1,845
Views
72
CrossRef citations to date
0
Altmetric
Original

Treatment monitoring and thermometry for therapeutic focused ultrasound

, , &
Pages 121-139 | Received 30 Oct 2006, Accepted 08 Jan 2007, Published online: 09 Jul 2009

References

  • Hand JW. Heat delivery and thermometry in clinical hyperthermia. Recent Results Cancer Res 1987; 104: 1–23
  • Martin CJ. Temperature measurement in tissues by invasive and non-invasive techniques. Hyperthermia, DJ, Watmough, WM Ross. Blackie & Sons Ltd, London 1986; 154–179
  • Bruggmoser G. Locoregional high-frequency hyperthermia and temperature measurement. Springer-Verlag, Berlin 1986
  • Kapp DS. Thermal dose response, systemic hyperthermia, and metastases: Old friends revisited. Int J Radiat Oncol Biol Phys 1996; 35: 189–194
  • Sapareto DG, Dewey WC. Thermal dose determination in cancer therapy. Br J Radiat Oncol Biol Phys Med 1984; 10: 787–800
  • Dewhirst MW, Viglianti BL, Lora-Michiels M, Hanson M, Hoopes PJ. Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hypertherm. Int J Hypertherm 2003; 19: 267–294
  • Damianou CA, Hynynen K. The effect of various physical parameters on the size and shape of necrosed tissue volume during ultrasound surgery. J Acoust Soc Am 1994; 95: 1641–1649
  • Arora D, Cooley D, Perry T, Skliar M, Roemer RB. Direct thermal dose control of constrained focused ultrasound treatments: Phantom and in vivo evaluation. Phys Med Biol 2005; 50: 1919–1935
  • Chung AH, Hynynen K, Colucci V, Oshio K, Cline HE, Jolesz FA. Optimization of spoiled gradient-echo phase imaging for in-vivo localization of a focused ultrasound beam. Magn Reson Med 1996; 36: 745–752
  • Graham SJ, Chen L, Leitch M, Peters RD, Bronskill MJ, Foster FS, Henkelman RM, Plewes DB. Quantifying tissue damage due to focused ultrasound heating observed by MRI. Magn Reson Med 1999; 41: 321–328
  • Cline HE, Schenck JF, Hynynen K, Watkins RD, Souza SP, Jolesz FA. MR-guided focused ultrasound surgery. J Comput Assist Tomogr 1992; 16: 956–965
  • Goldberg SN, Grassi CJ, Cardella JF, Charboneau JW, Dodd GD, III, Dupuy DE, Gervais D, Gillams AR, Kane RA, Lee FT, Jr, et al. Image-guided tumor ablation: Standardization of terminology and reporting criteria. J Vasc Interv Radiol 2005; 16: 765–778
  • Goldberg SN, Grassi CJ, Cardella JF, Charboneau JW, Dodd GD, III, Dupuy DE, Gervais D, Gillams AR, Kane RA, Lee FT, Jr, et al. Image-guided tumor ablation: Standardization of terminology and reporting criteria. Radiology 2005; 235: 728–739
  • Fry FJ, Sanghvi NT, Morris RF, Smithson S, Atkinson L, Dines K, Franklin TD, Hastings J. A focused ultrasound system for tissue volume ablation in deep seated brain sites. IEEE Ultrason Symp 1986; 1001–1004
  • Lizzi FL, Coleman DJ, Driller J, Silverman RH, Lucas BC, Rosado AL. A therapeutic ultrasound system incorporating real-time ultrasonic scanning. IEEE Symp Son Ultrason 1986; 981–984
  • Ter Haar GR, Sinnet D, Rivens IH. High intensity focused ultrasound—A surgical technique for the treatment of discrete liver tumours. Phys Med Biol 1989; 34: 1743–1750
  • Vaezy S, Shi X, Martin RW, Chi E, Nelson PI, Bailey MR, Crum LA. Real-time visualization of high-intensity focused ultrasound treatment using ultrasound imaging. Ultrasound Med Biol 2001; 27: 33–42
  • Rabkin BA, Zderic V, Vaezy S. Hyperecho in ultrasound images of HIFU therapy: Involvement of cavitation. Ultrasound Med Biol 2005; 31: 947–956
  • Chan AH, Fujimoto VY, Moore DE, Martin RW, Vaezy S. An image-guided high intensity focused ultrasound device for uterine fibroids treatment. Med Phys 2002; 29: 2611–2620
  • Bailey MR, Couret LN, Sapozhnikov OA, Khokhlova VA, Ter Haar G, Vaezy S, Shi X, Martin R, Crum LA. Use of overpressure to assess the role of bubbles in focused ultrasound lesion shape in vitro. Ultrasound Med Biol 2001; 27: 695–708
  • Khokhlova VA, Bailey MR, Reed JA, Cunitz BW, Kaczkowski PJ, Crum LA. Effects of nonlinear propagation, cavitation, and boiling in lesion formation by high intensity focused ultrasound in a gel phantom. J Acoust Soc Am 2006; 119: 1834–1848
  • Ophir J, Cespedes I, Ponnekanti H, Yazdi Y, Li X. Elastography: A quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging 1991; 13: 111–134
  • Kallel F, Stafford RJ, Price RE, Righetti R, Ophir J, Hazle JD. The feasibility of elastographic visualization of HIFU-induced thermal lesions in soft tissues. Image-guided high-intensity focused ultrasound. Ultrasound Med Biol 1999; 25: 641–647
  • Varghese T, Ophir J, Cespedes I. Noise reduction in elastograms using temporal stretching with multicompression averaging. Ultrasound Med Biol 1996; 22: 1043–1052
  • Bamber JC, Bush NL. Freehand elasticity imaging using speckle decorrelation rate. Acoust Imaging 1995; 22: 285–292
  • Doyley MM, Bamber JC, Fuechsel F, Bush NL. A freehand elastographic imaging approach for clinical breast imaging: System development and performance evaluation. Ultrasound Med Biol 2001; 27: 1347–1357
  • Garra BS, Cespedes EI, Ophir J, Spratt SR, Zuurbier RA, Magnant CM, Pennanen MF. Elastography of breast lesions: Initial clinical results. Radiology 1997; 202: 79–86
  • Souchon R, Soualmi L, Bertrand M, Chapelon JY, Kallel F, Ophir J. Ultrasonic elastography using sector scan imaging and a radial compression. Ultrasonics 2002; 40: 867–871
  • de Korte CL, Pasterkamp G, van der Steen AF, Woutman HA, Bom N. Characterization of plaque components with intravascular ultrasound elastography in human femoral and coronary arteries in vitro. Circulation 2000; 102: 617–623
  • Stafford RJ, Kallel F, Price RE, Cromeens DM, Krouskop TA, Hazle JD, Ophir J. Elastographic imaging of thermal lesions in soft tissue: A preliminary study in vitro. Ultrasound Med Biol 1998; 24: 1449–1458
  • Curiel L, Souchon R, Rouviere O, Gelet A, Chapelon JY. Elastography for the follow-up of high-intensity focused ultrasound prostate cancer treatment: Initial comparison with MRI. Ultrasound Med Biol 2005; 31: 1461–1468
  • Kolen AF, Miller NR, Ahmed EE, Bamber JC. Characterization of cardiovascular liver motion for the eventual application of elasticity imaging to the liver in vivo. Phys Med Biol 2004; 49: 4187–4206
  • Varghese T, Shi H. Elastographic imaging of thermal lesions in liver in-vivo using diaphragmatic stimuli. Ultrason Imaging 2004; 26: 18–28
  • Fatemi M, Greenleaf JF. Vibro-acoustography: An imaging modality based on ultrasound-stimulated acoustic emission. Proc Natl Acad Sci USA 1999; 96: 6603–6608
  • Nightingale KR, Palmeri ML, Nightingale RW, Trahey GE. On the feasibility of remote palpation using acoustic radiation force. J Acoust Soc Am 2001; 110: 625–634
  • Nightingale K, Soo MS, Nightingale R, Trahey G. Acoustic radiation force impulse imaging: In vivo demonstration of clinical feasibility. Ultrasound Med Biol 2002; 28: 227–235
  • Barannik EA, Girnyk A, Tovstiak V, Marusenko AI, Emelianov SY, Sarvazyan AP. Doppler ultrasound detection of shear waves remotely induced in tissue phantoms and tissue in vitro. Ultrasonics 2002; 40: 849–852
  • Melodelima D, Bamber JC, Duck FA, Shipley JA, Xu L. Elastography for breast cancer diagnosis using radiation force: System development and performance evaluation. Ultrasound Med Biol 2006; 32: 387–396
  • Srinivasan S, Righetti R, Ophir J. Trade-offs between the axial resolution and the signal-to-noise ratio in elastography. Ultrasound Med Biol 2003; 29: 847–866
  • Righetti R, Ophir J, Ktonas P. Axial resolution in elastography. Ultrasound Med Biol 2002; 28: 101–113
  • Srinivasan S, Righetti R, Ophir J. An experimental characterization of elastographic spatial resolution: Analysis of the trade-offs between spatial resolution and contrast-to-noise ratio. Ultrasound Med Biol 2004; 30: 1269–1280
  • Righetti R, Srinivasan S, Ophir J. Lateral resolution in elastography. Ultrasound Med Biol 2003; 29: 695–704
  • Bush NL, Rivens I, Ter Haar GR, Bamber JC. Acoustic properties of lesions generated with an ultrasound therapy. Ultrasound Med Biol 1993; 19: 789–801
  • Garra BS, Shawker TH, Nassi M, Russell MA. Ultrasound attenuation measurements of the liver in vivo using a commercial sector scanner. Ultrason Imaging 1984; 6: 396–407
  • Kuc R, Taylor KJ. Variation of acoustic attenuation coefficient slope estimates for in vivo liver. Ultrasound Med Biol 1982; 8: 403–412
  • Maklad NF, Ophir J, Balsara V. Attenuation of ultrasound in normal liver and diffuse liver disease in vivo. Ultrason Imaging 1984; 6: 117–125
  • Parker KJ, Asztely MS, Lerner RM, Schenk EA, Waag RC. In-vivo measurements of ultrasound attenuation in normal or diseased liver. Ultrasound Med Biol 1988; 14: 127–136
  • Zagzebski JA, Lu ZF, Yao LX. Quantitative ultrasound imaging: In vivo results in normal liver. Ultrason Imaging 1993; 15: 335–351
  • Zderic V, Keshavarzi A, Andrew MA, Vaezy S, Martin RW. Attenuation of porcine tissues in vivo after high-intensity ultrasound treatment. Ultrasound Med Biol 2004; 30: 61–66
  • Ribault M, Chapelon JY, Cathignol D, Gelet A. Differential attenuation imaging for the characterization of high intensity focused ultrasound lesions. Ultrason Imaging 1998; 20: 160–177
  • Civale J, Bamber JC, Rivens I, Ter Haar G. Optimising HIFU lesion formation with backscatter attenuation estimation (BAE). AIP Conference Proceedings. Proceedings of the 5th International Symposium on Therapeutic Ultrasound. 2006. 829: 176–180
  • Fatemi M, Greenleaf JF. Real-time assessment of the parameter of nonlinearity in tissue using ‘nonlinear shadowing’. Ultrasound Med Biol 1996; 22: 1215–1228
  • Zhang D, Gong XF. Experimental investigation of the acoustic nonlinearity parameter tomography for excised pathological biological tissues. Ultrasound Med Biol 1999; 25: 593–599
  • Cline HE, Schenck JF, Watkins RD, Hynynen K, Jolesz FA. Magnetic resonance-guided thermal surgery. Magn Reson Med 1993; 30: 98–106
  • Hynynen K, Freund WR, Cline HE, Chung AH, Watkins RD, Vetro JP, Jolesz FA. A clinical, noninvasive, MR imaging-monitored ultrasound surgery method. Radiographics 1996; 16: 185–195
  • Hynynen K, Darkazanli A, Unger E, Schenck JF. MRI guided non-invasive ultrasound surgery. Med Phys 1993; 20: 107–115
  • McDannold N, Hynynen K, Wolf D, Wolf G, Jolesz F. MRI evaluation of thermal ablation of tumors with focused ultrasound. J Magn Reson Imaging 1998; 8: 91–100
  • McDannold NJ, Jolesz FA, Hynynen KH. Determination of the optimal delay between sonications during focused ultrasound surgery in rabbits by using MR imaging to monitor thermal buildup in vivo. Radiology 1999; 211: 419–426
  • Hynynen K, Darkazanli A, Damianou CA, Unger E, Schenck JF. The usefulness of a contrast agent and gradient-recalled acquisition in a steady-state imaging sequence for magnetic resonance imaging-guided noninvasive ultrasound surgery. Invest Radiol 1994; 29: 897–903
  • Chung AH, Jolesz FA, Hynynen K. Thermal dosimetry of a focused ultrasound beam in vivo by magnetic resonance imaging. Med Phys 1999; 26: 2017–2026
  • Chen L, Bouley D, Yuh E, D’Arceuil H, Butts K. Study of focused ultrasound tissue damage using MRI and histology. J Magn Reson Imaging 1999; 10: 146–153
  • Vykhodtseva N, Sorrentino V, Jolesz FA, Bronson RT, Hynynen K. MRI detection of the thermal effects of focused ultrasound on the brain. Ultrasound Med Biol 2000; 26: 871–880
  • Foldes K, Hynynen K, Shortkroff S, Winalski CS, Collucci V, Koskinen SK, McDannold N, Jolesz F. Magnetic resonance imaging-guided focused ultrasound synovectomy. Scand J Rheumatol 1999; 28: 233–237
  • Chen L, Bouley DM, Harris BT, Butts K. MRI study of immediate cell viability in focused ultrasound lesions in the rabbit brain. J Magn Reson Imaging 2001; 13: 23–30
  • Bohris C, Jenne JW, Rastert R, Simiantonakis I, Brix G, Spoo J, Hlavac M, Nemeth R, Huber PE, Debus J. MR monitoring of focused ultrasound surgery in a breast tissue model in vivo. Magn Reson Imaging 2001; 19: 167–175
  • Hynynen K, Pomeroy O, Smith DN, Huber PE, McDannold NJ, Kettenbach J, Baum J, Singer S, Jolesz FA. MR imaging-guided focused ultrasound surgery of fibroadenomas in the breast: A feasibility study. Radiology 2001; 219: 176–185
  • Salomir R, Palussiere J, Vimeux FC, De Zwart JA, Quesson B, Gauchet M, Lelong P, Pergrale J, Grenier N, Moonen CTW. Local hyperthermia with MR-guided focused ultrasound: Spiral trajectory of the focal point optimized for temperature uniformity in the target region. J Magn Reson Imaging 2000; 12: 571–583
  • Sokka SD, King R, Hynynen K. MRI-guided gas bubble enchanced ultrasound heating in in vivo rabbit thigh. Phys Med Biol 2003; 48: 223–241
  • Damianou C, Pavlou M, Velev O, Kyriakou K, Trimikliniotis M. High intensity focused ultrasound ablation of kidney guided by MRI. Ultrasound Med Biol 2004; 30: 397–404
  • Rowland IJ, Rivens IH, Chen L, Lebozer CH, Collins DJ, Ter Haar GR, Leach MO. MRI study of hepatic tumours following high intensity focused ultrasound surgery. Br J Radiol 1997; 70: 144–153
  • Hynynen K, Clement GT, McDannold N, Vykhodtseva N, King R, White PJ, Vitek S, Jolesz FA. 500-element ultrasound phased array system for noninvasive focal surgery of the brain: A preliminary rabbit study with ex vivo human skulls. Magn Reson Med 2004; 52: 100–107
  • Rouviere O, Lyonnet D, Raudrant A, Colin-Pangaud C, Chapelon JY, Bouvier R, Dubernard JM, Gelet A. MRI appearance of prostate following transrectal HIFU ablation of localized cancer. Eur Urol 2001; 40: 265–274
  • Huber PE, Jenne JW, Rastert R, Simiantonakis I, Sinn H-P, Strittmatter H-J, Von Fournier D, Wannenmacher MF, Debus J. A new noninvasive approach in breast cancer therapy using magnetic resonance imaging-guided focused ultrasound surgery. Cancer Res 2001; 61: 8441–8447
  • Damianou C. MRI monitoring of the effect of tissue interfaces in the penetration of high intensity focused ultrasound in kidney in vivo. Ultrasound Med Biol 2004; 30: 1209–1215
  • Fatemi M, Manduca A, Greenleaf JF. Imaging elastic properties of biological tissues by low-frequency harmonic vibration. Proc IEEE 2003; 91: 1503–1518
  • Wu T, Felmlee JP, Greenleaf JF, Riederer SJ, Ehman RL. MR imaging of shear waves generated by focused ultrasound. Magn Reson Med 2000; 43: 111–115
  • Clarke RL, Ter Haar GR. Temperature rise recorded during lesion formation by high-intensity focused ultrasound. Ultrasound Med Biol 1997; 23: 299
  • Dickinson RJ. Thermal conduction errors of manganin-constantan thermocouple arrays. Phys Med Biol 1985; 30: 445–453
  • Fry WJ, Fry RB. Determination of absolute sound levels and acoustic absorption coefficients by thermocouple probes. J Acoust Soc Am 1954; 26: 311–317
  • Glaser KJ, Felmlee JP, Manduca A, Mariappan YK, Ehman RL. Stiffness-weighted magnetic resonance imaging. Magn Reson Med 2006; 55: 59–67
  • Cheng H-LM, Purcell CM, Bilbao JM, Plewes DB. Prediction of subtle thermal histopathological change using a novel analysis of Gd-DTPA kinetics. J Magn Reson Imaging 2003; 18: 585–598
  • Cheng HLM, Purcell CM, Bilbao JM, Plewes DB. Usefulness of contrast kinetics for predicting and monitoring tissue changes in muscle following thermal therapy in long survival studies. J Magn Reson Imaging 2004; 19: 329–341
  • Hynynen K, Chung AH, Colucci V, Jolesz FA. Potential adverse effects of high-intensity focused ultrasound exposure on blood vessels in vivo. Ultrasound Med Biol 1996; 22: 193–201
  • Denbow ML, Rivens IH, Rowland IJ, Leach MO, Fisk NM, Ter Haar GR. Preclinical development of noninvasive vascular occlusion with focused ultrasonic surgery for fetal therapy. Am J Obstet Gynecol 2000; 182: 387–392
  • Jacobs MA, Herskovits EH, Kim HS. Uterine fibroids: Diffusion-weighted MR imaging for monitoring therapy with focused ultrasound surgery—Preliminary study. Radiology 2005; 236: 196–203
  • Hand JW. Guidelines for thermometry in clinical hyperthermia. Front Med Biol Eng 1992; 4: 99–104
  • Hynynen K, Edwards DK. Temperature measurements during ultrasound hyperthermia. Am Assoc Phys Med 1989; 16: 618–626
  • Chan AK, Myrer JW, Measom GJ, Draper DO. Temperature changes in human patellar tendon in response to therapeutic ultrasoun. J Athl Train 1998; 33: 130–135
  • Levine D, Millis DL, Mynatt T. Effects of 3.3-MHz ultrasound on caudal thigh muscle temperature in dogs. Vet Surg 2001; 30: 170–174
  • Sommer FG, Sumanaweera TS, Glover G. Tissue ablation using an acoustic waveguide for high-intensity focused ultrasound. Med Phys 1997; 24: 537–538
  • Carnochan P, Dickinson RJ, Michael CJ. The practical use of thermocouples for temperature measurement in clinical hyperthermia. Int J Hyperthermia 1985; 2: 1–19
  • Hynynen K. The threshold for thermally significant cavitiation in dog's thigh muscle in vivo. Ultrasound Med Biol 1991; 17: 157–169
  • Morris HJ, Shaw A, Rivens IH, Ter Haar GR. Temperature measurement in ex vivo bovine liver using fine-wire and thin-film thermocouples. AIP Conference Proceedings. 5th International Symposium on Therapeutic Ultrasound. 2006. 829: 338–342
  • Vykhodtseva N. MRI detection of the thermal effects of focused ultrasound on the brain. Ultrasound Med Biol 2000; 26: 871–880
  • Ter Haar GR, Dunn F. Linear thermocouple arrays for in vivo observation of ultrasonic hyperthermia fields. Br J Radiol 1984; 57: 257–258
  • Drewniak JL, Frizzell LA, Dunn F. Errors resulting from finite beamwidth and sample dimensions in the determination of the ultrasonic-absorption coefficient. J Acoust Soc Am 1990; 88: 967–977
  • Holt RG, Roy RA. Measurements of bubble-enhanced heating from focused, MHz-frequency ultrasound in a tissue-mimicking material. Ultrasound Med Biol 2001; 27: 1399–1412
  • Huang J, Holt RG, Cleveland RO, Roy RA. Experimental validation of a tractable numerical model for focused ultrasound heating in flow-through tissue phantoms. J Acoust Soc Am 2004; 116: 2451–2458
  • Hynynen K, Martin CJ, Watmough DJ, Mallard JR. Errors in temperature measurement by thermocouple probes during ultrasound induced hyperthermia. Br J Radiol 1983; 56: 969–970
  • Goss SA, Frizzell LA, Dunn F. Ultrasonic absorption and attenuation in mammalian tissues. Ultrasound Med Biol 1979; 5: 181–186
  • Dunn F. Temperature and amplitude dependence of acoustic absorption in tissue. J Acoust Soc Am 1962; 34: 1545–1547
  • Morris HJ, Shaw A, Rivens IH, Ter Haar GR. Investigation of temperature measurements using thermocouples in a focused ultrasound field. AIP Conference Proceedings. 6th International Symposium on Therapeutic Ultrasound. 2006, 633–637
  • Parker KJ. The thermal pulse decay technique for measuring ultrasonic absorption coefficients. J Acoust Soc Am 1983; 74: 1356–1361
  • Bacon DR, Shaw A. Experimental validation of predicted temperature rises in tissue mimicking materials. Phys Med Biol 1993; 38: 1647–1659
  • Shaw A, Pay NM, Preston RC. Assessment of the likely thermal index values for pulsed Doppler ultrasonic equipment—Stage II: Experimental assessment of scanner/transducer combinations. NPL Report CMAM 12. 1998
  • Shaw A. Ultrasonics-field characterisation—Test objects for determining temperature elevation in diagnostic ultrasound fields. International Technical Commission, Geneva 2006, ed. IEC TS 62306
  • Stasiek JA, Kowalewski TA. Thermoliuid crystals applied to heat transfer research. Optoelectron Rev 2002; 10: 1–10
  • Cook BD, Werchan RE. Mapping ultrasonic fields with cholesteric liquid crystals. Ultrasonics 1971; 9: 101–102
  • Martin K, Fernandez R. A thermal beam-shape phantom for ultrasound physiotherapy transducers. Ultrasound Med Biol 1997; 23: 1267–1274
  • Quesson B, De Zwart JA, Moonen CT. Magnetic resonance temperature imaging for guidance of thermotherapy. J Magn Reson Imaging 2000; 12: 525–533
  • Cline HE, Hynynen K, Hardy CJ, Watkins RD, Schenck JF, Jolesz FA. MR temperature mapping of focused ultrasound surgery. Magn Reson Med 1994; 31: 628–636
  • Hynynen K, Darkazanli A, Damianou CA, Unger E, Schenck JF. Tissue thermometry during ultrasound exposure. Eur Urol 1993; 23: S12–S16
  • Hynynen K, Damianou CA, Colucci V, Unger E, Cline HH, Jolesz FA. MR monitoring of focused ultrasonic surgery of renal cortex: Experimental and simulation studies. J Magn Reson Imaging 1995; 5: 259–266
  • Hardy CJ, Cline HE, Watkins RD. One-dimensional NMR thermal mapping of focused ultrasound surgery. J Comput Assist Tomogr 1994; 18: 476–483
  • Matsumoto R, Mulkern RV, Hushek SG, Jolesz FA. Tissue temperature monitoring for thermal interventional therapy: Comparison of T1-weighted MR sequences. J Magn Reson Imaging 1994; 4: 65–70
  • Bohris C, Schreiber WG, Jenne J, Simiantonakis I, Rastert R, Zabel H-J, Huber P, Bader R, Brix G. Quantitative MR temperature monitoring of high-intensity focused ultrasound therapy. Magn Reson Imaging 1999; 17: 603–610
  • Arora D, Cooley D, Perry T, Guo J, Richardson A, Moellmer J, Hadley R, Parker D, Skliar M, Roemer RB. MR thermometry-based feedback control of efficacy and safety in minimum-time thermal therapies: Phantom and in-vivo evaluations. Int J Hyperthermia 2006; 22: 29–42
  • Kuroda K, Chung AH, Hynynen K, Jolesz FA. Calibration of water proton chemical shift with temperature for noninvasive temperature imaging during focused ultrasound surgery. J Magn Reson Imaging 1998; 8: 175–181
  • Ishihara Y, Calderon A, Watanabe H, Okamoto K, Suzuki Y, Kuroda K, Suzuki Y. A precise and fast temperature mapping using water proton chemical shift. Magn Reson Med 1995; 34: 814–823
  • McDannold N, Vykhodtseva N, Raymond S, Jolesz FA, Hynynen K. MRI-guided targeted blood–brain barrier disruption with focused ultrasound: Histological findings in rabbits. Ultrasound Med Biol 2005; 31: 1527–1537
  • Smith NB, Buchanan MT, Hynynen K. Transrectal ultrasound applicator for prostate heating monitored using MRI thermometry. Int J Radiat Oncol Biol Phys 1999; 43: 217–225
  • De Zwart JA, Vimeux FC, Delalande C, Canioni P, Moonen CTW. Fast lipid-suppressed MR temperature mapping with echo-shifted gradient-echo imaging and spectral-spatial excitation. Magn Reson Med 1999; 42: 53–59
  • McDannold NJ, King RL, Jolesz FA, Hynynen KH. Usefulness of MR imaging-derived thermometry and dosimetry in determining the threshold for tissue damage induced by thermal surgery in rabbits. Radiology 2000; 216: 517–523
  • Vykhodtseva N, McDannold N, Martin H, Bronson RT, Hynynen K. Apoptosis in ultrasound-produced threshold lesions in the rabbit brain. Ultrasound Med Biol 2001; 27: 111–117
  • Wu T, Kendell KR, Felmlee JP, Lewis BD, Ehman RL. Reliability of water proton chemical shift temperature calibration for focused ultrasound ablation therapy. Med Phys 2000; 27: 221–224
  • Cheng H-LM, Plewes DB. Tissue thermal conductivity by magnetic resonance thermometry and focused ultrasound heating. J Magn Reson Imaging 2002; 16: 598–609
  • Wang Y, Plewes DB. An MRI calorimetry technique to measure tissue ultrasound absorption. Magn Reson Med 1999; 42: 158–166
  • Hynynen K, McDannold N, Mulkern RV, Jolesz FA. Temperature monitoring in fat with MRI. Magn Reson Med 2000; 43: 901–904
  • McDannold N, Hynynen K, Jolesz F. MRI monitoring of the thermal ablation of tissue: Effects of long exposure times. J Magn Reson Imaging 2001; 13: 421–427
  • Rademaker G, Jenne JW, Rastert R, Roder D, Schad L-R. Comparison of noninvasive MRT-procedures for the temperature measurement for the application during medical thermal therapies [Vergleich nichtinvasiver MRT-verfahren zur Temperaturmessung fuer den Einsatz bei medizinischen Thermotherapien]. Zeitschrift fur Medizinische Physik 2003; 13: 183–187
  • Ong JT, d’Arcy JA, Collins DJ, Rivens IH, Ter Haar GR, Leach MO. Sliding window dual gradient echo (SW-dGRE): T1 and proton resonance frequency (PRF) calibration for temperature imaging in polyacrylamide gel. Phys Med Biol 2003; 48: 1917–1931
  • Salomir R, Vimeux FC, De Zwart JA, Grenier N, Moonen CTW. Hyperthermia by MR-guided focused ultrasound: Accurate temperature control based on fast MRI and a physical model of local energy deposition and heat conduction. Magn Reson Med 2000; 43: 342–347
  • Vimeux FC, De Zwart JA, Palussieüre J, Fawaz R, Delalande C, Canioni P, Grenier N, Moonen CTW. Real-time control of focused ultrasound heating based on rapid MR thermometry. Invest Radiol 1999; 34: 190–193
  • De Zwart JA, Vimeux FC, Palussiere J, Salomir R, Quesson B, Delalande C, Moonen CTW. On-line correction and visualization of motion during MRI-controlled hyperthermia. Magn Reson Med 2001; 45: 128–137
  • Palussiere J, Salomir R, Le Bail B, Fawaz R, Quesson B, Grenier N, Moonen CTW. Feasibility of MR-guided focused ultrasound with real-time temperature mapping and continuous sonication for ablation of VX2 carcinoma in rabbit thigh. Magn Reson Med 2003; 49: 89–98
  • Quesson B, Vimeux F, Salomir R, De Zwart JA, Moonen CTW. Automatic control of hyperthermic therapy based on real-time fourier analysis of MR temperature maps. Magn Reson Med 2002; 47: 1065–1072
  • Mougenot C, Salomir R, Palussiere J, Grenier N, Moonen CTW. Automatic spatial and temporal temperature control for MR-guided focused ultrasound using fast 3D MR thermometry and multispiral trajectory of the focal point. Magn Reson Med 2004; 52: 1005–1015
  • Hindley J, Gedroyc WM, Regan L, Stewart E, Tempany C, Hynyen K, McDannold N, Inbar Y, Itzchak Y, Rabinovici J, et al. MRI guidance of focused ultrasound therapy of uterine fibroids: Early results. Am J Roentgenol 2004; 183: 1713–1719
  • Tempany CMC, Stewart EA, McDannold N, Quade BJ, Jolesz FA, Hynynen K. MR imaging-guided focused ultrasound surgery of uterine leiomyomas: A feasibility study. Radiology 2003; 226: 897–905
  • Moonen CTW, Quesson B, Salomir R, Vimeux FC, De Zwart JA, Van Vaals JJ, Grenier N, Palussiere J. Thermal therapies in interventional MR imaging: Focused ultrasound. Neuroimaging Clin N Am 2001; 11: 737–747
  • Seip R, Van Baren P, Cain CA, Ebbini ES. Noninvasive real-time multipoint temperature control for ultrasound phased array treatments. IEEE Trans Ultrason Ferroelectr Freq Control 1996; 43: 1063–1073
  • Bamber JC, Hill CR. Ultrasonic attenuation and propagation speed in mammalian tissues as a function of temperature. Ultrasound Med Biol 1979; 5: 149–157
  • Maass-Moreno R, Damianou CA, Sanghvi NT. Noninvasive temperature estimation in tissue via ultrasound echo-shifts. Part II. In vitro study. J Acoust Soc Am 1996; 100: 2522–2530
  • Maass-Moreno R, Damianou CA. Noninvasive temperature estimation in tissue via ultrasound echo-shifts. Part I. Analytical model. J Acoust Soc Am 1996; 100: 2514–2521
  • Sun Z, Ying H. A multi-gate time-of-flight technique for estimation of temperature distribution in heated tissue: Theory and computer simulation. Ultrasonics 1999; 37: 107–122
  • Miller NR, Bamber JC, Meaney PM. Fundamental limitations of noninvasive temperature imaging by means of ultrasound echo strain estimation. Ultrasound Med Biol 2002; 28: 1319–1333
  • Miller NR, Bamber JC, Ter Haar GR. Imaging of temperature-induced echo strain: Preliminary in vitro study to assess feasibility for guiding focused ultrasound surgery. Ultrasound Med Biol 2004; 30: 345–356
  • Miller NR, Bograchev KM, Bamber JC. Ultrasonic temperature imaging for guiding focused ultrasound surgery: Effect of angle between imaging beam and therapy beam. Ultrasound Med Biol 2005; 31: 401–413
  • Simon C, Van Baren P, Ebbini ES. Two-dimensional temperature estimation using diagnostic ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 1998; 45: 1088–1099
  • Bamber JC. Ultrasound elasticity imaging: Definition and technology. Eur Radiol 1999; 9: 327–330
  • Leon-Villapalos J, Kaniorou-Larai M, Dziewulski P. Full thickness abdominal burn following magnetic resonance guided focused ultrasound therapy. Burns 2005; 31: 1054–1055

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.