment: passive and active tumour targeting of nanocarriers for anti-cancer drug delivery. Journal of controlled release: official journal of the controlled release society, 148 (2), 135–146. doi: 10.1016/j.jconrel.2010.08.027.
  • Das, S., et al., 2011. Formulation design, preparation and physicochemical characterisations of solid lipid nanoparticles containing a hydrophobic drug: effects of process variables. Colloids and surfaces. B, biointerfaces, 88 (1), 483–489. doi: 10.1016/j.colsurfb.2011.07.036.
  • De Silva, L., et al., 2019. Characterisation, optimisation, and in vitro evaluation of Technetium-99m-labeled niosomes. International journal of nanomedicine, Volume 14, 1101–1117. doi: 10.2147/IJN.S184912.
  • Drugs, A., and Olusanya, T. O. B., 2018. Liposomal drug delivery systems and, 1–17.
  • Du, Y., et al., 2018. Redox-sensitive lipid-camptothecin conjugate encapsulated solid lipid nanoparticles for oral delivery. International journal of pharmaceutics, 549 (1-2), 352–362. doi: 10.1016/j.ijpharm.2018.08.010.
  • Elamir, A., et al., 2021. Ultrasound-triggered herceptin liposomes for breast cancer therapy. Scientific reports, 11 (1), 7545. doi: 10.1038/s41598-021-86860-5.
  • Eljack, S., et al., 2022. Nanoparticles design considerations to co-deliver nucleic acids and anti-cancer drugs for chemoresistance reversal. International journal of pharmaceutics: X, 4 (August), 100126. doi: 10.1016/j.ijpx.2022.100126.
  • Elmowafy, M., and Al-Sanea, M.M., 2021. Nanostructured lipid carriers (NLCs) as drug delivery platform: advances in formulation and delivery strategies. Saudi pharmaceutical journal: SPJ: the official publication of the saudi pharmaceutical society, 29 (9), 999–1012. doi: 10.1016/j.jsps.2021.07.015.
  • Environment-Responsive Lipid:siRNA Nanoparticles for Cancer Therapy.pdf.crdownload, n.d.
  • Fan, Y.N., et al., 2018. Cationic lipid-assisted nanoparticles for delivery of mRNA cancer vaccine. Biomaterials science, 6 (11), 3009–3018. doi: 10.1039/c8bm00908b.
  • Fernandes, D.A., et al., 2021. Multifunctional nanoparticles as theranostic agents for therapy and imaging of breast cancer. Journal of photochemistry and photobiology B: Biology, 218, 112110. doi: 10.1016/j.jphotobiol.2020.112110.
  • Filin, I.Y., et al., 2021. Recent advances in experimental dendritic cell vaccines for cancer. Frontiers in oncology, 11, 730824. doi: 10.3389/fonc.2021.730824.
  • Gala, U.H., Miller, D.A., and Williams, R.O., 2020. Harnessing the therapeutic potential of anticancer drugs through amorphous solid dispersions. Biochimica et biophysica acta. Reviews on cancer, 1873 (1), 188319. doi: 10.1016/j.bbcan.2019.188319.
  • Galletti, G., et al., 2017. Mechanisms of resistance to systemic therapy in metastatic castration-resistant prostate cancer. Cancer treatment reviews, 57, 16–27. doi: 10.1016/j.ctrv.2017.04.008.
  • García-Álvarez, R., and Vallet-Regí, M., 2021. Hard and soft protein corona of nanomaterials: analysis and relevance. Nanomaterials, 11 (4), 888. doi: 10.3390/nano11040888.
  • García-Pinel, B., et al., 2019. Lipid-based nanoparticles: application and recent advances in cancer treatment. Nanomaterials, 9 (4), 638. doi: 10.3390/nano9040638.
  • Gardasil | FDA, 2024. [online]. Available from: https://www.fda.gov/vaccines-blood-biologics/vaccines/gardasil [Accessed 20 January 2024].
  • Ge, X., et al., 2019. Advances of non-ionic surfactant vesicles (niosomes) and their application in drug delivery. Pharmaceutics, 11 (2), 55. doi: 10.3390/pharmaceutics11020055.
  • Ghasemiyeh, P., and Mohammadi-Samani, S., 2018. Solid lipid nanoparticles and nanostructured lipid carriers as novel drug delivery systems: applications, advantages and disadvantages. Research in pharmaceutical sciences, 13 (4), 288–303. doi: 10.4103/1735-5362.235156.
  • Ghosh, B., and Biswas, S., 2021. Polymeric micelles in cancer therapy: state of the art. Journal of controlled release: official journal of the controlled release society, 332, 127–147. doi: 10.1016/j.jconrel.2021.02.016.
  • Gilani, S.J., Jahangir, M.A., Chandrakala, Rizwanullah, Md., Taleuzzaman, M., Shahab, M.S., Shakeel, K., Aqil, Mohd., and Imam, S.S., 2018. Nano-based therapy for treatment of skin cancer. Recent patents on anti-infective drug discovery 13 (2), 151–163. doi: 10.2174/1574891X13666180911095440.
  • Gilbile, D., et al., 2019. How well can you tailor the charge of lipid vesicles? Langmuir: the ACS journal of surfaces and colloids, 35 (48), 15960–15969. doi: 10.1021/acs.langmuir.9b02163.
  • Gong, Z., et al., 2021. Enzyme-induced transformable peptide nanocarriers with enhanced drug permeability and retention to improve tumor nanotherapy efficacy. ACS applied materials & interfaces, 13 (47), 55913–55927. doi: 10.1021/acsami.1c17917.
  • González-Fernández et al., 2015. Antitumoral-lipid-based nanoparticles: a platform for future application in osteosarcoma therapy. ingentaconnect.com.
  • Guevara, M.L., Persano, F., and Persano, S., 2020. Advances in lipid nanoparticles for mRNA-based cancer immunotherapy. Frontiers in chemistry, 8, 589959. doi: 10.3389/fchem.2020.589959.
  • Guo, C., et al., 2013. Therapeutic cancer vaccines. Past, present, and future. Advances in cancer research, 119, 421–475. doi: 10.1016/B978-0-12-407190-2.00007-1.
  • Gyamfi, J., Kim, J., and Choi, J., 2022. Cancer as a metabolic disorder. International journal of molecular sciences, 23 (3), 1155. doi: 10.3390/ijms23031155.
  • Haider, M., et al., 2020a. Nanostructured lipid carriers for delivery of chemotherapeutics: a review. Pharmaceutics, 12 (3), 288. doi: 10.3390/pharmaceutics12030288.
  • Haider, T., et al., 2020b. Drug resistance in cancer: mechanisms and tackling strategies. Pharmacological reports: PR, 2020 72:5, 72 (5), 1125–1151. doi: 10.1007/s43440-020-00138-7.
  • Hald Albertsen, C., et al., 2022. The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Advanced drug delivery reviews, 188, 114416. doi: 10.1016/j.addr.2022.114416.
  • Hamaidi, I., et al., 2020. Sirt2 Inhibition Enhances Metabolic Fitness and Effector Functions of Tumor-Reactive T Cells. Cell metabolism, 32 (3), 420–436.e12. doi: 10.1016/j.cmet.2020.07.008.
  • Han, Y., et al., 2016. Nanostructured lipid carriers as novel drug delivery system for lung cancer gene therapy. Pharmaceutical development and technology, 21 (3), 277–281. doi: 10.3109/10837450.2014.996900.
  • He, H., et al., 2019. Adapting liposomes for oral drug delivery. Acta pharmaceutica sinica. B, 9 (1), 36–48. doi: 10.1016/j.apsb.2018.06.005.
  • He, T., et al., 2012. Pro-opiomelanocortin gene delivery suppresses the growth of established Lewis lung carcinoma through a melanocortin-1 receptor-independent pathway. Journal of gene medicine, 14 (1), 44–53.
  • HEPLISAV-B | FDA, 2024. [online]. Available from: https://www.fda.gov/vaccines-blood-biologics/vaccines/heplisav-b [Accessed 20 January 2024].
  • Holban, A. M., and Grumezescu, A. M., 2016. Nanoarchitectonics for Smart Delivery and Drug Targeting. 1st ed. Cambridge, MA: William Andrew, 1–942. doi: 10.1016/C2015-0-06101-9.
  • Holohan, C., et al., 2013. Cancer drug resistance: an evolving paradigm. Nature reviews. Cancer, 13 (10), 714–726. doi: 10.1038/nrc3599.
  • Hopkins, J.L., Lan, L., and Zou, L., 2022. DNA repair defects in cancer and therapeutic opportunities. Genes & development, 36 (5-6), 278–293. doi: 10.1101/gad.349431.122.
  • Huang, T., et al., 2022. Lipid nanoparticle-based mRNA vaccines in cancers: current advances and future prospects. Frontiers in immunology, 13, 922301. doi: 10.3389/fimmu.2022.922301.
  • Huang, X., and Chau, Y., 2019. Investigating impacts of surface charge on intraocular distribution of intravitreal lipid nanoparticles. Experimental eye research, 186, 107711. doi: 10.1016/j.exer.2019.107711.
  • Ibrahim, S., et al., n.d. Harmonizing tradition and technology: liposomal nanocarriers unlocking the power of natural herbs in Traditional Chinese Medicine. Chinese journal of natural medicines, 2020 (1), 206–210.
  • Jain, A., and Jain, S.K., 2018. Stimuli-responsive smart liposomes in cancer targeting. Current drug targets, 19 (3), 259–270. doi: 10.2174/1389450117666160208144143.
  • Jampílek, J., and Kráľová, K., 2019. Chapter 8 – Recent advances in lipid nanocarriers applicable in the fight against cancer. In: A.M. Grumezescu, ed. Nanoarchitectonics in biomedicine. Norwich, NY: William Andrew Publishing, 219–294.
  • Jiang, H., et al., 2016. Co-delivery of etoposide and curcumin by lipid nanoparticulate drug delivery system for the treatment of gastric tumours. Drug delivery, 23 (9), 3665–3673. doi: 10.1080/10717544.2016.1217954.
  • Jong, W.H. De and Paul, J.B., 2008. Drug delivery and nanoparticles : applications and hazards.International journal of nanomedicine, 3 (2), 133–149. doi: 10.2147/IJN.S596.
  • Johnson, K., et al., 2017. 乳鼠心肌提取 HHS public access. Physiology & behavior, 176 (3), 139–148.,
  • Karmacharya, P., Patil, B.R., and Kim, J.O., 2022. Recent advancements in lipid–mRNA nanoparticles as a treatment option for cancer immunotherapy. Journal of pharmaceutical investigation, 52 (4), 415–426. doi: 10.1007/s40005-022-00569-9.
  • Kauffman, K.J., et al., 2015. Optimisation of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs. Nano letters, 15 (11), 7300–7306. doi: 10.1021/acs.nanolett.5b02497.
  • Kazemi, E.K., et al., 2022. Glimpse into the cellular internalization and intracellular trafficking of lipid-based nanoparticles in cancer cells. Anti-cancer agents in medicinal chemistry, 22 (10), 1897–1912. doi: 10.2174/1871520621666210906101421.
  • Khosa, A., Reddi, S., and Saha, R.N., 2018. Nanostructured lipid carriers for site-specific drug delivery. Biomedicine & pharmacotherapy = biomedecine & pharmacotherapie, 103 (February), 598–613. doi: 10.1016/j.biopha.2018.04.055.
  • Kirpotin, D.B., et al., 2006. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumour localisation but does increase internalisation in animal models. Cancer research, 66 (13), 6732–6740. doi: 10.1158/0008-5472.CAN-05-4199.
  • Kon, E., et al., 2023. Targeting cancer with mRNA–lipid nanoparticles: key considerations and future prospects. Nature reviews clinical oncology, 20 (11), 739–754. doi: 10.1038/s41571-023-00811-9.
  • Król, M., et al., 2010. Why chemotherapy can fail? Polish journal of veterinary sciences, 13 (2), 399–406.
  • Kunjachan, S., et al., 2015. Noninvasive imaging of nanomedicines and nanotheranostics: principles, progress, and prospects. Chemical reviews, 115 (19), 10907–10937. doi: 10.1021/cr500314d.
  • Lorentzen, C.L., et al., 2022. Clinical advances and ongoing trials of mRNA vaccines for cancer treatment. Review lancet oncol, 23, 450–458.
  • Lade, S., Shah, N., and Burle, S., 2022. Nanostructured lipid carriers: a vital drug carrier for migraine treatment. Research journal of pharmacy and technology, 15 (7), 3309–3316. doi: 10.52711/0974-360X.2022.00554.
  • Le, N.T.T., et al., 2019. Soy lecithin-derived liposomal delivery systems: surface modification and current applications. International journal of molecular sciences, 20 (19), 4706. doi: 10.3390/ijms20194706.
  • Lee, J.H., and Yeo, Y., 2015. Controlled drug release from pharmaceutical nanocarriers. Chemical engineering science, 125, 75–84. doi: 10.1016/j.ces.2014.08.046.
  • Lee, Y., and Thompson, D.H., 2017. Stimuli-responsive liposomes for drug delivery. Wiley interdisciplinary reviews: Nanomedicine and nanobiotechnology, 9 (5), 1–76.
  • Let’s talk about lipid nanoparticles . 2021. Nature reviews materials, 6 (2), 99–99.
  • Letchford, K., and Burt, H., 2007. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. European journal of pharmaceutics and biopharmaceutics, 65 (3), 259–269. doi: 10.1016/j.ejpb.2006.11.009.
  • Li, F., et al., 2016. Reducing both Pgp overexpression and drug efflux with anti-cancer gold-paclitaxel nanoconjugates. Plos one, 11 (7), e0160042. doi: 10.1371/journal.pone.0160042.
  • Li, M., et al., 2019. Composition design and medical application of liposomes. European journal of medicinal chemistry, 164, 640–653. doi: 10.1016/j.ejmech.2019.01.007.
  • Li, Y., et al., 2020. Multifunctional oncolytic nanoparticles deliver self-replicating IL-12 RNA to eliminate established tumours and prime systemic immunity. Nature cancer, 1 (9), 882–893. doi: 10.1038/s43018-020-0095-6.
  • Li, Z., Jiang, H., Xu, C., and Gu, L., 2014. A review: using nanoparticles to enhance absorption and bioavailability of phenolic phytochemicals. Food hydrocolloids, 43, 153–164. doi: 10.1016/j.foodhyd.2014.05.010.
  • Liang, H., et al., 2021a. Nanocrystal-loaded liposome for targeted delivery of poorly water-soluble antitumor drugs with high drug loading and stability towards efficient cancer therapy. International journal of pharmaceutics, 599 (January), 120418. doi: 10.1016/j.ijpharm.2021.120418.
  • Liang, X., et al., 2021b. Complementing cancer photodynamic therapy with ferroptosis through iron oxide-loaded porphyrin-grafted lipid nanoparticles. ACS nano. 15 (12), 20164–20180. doi: 10.1021/acsnano.1c08108.
  • Lima, T., et al., 2020. Understanding the lipid and protein corona formation on different sized polymeric nanoparticles. Scientific reports, 10 (1), 1–9. 1doi: 10.1038/s41598-020-57943-6.
  • Lipid-based nanoparticles for cancer treatment—University of Strathclyde, 2023. [online]. Available from: https://pureportal.strath.ac.uk/en/publications/lipid-based-nanoparticles-for-cancer-treatment?ssp=1&setlang=en-US&safesearch=moderate [Accessed 4 July 2023].
  • Liu, C., et al., 2022. Efficient delivery of PKN3 shRNA for the treatment of breast cancer via lipid nanoparticles. Bioorganic & medicinal chemistry, 69, 116884. doi: 10.1016/j.bmc.2022.116884.
  • Liu, T.I., et al., 2020a. Dual stimuli-guided lipid-based delivery system of cancer combination therapy. Journal of controlled release, 318 (October 2019), 16–24. doi: 10.1016/j.jconrel.2019.12.002.
  • Liu, X., et al., 2020b. HHS public access. ACS nano, 13 (1), 38–53. doi: 10.1021/acsnano.8b06164.
  • Lorenzer, C., et al., 2015. Going beyond the liver: progress and challenges of targeted delivery of siRNA therapeutics. Journal of controlled release, 203, 1–15. doi: 10.1016/j.jconrel.2015.02.003.
  • Lu, Y., et al., 2018. Strategies to improve micelle stability for drug delivery. Nano research, 11 (10), 4985–4998. doi: 10.1007/s12274-018-2152-3.
  • Maeda, H., Sawa, T., and Konno, T., 2001. Mechanism of tumour-targeted delivery of macromolecular drugs, including the EPR effect in solid tumour and clinical overview of the prototype polymeric drug SMANCS. Journal of controlled release, 74 (1-3), 47–61. doi: 10.1016/S0168-3659(01)00309-1.
  • Mahato, R., 2017. Nanoemulsion as targeted drug delivery system for cancer therapeutics. Journal of pharmaceutical sciences and pharmacology, 3 (2), 83–97. doi: 10.1166/jpsp.2017.1082.
  • Maherani, B., et al., 2011. Liposomes: a review of manufacturing techniques and targeting strategies. Current nanoscience, 7 (3), 436–452. doi: 10.2174/157341311795542453.
  • Maniam, G., et al., 2018. Challenges and opportunities of nanotechnology as delivery platform for tocotrienols in cancer therapy. Frontiers in pharmacology, 9 (NOV), 1358. doi: 10.3389/fphar.2018.01358.
  • Margalik, D.A., et al., 2022. Prolonged circulating lipid nanoparticles enabled by high-density Gd-DTPA-Bis(stearylamide) for long-lasting enhanced tumor magnetic resonance imaging. Bioconjugate chemistry, 33 (11), 2213–2222. doi: 10.1021/acs.bioconjchem.2c00445.
  • Marte, B., 2020. A dendritic cell cancer vaccine. Nature research. doi: 10.1038/d42859-020-00022-7.
  • Martinelli, C., Pucci, C., and Ciofani, G., 2019. Nanostructured carriers as innovative tools for cancer diagnosis and therapy. APL bioengineering, 3 (1), 011502. doi: 10.1063/1.5079943.
  • Marzuki, N.H.C., Wahab, R.A., and Hamid, M.A., 2019. An overview of nanoemulsion: concepts of development and cos­meceutical applications. Biotechnology & biotechnological equipment, 33 (1), 779–797. doi: 10.1080/13102818.2019.1620124.
  • Messenger RNA Vaccines: Beckoning of a New Era in Cancer Immunotherapy, 2023. [online]. Available from: https://www.cancernetwork.com/view/messenger-rna-vaccines-beckoning-of-a-new-era-in-cancer-immunotherapy?ssp=1&setlang=en-US&safesearch=moderate [Accessed 4 July 2023].
  • Miao, L., Zhang, Y., and Huang, L., 2021. mRNA vaccine for cancer immunotherapy. Molecular cancer, 20 (1), 1–23. doi: 10.1186/s12943-021-01335-5.
  • Mirkin, C. A., Meade, T. J., Petrosko, S. H., Stegh, A. H., eds., 2015. Nanotechnology-based precision tools for the detection and treatment of cancer. 1st ed. Cham: Springer, X, 322. doi: 10.1007/978-3-319-16555-4.
  • Misra, R., Acharya, S., and Sahoo, S.K., 2010. Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug discovery today. 15 (19-20), 842–850. doi: 10.1016/j.drudis.2010.08.006.
  • Moderna/Merck cancer vaccine shows promise in trials, 2023. [online]. Available from: https://cen.acs.org/pharmaceuticals/vaccines/ModernaMerck-cancer-vaccine-shows-promise/100/web/2022/12?ssp=1&setlang=en-US&safesearch=moderate [Accessed 4 July 2023].
  • Moghassemi, S., and Hadjizadeh, A., 2014. Nano-niosomes as nanoscale drug delivery systems: an illustrated review. Journal of controlled release, 185 (1), 22–36. doi: 10.1016/j.jconrel.2014.04.015.
  • Mohamad, T., et al., 2021. Nanoparticles/nanoplatform to carry and deliver the drug molecules to the target site To cite this version : HAL Id : hal-03001393 Title : nanoparticles/Nano platform to carry and deliver the drug molecules to the target site.
  • Mondal, J., Panigrahi, A.K., and Khuda-Bukhsh, A.R., 2014. Conventional chemotherapy: problems and scope for combined therapies with certain herbal products and dietary supplements. Austin journal of cellular and molecular biology, 1 (1), 0–10.
  • Morse, M. A., Gwin, W. R., and Mitchell, D. A., 2021. Vaccine therapies for cancer: then and now. Targeted oncology , 16 (2), 121–152. doi: 10.1007/s11523-020-00788-w.
  • Mumtaz, S., Ghosh, P.C., and Bachhawat, B.K., 1991. Design of liposomes for circumventing the reticuloendothelial cells. Glycobiology, 1 (5), 505–510. doi: 10.1093/glycob/1.5.505.
  • Muñoz de Escalona, M., et al., 2016. Magnetic solid lipid nanoparticles in hyperthermia against colon cancer. International journal of pharmaceutics, 504 (1-2), 11–19. doi: 10.1016/j.ijpharm.2016.03.005.
  • Muraca, G., Berti, I. R., Sbaraglini, M. L., Fávaro, W. J., Durán, N., Castro, G. R., and Talevi, A., 2020. Trypanosomatid-caused conditions: state of the art of therapeutics and potential applications of lipid-based nanocarriers. Frontiers in chemistry, 8, 601151. doi: 10.3389/fchem.2020.601151.
  • Nakamura, T., et al., 2020. The effect of size and charge of lipid nanoparticles prepared by microfluidic mixing on their lymph node transitivity and distribution. Molecular pharmaceutics, 17 (3), 944–953. doi: 10.1021/acs.molpharmaceut.9b01182.
  • Ngo, D.C., et al., 2015. Introduction to the molecular basis of cancer metabolism and the Warburg effect. Molecular biology reports, 42 (4), 819–823. doi: 10.1007/s11033-015-3857-y.
  • Nguyen, T.X., et al., 2016. Recent advances in liposome surface modification for oral drug delivery. Nanomedicine, 11 (9), 1169–1185. doi: 10.2217/nnm.16.9.
  • Nounou, M., et al., 2008. Liposomal formulation for dermal and transdermal drug delivery: past, present and future. Recent patents on drug delivery & formulation, 2 (1), 9–18. doi: 10.2174/187221108783331375.
  • Obeid, M.A., et al., 2017. Formulation of nonionic surfactant vesicles (NISV) prepared by microfluidics for therapeutic delivery of siRNA into cancer cells. Molecular pharmaceutics, 14 (7), 2450–2458. doi: 10.1021/acs.molpharmaceut.7b00352.
  • Obeid, M. A., et al., 2018. Chapter 8 – Lipid-based nanoparticles for cancer treatment. In: A.M. Grumezescu, ed., Lipid nanocarriers for drug targeting. Norwich, NY: William Andrew Publishing, 313–359.
  • Pastor, F., et al., 2018. A RNA toolbox for cancer immunotherapy. Nature reviews drug discovery, 17 (10), 751–767. doi: 10.1038/nrd.2018.132.
  • Patil, Y.P., and Jadhav, S., 2014. Novel methods for liposome preparation. Chemistry and physics of lipids, 177, 8–18. doi: 10.1016/j.chemphyslip.2013.10.011.
  • Peng, J., et al., 2021. Targeted lipid nanoparticles encapsulating dihydroartemisinin and chloroquine phosphate for suppressing the proliferation and liver metastasis of colorectal cancer. Frontiers in pharmacology, 12 (October), 720777. doi: 10.3389/fphar.2021.720777.
  • Pérez-Herrero, E., and Fernández-Medarde, A., 2015. Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. European journal of pharmaceutics and biopharmaceutics, 93, 52–79. doi: 10.1016/j.ejpb.2015.03.018.
  • PROVENGE (sipuleucel-T) | FDA, 2024. [online]. Available from: https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/provenge-sipuleucel-t [Accessed 3 February 2024].
  • Prow, T.W., et al., 2011. Nanoparticles and microparticles for skin drug delivery. Advanced drug delivery reviews, 63 (6), 470–491. doi: 10.1016/j.addr.2011.01.012.
  • Puri, A., et al., 2009. Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Critical reviews in therapeutic drug carrier systems, 26 (6), 523–580. doi: 10.1615/critrevtherdrugcarriersyst.v26.i6.10.
  • Qiao, Y., et al., 2018. Stimuli-responsive nanotherapeutics for precision drug delivery and cancer therapy, (February), 1–20.
  • Qiu, M., et al., 2022. Lung-selective mRNA delivery of synthetic lipid nanoparticles for the treatment of pulmonary lymphangioleiomyomatosis. Proceedings of the national academy of sciences, 119 (8), 1–10. doi: 10.1073/pnas.2116271119.
  • Rawal, M., Singh, A., and Amiji, M.M., 2019. Quality-by-design concepts to improve nanotechnology-based drug development. Pharmaceutical research, 36 (11), 153. doi: 10.1007/s11095-019-2692-6.
  • Riaz, M.K., et al., 2018. Surface functionalization and targeting strategies of liposomes in solid tumor therapy: a review. International journal of molecular sciences, 19 (1), 195. doi: 10.3390/ijms19010195.
  • Ritwiset, A., Krongsuk, S., and Johns, J.R., 2016. Molecular structure and dynamical properties of niosome bilayers with and without cholesterol incorporation: a molecular dynamics simulation study. Applied surface science, 380, 23–31. doi: 10.1016/j.apsusc.2016.02.092.
  • Roces, C.B., et al., 2020. Manufacturing considerations for the development of lipid nanoparticles using microfluidics. Pharmaceutics, 12 (11), 1095. doi: 10.3390/pharmaceutics12111095.
  • Sabharwal, S.S., and Schumacker, P.T., 2014. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel? Nature reviews. Cancer, 14 (11), 709–721. doi: 10.1038/nrc3803.
  • Samaddar, S., et al., 2021. Immunostimulatory response of RWFV peptide-targeted lipid nanoparticles on bladder tumor associated cells. ACS applied bio materials, 4 (4), 3178–3188. doi: 10.1021/acsabm.0c01572.
  • Schlacher, K., 2018. A new road to cancer-drug resistance. Nature, 563 (7732), 478–480. doi: 10.1038/d41586-018-07188-1.
  • Scioli Montoto, S., Muraca, G., and Ruiz, M.E., 2020. Solid lipid nanoparticles for drug delivery: pharmacological and biopharmaceutical aspects. Frontiers in molecular biosciences, 7, 587997. doi: 10.3389/fmolb.2020.587997.
  • Search | European Medicines Agency, 2024. [online]. Available from: https://www.ema.europa.eu/en/search?search_api_fulltext=cancer%20vaccines&f%5B0%5D=ema_search_categories%3A83&f%5B1%5D=ema_medicine_bundle%3Aema_medicine&f%5B2%5D=ema_med_status%3A100108&landing_from=73303 [Accessed 20 January 2024].
  • Seidu, T.A., et al., 2022. Functionalisation of nanoparticulate drug delivery systems and its influence in cancer therapy. Pharmaceutics, 14 (5), 1113. doi: 10.3390/pharmaceutics14051113.
  • Sethuraman, V., et al., 2021. In vivo synergistic anti-tumour effect of lumefantrine combined with pH-responsive behaviour of nano calcium phosphate-based lipid nanoparticles on lung cancer. European journal of pharmaceutical sciences, 158, 105657. doi: 10.1016/j.ejps.2020.105657.
  • Sheoran, S., et al., 2022. Lipid-based nanoparticles for treatment of cancer. Heliyon, 8 (5), e09403. doi: 10.1016/j.heliyon.2022.e09403.
  • Siegel, R.L., et al., 2021. Cancer statistics, 2021. CA: A cancer journal for clinicians, 71 (1), 7–33. doi: 10.3322/caac.21654.
  • Singh, A. K., et al., 2019. Chapter 15 – Engineering nanomaterials for smart drug release: recent advances and challenges. In: S.S. Mohapatra, S. Ranjan, N. Dasgupta, R.K. Mishra, and S. Thomas, eds. Micro and nano technologies, applications of targeted nano drugs and delivery systems. Amsterdam: Elsevier, 411–449.
  • Snow, A., et al., 2022. Development of a mRNA lipid nano­particle (mRNA-LNP) cancer vaccine to prevent leukemia relapse after stem cell transplant. Blood, 140 (Supplement 1), 7382–7383. doi: 10.1182/blood-2022-160218.
  • Sofias, A.M., et al., 2020. Tumour targeting by αvβ3-integrin-specific lipid nanoparticles occurs via phagocyte hitchhiking. ACS nano. 14 (7), 7832–7846. doi: 10.1021/acsnano.9b08693.
  • Srikrishna, D., and Sachsenmeier, K., 2021. We need to bring R0 < 1 to treat cancer, too. Genome medicine, 13 (1), 1–4. doi: 10.1186/s13073-021-00940-9.
  • Study Record | Beta ClinicalTrials.gov, 2023. [online]. Available from: https://beta.clinicaltrials.gov/study/NCT04675996?distance=50&cond=cancer%20&term=lipid%20nanoparticle&rank=1 [Accessed 15 January 2023].
  • Sun, C., et al., 2021a. Redox-sensitive polymeric micelles with aggregation-induced emission for bioimaging and delivery of anticancer drugs. Journal of nanobiotechnology, 19 (1), 14. doi: 10.1186/s12951-020-00761-9.
  • Sun, Y., et al., 2021b. Co-delivery of chemotherapeutic drugs and cell cycle regulatory agents using nanocarriers for cancer therapy. Science China materials, 64 (8), 1827–1848. doi: 10.1007/s40843-020-1627-4.
  • Szikriszt, B., et al., 2016. A comprehensive survey of the mutagenic impact of common cancer cytotoxics. Genome biology, 17 (1), 1–16. doi: 10.1186/s13059-016-0963-7.
  • Tadros, T., et al., 2004. Formation and stability of nano-emulsions. Advances in colloid and interface science, 108-109, 303–318. doi: 10.1016/j.cis.2003.10.023.
  • Tang, L., et al., 2022. An enzyme-responsive and NIR-triggered lipid-polymer hybrid nanoplatform for synergistic photothermal/chemo cancer therapy. Biomaterials science, 10 (9), 2370–2383. doi: 10.1039/d2bm00216g.
  • Tapeinos, C., Battaglini, M., and Ciofani, G., 2017. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. Journal of controlled release, 264, 306–332. doi: 10.1016/j.jconrel.2017.08.033.
  • Tateshita, N., et al., 2019. Development of a lipoplex-type mRNA carrier composed of an ionizable lipid with a vitamin E scaffold and the KALA peptide for use as an ex vivo dendritic cell-based cancer vaccine. Journal of controlled release, 310 (August), 36–46. doi: 10.1016/j.jconrel.2019.08.002.
  • Ultrasound-triggered herceptin liposomes for breast cancer therapy - PubMed, 2023. [online]. Available from: https://pubmed.ncbi.nlm.nih.gov/33824356/ [Accessed 13 January 2023].
  • Van Der Kolk, D.M., et al., 2002. The role of drug efflux pumps in acute myeloid leukaemia. Leukemia & lymphoma, 43 (4), 685–701. doi: 10.1080/10428190290016773.
  • Van Hoecke, L., et al., 2021. mRNA in cancer immunotherapy: beyond a source of antigen. Molecular cancer, 20 (1), 48. doi: 10.1186/s12943-021-01329-3.
  • Vasan, N., Baselga, J., and Hyman, D.M., 2019. A view on drug resistance in cancer. Nature, 575 (7782), 299–309. doi: 10.1038/s41586-019-1730-1.
  • Vernazza, S., et al., 2021. Lipoperoxide nanoemulsion as an adjuvant in cisplatin cancer therapy: in vitro study on human colon adenocarcinoma did-1 cells. Nanomaterials, 11 (6), 1365. doi: 10.3390/nano11061365.
  • Wang, J.Z., et al., 2021. The role of the HIF-1α/ALYREF/PKM2 axis in glycolysis and tumorigenesis of bladder cancer. Cancer communications (london, England), 41 (7), 560–575. doi: 10.1002/cac2.12158.
  • Warburg, O., Wind, F., and Negelein, E., 1927. Killing-off of tumor cells in vitro. The journal of general physiology, 8 (6), 519–530. I doi: 10.1085/jgp.8.6.519.
  • Why Do Cancer Treatments Stop Working? - NCI, 2023. [online]. Available from: https://www.cancer.gov/about-cancer/treatment/research/drug-combo-resistance [Accessed 1 March 2023].
  • Without these lipid shells, there would be no mRNA vaccines for COVID-19, 2023. [online]. Available from: https://cen.acs.org/pharmaceuticals/drug-delivery/Without-lipid-shells-mRNA-vaccines/99/i8 [Accessed 10 January 2023].
  • Witzigmann, D., et al., 2020. Lipid nanoparticle technology for therapeutic gene regulation in the liver. Advanced drug delivery reviews, 159, 344–363. doi: 10.1016/j.addr.2020.06.026.
  • Worldwide Cancer Data | World Cancer Research Fund International, 2023. [online]. Available from: https://www.wcrf.org/cancer-trends/worldwide-cancer-data/?ssp=1&darkschemeovr=1&setlang=en-US&safesearch=moderate [Accessed 4 July 2023].
  • Wu, Q., et al., 2014. Multi-drug resistance in cancer chemotherapeutics: mechanisms and lab approaches. Cancer letters, 347 (2), 159–166. doi: 10.1016/j.canlet.2014.03.013.
  • Xiang, D., et al., 2015. Nucleic acid aptamer-guided cancer therapeutics and diagnostics: the next generation of cancer medicine. Theranostics, 5 (1), 23–42. doi: 10.7150/thno.10202.
  • Xu, W., Ling, P., and Zhang, T., 2013. Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. Journal of drug delivery, 2013, 340315–340315. doi: 10.1155/2013/340315.
  • Yan, W., Leung, S.S.Y., and To, K.K.W., 2019. Updates on the use of liposomes for active tumour targeting in cancer therapy. Nanomedicine (London, England), 15 (3), 303–318. doi: 10.2217/nnm-2019-0308.
  • Yang, J., et al., 2020. The enhancement of glycolysis regulates pancreatic cancer metastasis. Cellular and molecular life sciences: CMLS, 77 (2), 305–321. doi: 10.1007/s00018-019-03278-z.
  • Yazdi, M. K., et al., 2019. Controlled/localized release and nanotechnology. In: Nanoengineered biomaterials for advanced drug delivery. Cambridge: Woodhead Publishing, 27–36.
  • Yavlovich, A., et al., 2010. Light-sensitive lipid-based nanoparticles for drug delivery: design principles and future considerations for biological applications. Molecular membrane biology, 27 (7), 364–381. doi: 10.3109/09687688.2010.507788.
  • Yingchoncharoen, P., Kalinowski, D.S., and Richardson, D.R., 2016. Lipid-based drug delivery systems in cancer therapy: what is available and what is yet to come. Pharmacological reviews, 68 (3), 701–787. doi: 10.1124/pr.115.012070.
  • Yokoyama, M., 2010. Polymeric micelles as a new drug carrier system and their required considerations for clinical trials. Expert opinion on drug delivery, 7 (2), 145–158. doi: 10.1517/17425240903436479.
  • Yonezawa, S., Koide, H., and Asai, T., 2020. Recent advances in siRNA delivery mediated by lipid-based nanoparticles. Advanced drug delivery reviews, 154-155, 64–78. doi: 10.1016/j.addr.2020.07.022.
  • Yu, L.X., et al., 2014. Understanding pharmaceutical quality by design. The AAPS journal, 16 (4), 771–783. doi: 10.1208/s12248-014-9598-3.
  • Zanesco-Fontes, I., et al., 2021. [10]-Gingerol-loaded nanoemulsion and its biological effects on triple-negative breast cancer cells. AAPS PharmSciTech, 22 (5), 157. doi: 10.1208/s12249-021-02006-w.
  • Zhai, J., et al., 2018. Paclitaxel-loaded self-assembled lipid nanoparticles as targeted drug delivery systems for the treatment of aggressive ovarian cancer. ACS applied materials & interfaces, 10 (30), 25174–25185. doi: 10.1021/acsami.8b08125.
  • Zhang, Z., n.d. Switchable and responsive surfaces and materials for biomedical applications.
  • Zheng, G., et al., 2019. Improving breast cancer therapy using doxorubicin-loaded solid lipid nanoparticles: synthesis of a novel arginine-glycine-aspartic tripeptide conjugated, pH-sensitive lipid and evaluation of the nanomedicine in vitro and in vivo. Biomedicine & pharmacotherapy, 116 (440), 109006. doi: 10.1016/j.biopha.2019.109006.
  • Zheng, K., et al., 2020. Cantharidin-loaded functional mesoporous titanium peroxide nanoparticles for non-small cell lung cancer targeted chemotherapy combined with highly effective photodynamic therapy. Thoracic cancer, 11 (6), 1476–1486. doi: 10.1111/1759-7714.13414.
  • Zeng, L., et al., 2023. Advancements in nanoparticle-based treatment approaches for skin cancer therapy. Molecular cancer, 22 (1), 10. doi: 10.1186/s12943-022-01708-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.