19,810
Views
516
CrossRef citations to date
0
Altmetric
Original

High intensity focused ultrasound: Physical principles and devices

&
Pages 89-104 | Received 22 Dec 2006, Accepted 24 Dec 2006, Published online: 09 Jul 2009

References

  • Sapareto DG, Dewey WC. Thermal dose determination in cancer therapy. Br J Radiation Oncology Biol Phys Med 1984; 10: 787–800
  • Dewhirst MW, Viglianti BL, Lora-Michiels M, Hanson M, Hoopes PJ. Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int J Hyperther 2003; 19: 267–294
  • Fosse E. Thermal ablation of benign and malignant tumours. Minim Invasive Ther Allied Technol 2006; 15: 2–3
  • Lee JM, Han JK, Chang JM, Chung SY, Son KR, Kim SH, Lee JY, Choi BI. Radiofrequency renal ablation: In vivo comparison of internally cooled, multitined expandable and internally cooled perfusion electrodes. J Vasc Interv Radiol 2006; 17: 549–556
  • Papagelopoulos PJ, Mavrogenis AF, Galanis EC, Kelekis NL, Wenger DE, Sim FH, Soucacos PN. Minimally invasive techniques in orthopedic oncology: Radiofrequency and laser thermal ablation. Orthopedics 2005; 28: 563–568
  • Nikfarjam M, Muralidharan V, Su K, Malcontenti-Wilson C, Christophi C. Patterns of heat shock protein (HSP70) expression and Kupffer cell activity following thermal ablation of liver and colorectal liver metastases. Int J Hyperther 2005; 21: 319–332
  • Lee JM, Han JK, Kim SH, Han CJ, An SK, Lee JY, Choi B. Wet radio-frequency ablation using multiple electrodes: Comparative study of bipolar versus monopolar modes in the bovine liver. Eur J Radiol 2005; 54: 408–417
  • Onishi H, Matsushita M, Murakami T, Tono T, Okamoto S, Aoki Y, Iannaccone R, Hori M, Kim T, Osuga K, et al. MR appearances of radiofrequency thermal ablation region: Histopathologic correlation with dog liver models and an autopsy case. Acad Radiol 2004; 11: 1180–1189
  • Galandi D, Antes G. Radiofrequency thermal ablation versus other interventions for hepatocellular carcinoma. Cochrane Database Syst Rev 2004; 2: CD003046
  • Izzo F. Other thermal ablation techniques: Microwave and interstitial laser ablation of liver tumors. Ann Surg Oncol 2003; 10: 491–497
  • Puls R, Stroszczynski C, Gaffke G, Hosten N, Felix R, Speck U. Laser-induced thermotherapy (LITT) of liver metastases: MR-guided percutaneous insertion of an MRI-compatible irrigated microcatheter system using a closed high-field unit. J Magn Reson Imaging 2003; 17: 663–670
  • Ng KK, Lam CM, Poon RT, Ai V, Tso WK, Fan ST. Thermal ablative therapy for malignant liver tumors: A critical appraisal. J Gastroenterol Hepatol 2003; 18: 616–629
  • Pacella CM, Bizzarri G, Magnolfi F, Cecconi P, Caspani B, Anelli V, et al. Laser thermal ablation in the treatment of small hepatocellular carcinoma: Results in 74 patients. Radiology 2001; 221: 712–720
  • Shibata T, Niinobu T, Ogata N. Comparison of the effects of in-vivo thermal ablation of pig liver by microwave and radiofrequency coagulation. J Hepatobiliary Pancreat Surg 2000; 7: 592–598
  • Warwick R, Pond JB. Trackless lesions in nervous tissues produced by high intensity focused ultrasound (High frequcncy mechanical waves). J Acoust Soc Am 1968; 102: 387–405
  • Pond JB. The role of heat in the production of ultrasonic focal lesions. J Acoust Soc Am 1970; 47: 1607–1611
  • ter Haar GR, Robertson D. Tissue destruction with focused ultrasound in vivo. Eur Urol 1993; 23(Suppl. 1)8–11
  • Hynynen K, Colucci V, Chung A, Jolesz F. Noninvasive arterial-occlusion using mri-guided focused ultrasound. Ultrasound Med Biol 1996; 22: 1071–1077
  • Rivens IH, Rowland IJ, Denbow M, Fisk N, ter Haar GR, Leach MO. Vascular occlusion using focused ultrasound surgery for use in fetal medicine. Eur J Ultrasound 1998; 00
  • Susani M, Madersbacher S, Kratzik C, Vingers L, Marberger M. Morphology of tissue destruction induced by focused ultrasound. Eur Urol 1993; 23(Suppl. 1)34–38
  • Vaezy S, Martin R, Yaziji H, Kaczkowski P, Keilman G, Carter S, Caps M, Chi EY, Bailey M, Crum L. Hemostasis of punctured blood vessels using high-intensity focused ultrasound. Ultrasound Med Biol 1998; 24: 903–910
  • Vaezy S, Vaezy S, Starr F, Chi E, Cornejo C, Crum L, Martin RW. Intra-operative acoustic hemostasis of liver: Production of a homogenate for effective treatment. Ultrasonics 2005; 43: 265–269
  • Vaezy S, Martin R, Kaczkowski P, Keilman G, Goldman B, Yaziji H, Carter S, Caps M, Crum L. Use of high-intensity focused ultrasound to control bleeding. J Vas Surg 1999; 29: 533–542
  • Wu F, Chen WZ, Bai J, Zou JZ, Wang ZL, Zhu H, Wang ZB. Pathological changes in human malignant carcinoma treated with high-intensity focused ultrasound. Ultrasound Med Biol 2001; 27: 1099–1106
  • Wu F, Chen WZ, Bai J, Zou JZ, Wang ZL, Zhu H, Wang ZB. Tumor vessel destruction resulting from high-intensity focused ultrasound in patients with solid malignancies. Ultrasound Med Biol 2002; 28: 535–542
  • Yang R, Sanghvi NT, Rescorla FJ, Kopecky KK, Grosfeld JL. Liver cancer ablation with extracorporeal high-intensity focused ultrasound. Eur Urol 1993; 23(Suppl. 1)17–22
  • Fallon J.Y. Stehbens WE, Eggleton RC. Effect of ultrasound on arteries. Arch Path 1972; 94: 380–388
  • Ishikawa T, Okai T, Sasaki K, Umemura S, Fujiwara R, Kushima M, Ichihara M, Ichizuha K. Functional and histological changes in rat femoral arteries by HIFU exposure. Ultrasound Med Biol 2003; 29: 1471–1477
  • Lynn JG, Zwemer RL, Chick AJ, Miller AE. A new method for the generation and use of focused ultrasound in experimental biology. J Gen Physiol 1942; 26: 179–192
  • Ballantine HT, Bell E, Manlapaz J. Progress and problems in the neurological applications of focused ultrasound. J Neurosurg 1960; 17: 858–876
  • Fry WJ, Fry FJ. Fundamental neurological research and human neurosurgery using intense ultrasound. IRE Trans Biomed Electronics 1960; ME-7: 166–181
  • Lynn JG, Putnam TJ. Histological and cerebral lesions prodcued by focused ultrasound. Am J Pathol 1944; 20: 637–649
  • Wall P.D, Fry WJ, Stephens R, Tucker D, Lettvin JY. Changes produced in the central nervous system by ultrasound. Science 1951; 114: 686–687
  • Bakay L, Hueter TF, Ballantine HT, Sosa D. Ultrasonically induced changes in the blood brain barrier. A M A Arch Neuro Psychiatr 1956; 00: 457–467
  • Fry FJ, Johnson LK. Tumour irradiation with intense ultrasound. Ultrasound Med Biol 1978; 4: 337–341
  • Fry WJ, Barnard JW, Fry FJ, Krumins RF, Brennan JF. Ultrasonic lesions in the mammalian central nervous system. Science 1955; 122: 517–518
  • Fry FJ, Kossoff G, Eggleton RC, Dunn F. Threshold ultrasound dosages for structural changes in the mammalian brain. J Acoust Soc Am 1970; 48: 1413–1417
  • Aubry JF, Tanter M, Pernot M, Thomas JL, Fink M. Experimental demonstration of noninvasive transskull adaptive focusing based on prior computed tomography scans. J Acoust Soc Am 2003; 113: 84–93
  • Clement GT, White J, Hynynen K. Investigation of a large-area phased array for focused ultrasound surgery through the skull. Phys Med Biol 2000; 45: 1071–1083
  • Lavine O, Langenstrass K, Bowyer C, Fox F, Griffing V, Thaler W. Effects of ultrasonic waves on the refractive media of the eye. Arch Ophthalmol 1952; 47: 204–209
  • Rosenberg RS, Purnell E. Effects of ultrasonic radiation on the ciliary body. Am J Ophthalmol 1967; 63: 403–409
  • Coleman DJ, Lizzi FL, El-Mofty AAM, Driller J, Franzen LA. Ultrasonically accelerated absorption of vitreous membranes. Am J Ophthalmol 1980; 89: 490–499
  • Coleman DJ, Lizzi FL, Torpey JH, Burgess SEP, Driller J, Rosado AL, et al. Treatment of experimental lens capsular tears with intense focused ultrasound. Br J Ophthalmol 1985; 69: 645–649
  • Coleman DJ, Lizzi FL, Driller J, Rosado AL, Burgess SEP, Torpey JH, Smith ME, Silverman RH, Yablonshi ME, Chang S, et al. Therapeutic ultrasound in the treatment of Glaucoma – II Clinical Applications. Ophthalmol 1985; 92: 347–353
  • Lizzi FL, Coleman DJ, Driller J, Franzen LA, Jackobiec FA. Experimental ultrasonically induced lesions in the retina, choroid, and sclera. Invest Ophthal 1978; 17: 350–360
  • Purnell E, Sokollu A, Torchia R, Taner N. Focal chorioretinitis produced by ultrasound. Invest Ophthal 1964; 3: 657–664
  • Coleman DJ, Lizzi FL, Driller J, Rosado AL, Chang S, Iwamoto T, et al. Therapeutic ultrasound in the treatment of Glaucoma – I Experimental Model. Ophthalmol 1985; 92: 339–346
  • Silverman RH, Vogelsang B, Rondeau MJ, Coleman DJ. Therapeutic ultrasound for the treatment of glaucoma. Am J Ophthalmol 1991; 111: 327–337
  • Burgess SEP, Iwamoto T, Coleman DJ, Lizzi FL, Driller J, Rosado AL. Histological changes in porcine eyes treated with high intensity focused ultrasound. Ann Ophthalmol 1987; 19: 133–138
  • Lizzi FL, Coleman DJ, Driller J, Ostromogilsky M, Chang S, Grenall P. Ultrasonic hyperthermia for ophthalmic therapy. IEEE Trans Son Ultrason 1984; SU-31: 473–481
  • Rosecan LR, Iwamoto T, Rosado AL, Lizzi FL, Coleman DJ. Therapeutic ultrasound in the treatment of retinal detachment: Clinical observation and light and electron microscopy. Retina 1985; 5: 115–122
  • Chen S. MRI-guided focused ultrasound treatment of uterine fibroids. Issues Emerg Health Technol 2005; 70: 1–4
  • Tempany CM, Stewart EA, McDannold N, Quade BJ, Jolesz FA, Hynynen K. MR imaging-guided focused ultrasound surgery of uterine leiomyomas: A feasibility study. Radiology 2003; 226: 897–905
  • McDannold N, Tempany CM, Fennessy FM, So MJ, Rybicki FJ, Stewart EA, et al. Uterine leiomyomas: MR imaging-based thermometry and thermal dosimetry during focused ultrasound thermal ablation. Radiology 2006; 240: 263–272
  • He H-y, Lu L-l, Zhou Y-j, Nie Y-q. @ Clinical of study on curing leiomyoma with high intensity focused ultrasound. 1–1–2004; 37–41
  • Gelet A, Chapelon JY, Margonari J, Theilliere Y, Gorry F, Souchon R, et al. High-intensity focused ultrasound experimentation on human benign prostatic hypertrophy. Eur Urol 1993; 23: 44–47
  • Madersbacher S, Kratzik C, Susani M, Marberger M. Tissue ablation in benign prostatic hyperplasia with high intensity focused ultrasound. J Urol 1994; 152: 1956–1961
  • Madersbacher S, Pedevilla M, Vingers L, Susani M, Marberger M. Effect of high intensity focused ultrasound on human prostate cancer in-vivo. Cancer Res 1995; 55: 3346–3351
  • Mulligan ED, Lynch TH, Mulvin D, Greene D, Smith JM, Fitzpatrick JM. High-intensity focused ultrasound in the treatment of benign prostatic hyperplasia. Br J Urol 1997; 79: 177–180
  • Sanghvi NT, Fry FJ, Bihrle R, Foster RS, Phillips MH, Syrus J, Zaitsev AV, Hennige CW. Noninvasive surgery of prostate tissue by high-intensity focused ultrasound. IEEE Trans Ultrason Ferr 1996; 43: 1099–1110
  • Sullivan LD, McLoughlin MG, Goldenberg LG, Gleave ME, Marich KW. Early experience with high-intensity focused ultrasound for the treatment of benign prostatic hypertrophy. Br J Urol 1997; 79: 172–176
  • Madersbacher S, Schatzl G, Djavan B, Stulnig T, Marberger M. Long-term outcome of transrectal high- intensity focused ultrasound therapy for benign prostatic hyperplasia. Eur Urol 2000; 37: 687–694
  • Chapelon JY, Gelet A, Souchon R, Pangaud C, Blanc E. Therapy using ultrasound: Application to localised prostate cancer. J D’Echographie et de Medecine Par Ultrasons 1998; 19: 260–264
  • Gelet A, Chapelon JY, Bouvier R, Souchon R, Pangaud C, Abdelrahim AF, Cathignol D, Dubernard JM. Treatment of prostate cancer with transrectal focused ultrasound: Early clinical experience. Eur Urol 1996; 29: 174–183
  • Gelet A, Chapelon JY, Bouvier R, Rouviere O, Lasne Y, Lyonnet D, Dubernard JM. Transrectal high-intensity focused ultrasound: Minimally invasive therapy of localized prostate cancer. J Endourol 2000; 14: 519–528
  • Gelet A, Chapelon JY, Bouvier R, Rouviere O, Lyonnet D, Dubernard JM. Transrectal high intensity focused ultrasound for the treatment of localized prostate cancer: Factors influencing the outcome. Eur Urol 2001; 40: 124–129
  • Madersbacher S, Marberger M. High-energy shockwaves and extracorporeal high-intensity focused ultrasound. J Endourol 2003; 17: 667–672
  • Beerlage HP, Thuroff S, Debruyne FMJ, Chaussy C, de la Rosette JJMC. Transrectal high-intensity focused ultrasound using the ablatherm device in the treatment of localized prostate carcinoma. Urology 1999; 54: 273–277
  • Beerlage HP, van Leenders GJLH, Oosterhof GON, Witjes JA, Ruijter ET, van de Kaa CA, Debruyne FMJ. High-intensity focused ultrasound (HIFU) followed after one to two weeks by radical retropubic prostatectomy: Results of a prospective study. Prostate 1999; 39: 41–46
  • Chaussy C, Thuroff S. High-intensity focused ultrasound in prostate cancer: Results after 3 years. Mol Urol 2000; 4: 179–182
  • Chaussy C, Thuroff S, dela Rosette JJMC. Results and side effects of high-intensity focused ultrasound in localized prostate cancer. J Endourol 2001; 15: 437–440
  • Chaussy C, Thuroff S. The status of high-intensity focused ultrasound in the treatment of localized prostate cancer and the impact of a combined resection. Curr Urol Rep 2003; 4: 248–252
  • Blana A, Walter B, Rogenhofer S, Wieland WF. High-intensity focused ultrasound for the treatment of localized prostate cancer: 5-year experience. Urology 2004; 63: 297–300
  • Poissonnier L, Gelet A, Chapelon JY, Bouvier R, Rouviere O, Pangaud C, et al. Results of transrectal focused ultrasound for the treatment of localized prostate cancer (120 patients with PSA < or + 10 ng/ml). Prog Urol 2003; 13: 60–72
  • Blana A, Rogenhofer S, Ganzer R, Wild PJ, Wieland WF, Walter B. Morbidity associated with repeated transrectal high-intensity focused ultrasound treatment of localized prostate cancer. World J Urol 2006; 585–590
  • Poissonnier L, Chapelon JY, Rouviere O, Curiel L, Bouvier R, Martin X, et al. Control of prostate cancer by transrectal HIFU in 227 Patients. Eur Urol 2006; 00
  • Azzouz H, de la Rosette JJMC. HIFU: Local treatment of prostate cancer. EAU-EBU Update Series 2006; 4: 62–70
  • Chaussy C, roff S, Rebillard X, Gelet A. Technology insight: High-intensity focused ultrasound for urologic cancers. Nat Clin Pract Urol 2005; 2: 191–198
  • Gelet A, Chapelon JY, Poissonnier L, Bouvier R, Rouviere O, Curiel L, et al. Local recurrence of prostate cancer after external beam radiotherapy: Early experience of salvage therapy using high-intensity focused ultrasonography. Urology 2004; 63: 625–629
  • Chaussy C, Thuroff S, Bergsdorf T. [Local recurrence of prostate cancer after curative therapy: HIFU (Ablatherm((R))) as a treatment option.]. Urologe A 2006; 45: 1271–1275
  • Kratzik C, Schatzl G, Lackner J, Marberger M. Transcutaneous high-intensity focused ultrasonography can cure testicular cancer in solitary testis. Urology 2006; 67: 1269–1273
  • Bamber J, ter Haar GR, Hill C. Physical Principles of medical Ultrasound. 2nd ed. Wiley, London 2004
  • Hill CR. Optimum Acoustic Frequency for focused ultrasound surgery. Ultrasound Med Biol 1994; 20: 271–277
  • Hynynen K, Watmough DJ, Mallard JR. The effects of some physical factors on the production of hyperthermia by ultrasound in neoplastic tissues. Radiat Environ Biophys 1981; 19: 215–226
  • Duck F.A. Physical Properties of tissues: A comprehensive reference book. Academic Press, London 1990
  • Goss SA, Johnston RL, Dunn F. Comprehensive compilation of empirical ultrasonic properties of mammalian tissues. J Acoust Soc Am 1978; 64: 423–457
  • Goss SA, Johnston RL, Dunn F. Compilation of empirical ultrasonic properties of mammalian tissues. II. J Acoust Soc Am 1980; 68: 93–108
  • Clarke RL, Bush NL, ter Haar GR. The changes in acoustic attenuation due to in vitro heating. Ultrasound Med Biol 2003; 29: 127–135
  • Zderic V, Keshavarzi A, Andrew MA, Vaezy S, Martin RW. Attenuation of porcine tissues in vivo after high-intensity ultrasound treatment. Ultrasound Med Biol 2004; 30: 61–66
  • Browne JE, Ramnarine KV, Watson AJ, Hoskins PR. Assessment of the acoustic properties of common tissue-mimicking test phantoms. Ultrasound Med Biol 2003; 29: 1053–1060
  • Burlew MM, Madsen EL, Zagzebski JA, Banjavic RA, Sum SW. A new ultrasound tissue-equivalent material. Radiology 1980; 134: 517–520
  • Lafon C, Zderic V, Noble ML, Yuen JC, Kaczkowski PJ, Sapozhnikov OA, Chavrier F, Crum L, Vaezy S. Gel phantom for use in high-intensity focused ultrasound dosimetry. Ultrasound Med Biol 2005; 31: 1383–1389
  • Takegami K, Kaneko Y, Watanabe T, Maruyama T, Matsumoto Y, Nagawa H. Polyacrylamide gel containing egg white as new model for irradiation experiments using focused ultrasound. Ultrasound Med Biol 2004; 30: 1419–1422
  • Chen L, ter Haar GR, Hill CR, Dworkin M, Carnochan P, Young H, Bensted JPM. Effect of blood perfusion on the ablation of liver parenchyma with high-intensity focused ultrasound. Phys Med Biol 1993; 38: 1661–1673
  • Huang J, Holt RG, Cleveland RO, Roy RA. Experimental validation of a tractable numerical model for focused ultrasound heating in flow-through tissue phantoms. J Acoust Soc Am 2004; 116: 2451–2458
  • Pennes HH. Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Phycol 1948; 1: 93–122
  • Hamilton M.F, Blackstock DT. Nonlinear Acoustics. Academic Press, New York 1998
  • Leighton T.G. The Acoustic Bubble. Academic Press, London 1994
  • Coussios CC, Farny CH, ter Haar GR, Roy RA. Role of acoustic cavitation in the delivery and monitoring of cancer treatment by high-intensity focussed ultrasound. Int J Hyperther 2007, this issue
  • Holt RG, Roy RA. Measurements of bubble-enhanced heating from focused, MHz-frequency ultrasound in a tissue-mimicking material. Ultrasound Med Biol 2001; 27: 1399–1412
  • Hynynen K. The threshold for thermally significant cavitiation in dog's thigh muscle in vivo. Ultrasound Med Biol 1991; 17: 157–169
  • Khokhlova VA, Bailey MR, Reed JA, Cunitz BW, Kaczkowski PJ, Crum LA. Effects of nonlinear propagation, cavitation, and boiling in lesion formation by high intensity focused ultrasound in a gel phantom. J Acoust Soc Am 2006; 119: 1834–1848
  • Melodelima D, Chapelon JY, Theillere Y, Cathignol D. Combination of thermal and cavitation effects to generate deep lesions with an endocavitary applicator using a plane transducer: Ex vivo studies. Ultrasound Med Biol 2004; 30: 103–111
  • Bailey MR, Couret LN, Sapozhnikov OA, Khokhlova VA, ter Haar G, Vaezy S, Shi X, Martin R, Crum L. Use of overpressure to assess the role of bubbles in focused ultrasound lesion shape in vitro. Ultrasound Med Biol 2001; 27: 695–708
  • Rabkin BA, Zderic V, Vaezy S. Hyperecho in ultrasound images of HIFU therapy: Involvement of cavitation. Ultrasound Med Biol 2005; 31: 947–956
  • Yang X, Roy RA, Holt RG. Bubble dynamics and size distributions during focused ultrasound insonation. J Acoust Soc Am 2004; 116: 3423–3431
  • Lunt MJ, Ashley B. A simple radiation balance for measuring ultrasonic power. J Med Eng Technol 1979; 3: 194–197
  • Preston RC. Output Measurement for Medical Ultrasound. Springer-Verlag, London 1991
  • Shaw A. Delivering the right dose. Conference series: Advanced metrology for ultrasound in medicine. J Phys 2004; 1: 174–179
  • Lewin PA, Bautista R, Devaraju V. Voltage sensitivity response of ultrasonic hydrophones in the frequency range 0.25–2.5 MHz. Ultrasound Med Biol 1999; 25: 1131–1137
  • Lewin PA, Barrie-Smith N, Ide M, Hynynen K, Macdonald M. Interlaboratory acoustic power measurement. J Ultrasound Med 2003; 22: 207–213
  • Lewin PA, Mu C, Umchid S, Daryoush A, El Sherif M. Acousto-optic, point receiver hydrophone probe for operation up to 100 MHz. Ultrasonics 2005; 43: 815–821
  • Lunt MJ, Ashley B. A simple radiation balance for measuring ultrasonic power. J Med Eng Technol 1979; 3: 194–197
  • Schafer ME. Cost-effective shock wave hydrophones. J Stone Dis 1993; 5: 73–76
  • Shotton KC, Bacon DR, Quilliam RM. A pvdf membrane hydrophone for operation in the range 0.5 Mhz to 15 Mhz. Ultrasonics 1980; 18: 123–126
  • Hill CR, Rivens IH, Vaughan MG, ter Haar GR. Lesion development in focused ultrasound surgery: A general model. Ultrasound Med Biol 1994; 20: 259–269
  • Hill CR, Rivens IH, Vaughan MG, ter Haar GR. Lesion development in focused ultrasound surgery: A general model. Ultrasound Med Biol 1994; 20: 259–269
  • Sapareto SA, Dewey WC. Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys 1984; 10: 787–800
  • Rivens I, Shaw A, Civale J, Morris M. Treatment Monitoring & Thermometryfor Therapeutic Focused Ultrasound. Int J Hyperther 2007, this issue
  • Vaezy S, Zderic V. Haemorrhage control using high intensity focused ultrasound. Int J Hyperther 2007
  • Fry FJ. Precision high intensity focused ultrasonic machines for surgery. Am J Phys Med 1958; 37: 152–156
  • Chapelon JY, Cathignol D, Cain C, Ebbini E, Kluiwstra JU, Sapozhnikov OA, Fleury G, Berriet R, Chupin L, Guey JL. New piezoelectric transducers for therapeutic ultrasound. Ultrasound Med Biol 2000; 26: 153–159
  • Clarke RL. Modification of intensity distributions from large aperture ultrasound sources. Ultrasound Med Biol 1995; 21: 353–363
  • Cline HE, Hynynen K, Watkins RD, Adams WJ, Schenck JF, Ettinger RH, Freund WR, Vetro JP, Jolesz FA. Focused US system for MR imaging—guided tumour ablation. Radiology 1995; 194: 731–737
  • Daum DR, Smith NB, King R, Hynynen K. In vivo demonstration of noninvasive thermal surgery of the liver and kidney using an ultrasonic phased array. Ultrasound Med Biol 1999; 25: 1087–1098
  • Dupenloup F, Chapelon JY, Cathignol DJ, Sapozhnikov OA. Reduction of the grating lobes of annular arrays used in focused ultrasound surgery. IEEE Trans Ultrason Ferroelectr Freq Cont 1996; 43: 991–998
  • Fjield T, Silcox CE, Hynynen K. Low-profile lenses for ultrasound surgery. Phys Med Biol 1999; 44: 1803–1813
  • Goss SA, Frizzell LA, Kouzmanoff JT, Barich JM, Yang JM. Sparse random ultrasound phased-array for focal surgery. IEEE Transactions on Ultrason Ferroelectr Freq Cont 1996; 43: 1111–1121
  • Hacker A, Chauhan S, Peters K, Hildenbrand R, Marlinghaus E, Alken P, Michel MS. Multiple high-intensity focused ultrasound probes for kidney-tissue ablation. J Endourol 2005; 19: 1036–1040
  • Held R, Nguyen TN, Vaezy S. Transvaginal 3D image-guided high intensity focused ultrasound array. Applied Physics Laboratory. University of Washington, Seattle, WA 2005, United States: Kyoto
  • Hynynen K, Chung A, Fjield T, Buchanan M, Daum D, Colucci V, et al. Feasibility of using ultrasound phased-arrays for MRI monitored noninvasive surgery. IEEE Trans Ultrason Ferroelectr Freq Cont 1996; 43: 1043–1053
  • Kohrmann KU, Michel MS, Steidler A, Marlinghaus E, Kraut O, Alken P. Technical characterization of an ultrasound source for noninvasive thermoablation by high-intensity focused ultrasound. BJU Int 2002; 90: 248–252
  • Sasaki K, Azuma T, Kawabata KI, Shimoda M, Kokue EI, Umemura SI. Effect of split-focus approach on producing larger coagulation in swine liver. Ultrasound Med Biol 2003; 29: 591–599
  • Wan H, Vanbaren P, Ebbini ES, Cain CA. Ultrasound surgery – comparison of strategies using phased-array systems. IEEE Trans Ultrason Ferroelectr Freq Cont 1996; 43: 1085–1098
  • Wharton I, Rivens I, ter Haar G, Gilderdale D, Collins D, Hand J, Abel P, deSouza N. Design and development of a prototype endocavitary probe for high intensity focused ultrasound delivery with magnetic resonance imaging thermometry and guidance. JMRI 2007, in press
  • Miller NR, Bamber JC, ter Haar GR. Imaging of temperature-induced echo strain: Preliminary in vitro study to assess feasibility for guiding focused ultrasound surgery. Ultrasound Med Biol 2004; 30: 345–356
  • Miller NR, Bamber JC, Meaney PM. Fundamental limitations of noninvasive temperature imaging by means of ultrasound echo strain estimation. Ultrasound Med Biol 2002; 28: 1319–1333
  • Miller NR, Bograchev KM, Bamber JC. Ultrasonic temperature imaging for guiding focused ultrasound surgery: Effect of angle between imaging beam and therapy beam. Ultrasound Med Biol 2005; 31: 401–413
  • Anand A, Kaczkowski PJ. Monitoring formation of high intensity focused ultrasound (HIFU) induced lesions using backscattered ultrasound. Acoustic Research Letters Online 2004; 5: 88–94
  • Andreou C, Blana A, Orovan W, Hassouna M, Warner J, Woods E. Technical review: High-intensity focused ultrasound for prostate cancer. Can J Urol 2005; 12: 2684–2685
  • Christopher T. HIFU focusing efficiency and a twin annular array source for prostate treatment. IEEE Trans Ultrason Ferroelectr Freq Control 2005; 52: 1523–1533
  • Curiel L, Chavrier F, Souchon R, Birer A, Chapelon JY. 1.5-D high intensity focused ultrasound array for non-invasive prostate cancer surgery. IEEE Trans Ultrason Ferroelectr Freq Control 2002; 49: 231–242
  • Rebillard X, Gelet A, Davin JL, Soulie M, Prapotnich D, Cathelineau X, et al. Transrectal high-intensity focused ultrasound in the treatment of localized prostate cancer. J Endourol 2005; 19: 693–701
  • Saleh KY, Smith NB. A 63 element 1.75 dimensional ultrasound phased array for the treatment of benign prostatic hyperplasia. Biomed Eng Online 2005; 4: 39
  • Seip R, Chen W, Carlson R, Frizzell L, Buffet C, Cathignol D. Annular and cylindrical phased array geometries for transrectal High-Intensity Focused Ultrasound (HIFU) using PZT and piezocomposite materials. 2004; 229–232, Proc ISTU4 AIP
  • Lafon C, Chapelon JY, Prat F, Gorry F, Margonari J, Theillere Y, Cathignol D. Design and preliminary results of an ultrasound applicator for interstitial thermal coagulation. Ultrasound Med Biol 1998; 24: 113–122
  • Prat F, Lafon C, Margonari J, Gorry F, Theillere Y, Chapelon JY, Cathignol D. A high-intensity US probe designed for intraductal tumor destruction: Experimental results. Gastrointest Endosc 1999; 50: 388–392
  • Prat F, Lafon C, Melodelima D, Theillere J-Y, Fritsch J, Pelletier G, Buffet C, Cathignol D. Endoscopic treatment of cholangiocarcinoma and carcinoma of the duodenal papilla by intraductal high-intensity US: Results of a pilot study. Gastrointest Endosc 2002; 56: 909–915
  • Prat F, Lafon C, Theillere J-Y, Fritsch J, Choury A-D, Lorand I, Cathignol D. Destruction of bile duct carcinoma by intraductal high intensity ultrasound during ERCP. Gastrointest Endosc 2001; 53: 797–800
  • Melodelima D, Salomir R, Mougenot C, Moonen C, Cathignon D. In vivo experiments with intraluminal ultrasound applicator compatible with “real-time” MR temperature mapping, designed for oesophagus tumour ablation 2005; 185–187, Proc ISTU4 AIP
  • Melodelima D, Salomir R, Chapelon JY, re Y, Moonen C, Cathignol D. Intraluminal high intensity ultrasound treatment in the esophagus under fast MR temperature mapping: In vivo studies. Magn Reson Med 2005; 54: 975–982
  • Makin I, Faikin W, Mast D, Runk M, Slayton M, Barthe M. Conformal bulk ablation and therapy monitoring using intracorporeal image-Treat Ultrasound Arrays 2005; 27–29, Proc ISTU4AIP
  • Murat F, Lafon C, Gelet A, Martin X, Cathignol D. Bloodless partial nephrectomy through application of non-focused high-intensity ultrasound 2005; 181–184, Proc ISTU4 AIP
  • Wu F, Wang ZB, Chen WZ, Zou JZ, Bai J, Zhu H, Li JQ, Jin CB, Xie FL, Su HB. Advanced hepatocellular carcinoma: Treatment with high-intensity focused ultrasound ablation combined with transcatheter arterial embolization. Radiology 2005; 235: 659–667
  • Illing RO, Kennedy JE, Wu F, ter Haar GR, Protheroe AS, Friend PJ, Gleeson FV, Cranston DW, Phillips RR, Middleton MR. The safety and feasibility of extracorporeal high-intensity focused ultrasound (HIFU) for the treatment of liver and kidney tumours in a Western population. Br J Cancer 2005; 93: 890–895
  • Wu F, Wang ZB, Zhu H, Chen WZ, Zou JZ, Bai J, Li JQ, Jin CB, Xie FL, Su HB. Extracorporeal high intensity focused ultrasound treatment for patients with breast cancer. Breast Cancer Res Treat 2005; 92: 51–60
  • Chen W, Wang Z, Wu F, Zhu H, Zou J, Bai J, Li JQ, Xie FL. High intensity focused ultrasound in the treatment of primary malignant bone tumor. Zhonghua Zhong Liu Za Zhi 2002; 24: 612–615
  • Wu F, Wang ZB, Zhu H, Chen WZ, Zou JZ, Bai J, Li JQ, Jin CB, Xie FL, Su HB. Feasibility of US-guided high-intensity focused ultrasound treatment in patients with advanced pancreatic cancer: Initial experience. Radiology 2005; 236: 1034–1040
  • Sanghvi NT, Foster RS, Bihrle R, Casey R, Uchida T, Phillips MH, Syrus J, Zaitsev AV, Marich WN, Fry FJ. Noninvasive surgery of prostate tissue by high intensity focused ultrasound: An updated report. Eur J Ultrasound 1999; 9: 19–29
  • High-Intensity Focused Ultrasound (HIFU). for the treatment of localized prostate cancer using sonablate-500. Tokai University Hachioji Hospital, Hachioji, KyotoJapan 2005, 04 Sep 18; Department of Urology
  • Li C, Bian D, Chen W, Zhao C, Yin N, Wang Z. Focused ultrasound therapy of vulvar dystrophies: A feasibility study. Obstet Gynecol 2004; 104: 915–921
  • Thomas R, Farny CH, Coussios CC, Roy RR, Holt RG. Dynamics and control of cavitation during high-intensity focused ultrasound application. Acoust Res Lett Onl 2005; 6: 182–187

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.