695
Views
0
CrossRef citations to date
0
Altmetric
Articles

Anticorrosive PEO coatings on metallic cast heat enhancers for thermal energy storage

ORCID Icon, ORCID Icon &
Pages 641-652 | Received 31 Aug 2022, Accepted 10 Jul 2023, Published online: 10 Sep 2023

References

  • Nie C, Deng S, Liu J. Effects of fins arrangement and parameters on the consecutive melting and solidification of PCM in a latent heat storage unit. J Energy Storage. 2020;29:101319. doi:10.1016/j.est.2020.101319
  • Zhang C, Li J, Chen Y. Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins. Appl Energy. 2020: 259.
  • Sadri SA, Parsa H, Saffar-Avval M, et al. Configuration optimization of the honeycomb core in the latent heat thermal energy storage of a solar air heater: experimental and numerical study. Int J Energy Res. 2022;46:5924–5954. doi:10.1002/er.7532
  • Nicholls RA, Moghimi MA, Griffiths AL. Impact of fin type and orientation on performance of phase change material-based double pipe thermal energy storage. J Energy Storage. 2022;50:104671. doi:10.1016/j.est.2022.104671
  • Ren F, Du J, Cai Y, et al. Study on thermal performance of a new optimized snowflake longitudinal fin in vertical latent heat storage. J Energy Storage. 2022;50:104165. doi:10.1016/j.est.2022.104165
  • Elmaazouzi Z, Laasri IA, Gounni A, et al. Coupled parameters evaluation of three different finned structures for concentrated solar thermal energy storage. J Energy Storage. 2022;51:104523. doi:10.1016/j.est.2022.104523
  • Bell S, Steinberg T, Will G. Corrosion mechanisms in molten salt thermal energy storage for concentrating solar power. Renew Sustain Energy Rev. 2019;114:109328. doi:10.1016/j.rser.2019.109328
  • Vasu A, Hagos FY, Noor MM, et al. Corrosion effect of phase change materials in solar thermal energy storage application. Renew Sustain Energy Rev. 2017;76:19–33. doi:10.1016/j.rser.2017.03.018
  • Hamdy E, Olovsjö JN, Geers C. Perspectives on selected alloys in contact with eutectic melts for thermal storage: nitrates, carbonates and chlorides. Sol Energy. 2021;224:1210–1221. doi:10.1016/j.solener.2021.06.069
  • Farrell AJ, Norton B, Kennedy DM. Corrosive effects of salt hydrate phase change materials used with aluminium and copper. J Mater Process Technol. 2006;175:198–205. doi:10.1016/j.jmatprotec.2005.04.058
  • Cabeza LF, Roca J, Nogues M, et al. Immersion corrosion tests on metal-salt hydrate pairs used for latent heat storage in the 48 to 58°C temperature range. Mater Corros. 2002;53:902–907. doi:10.1002/maco.200290004
  • Zhao T, Munis A, Rehman AU, et al. Corrosion behavior of aluminum in molten hydrated salt phase change materials for thermal energy storage. Mater Res Express. 2020: 7. doi:10.1088/2053-1591/ab6c24.
  • Zheng Y, Luo B, He C, et al. Corrosion behaviour of the Al-2.1–Mg-1.8–Si alloy in chloride solution. Bull Mater Sci. 2019;42:228. doi:10.1007/s12034-019-1923-0
  • Li J-F, Tan X. Potential change and corrosion behavior of two Al–Mg–Si alloys with different Si content under MgCl 2 drops in 33% relative humidity. Mater Corros. 2014;65:1062–1072. doi:10.1002/maco.201307020
  • Berlanga-Labari C, Biezma-Moraleda MV, Rivero PJ. Corrosion of cast aluminum alloys: a review. Metals (Basel). 2020;10:1–30. doi:10.3390/met10101384
  • Huang X., Famiyeh L. Plasma electrolytic oxidation coatings on aluminum alloys: microstructures, properties, and applications. Mod Concepts Mater Sci. 2019;2(1). doi:10.33552/MCMS.2019.02.000526.
  • Hegab A, Dahuwa K, Islam R, et al. Plasma electrolytic oxidation thermal barrier coating for reduced heat losses in IC engines. Appl Therm Eng. 2021;196:117316. doi:10.1016/j.applthermaleng.2021.117316
  • Kim YS, Yang HW, Shin KR, et al. Heat dissipation properties of oxide layers formed on 7075 Al alloy via plasma electrolytic oxidation. Surf Coat Technol. 2015;269:114–118. doi:10.1016/j.surfcoat.2015.01.059
  • Ramakrishnan E, Premchand C, Manojkumar P, et al. Development of thermal control coatings on AA7075 by plasma electrolytic oxidation (PEO) process. Mater Today Proc. 2021;46:1085–1090. doi:10.1016/j.matpr.2021.01.436
  • Li K, Li W, Zhang G, et al. Influence of surface etching pretreatment on PEO process of eutectic Al–Si alloy. Chin J Chem Eng. 2015;23:1572–1578. doi:10.1016/j.cjche.2015.06.004
  • Krishna LR, Sudhapurnima A, Wasekar NP, et al. Kinetics and properties of micro arc oxidation coatings deposited on commercial Al alloys. Metall Mater Trans A Phys Metall Mater Sci. 2007;38:370–378. doi:10.1007/s11661-006-9054-9
  • Dai L, Li W, Zhang G, et al. Anti-corrosion and wear properties of plasma electrolytic oxidation coating formed on high Si content Al alloy by sectionalized oxidation mode. IOP Conf Ser Mater Sci Eng. 2017;167:012063. doi:10.1088/1757-899X/167/1/012063
  • Fernández-López P, Alves SA, Azpitarte I, et al. Corrosion and tribocorrosion protection of novel PEO coatings on a secondary cast Al-Si alloy: influence of polishing and sol-gel sealing. Corros Sci. 2022;207. doi:10.1016/j.corsci.2022.110548.
  • Polunin AV, Cheretaeva AO, Borgardt ED, et al. Improvement of oxide layers formed by plasma electrolytic oxidation on cast Al–Si alloy by incorporating TiC nanoparticles. Surf Coat Technol. 2021;423:127603. doi:10.1016/j.surfcoat.2021.127603
  • Araújo TES, Macias Mier M, Cruz Orea A, et al. Highly thermally conductive dielectric coatings produced by plasma electrolytic oxidation of aluminum. Mater Lett X. 2019;3:100016. doi:10.1016/j.mlblux.2019.100016
  • Raźny N, Dmitruk A, Serdechnova M, et al. The performance of thermally conductive tree-like cast aluminum structures in PCM-based storage units. Int Commun Heat Mass Transf. 2023;142:106606. doi:10.1016/j.icheatmasstransfer.2022.106606
  • Gulec AE, Gencer Y, Tarakci M. The characterization of oxide based ceramic coating synthesized on Al-Si binary alloys by microarc oxidation. Surf Coat Technol. 2015;269:100–107. doi:10.1016/j.surfcoat.2014.12.031.
  • Dlugosz P, Garbacz-Klempka A, Piwowonska J, et al. Plasma coatings on aluminium-silicon alloy surfaces. Arch Foundry Eng. 2021;21:95–100. doi:10.24425/afe.2021.138671.
  • He J, Cai QZ, Luo HH, et al. Influence of silicon on growth process of plasma electrolytic oxidation coating on Al–Si alloy. J Alloys Compd. 2009;471:395–399. doi:10.1016/j.jallcom.2008.03.114
  • Li K, Li W, Zhang G, et al. Effects of Si phase refinement on the plasma electrolytic oxidation of eutectic Al-Si alloy. J Alloys Compd. 2019;790:650–656. doi:10.1016/j.jallcom.2019.03.217
  • Naplocha K, Dmitruk A, Mayer P, et al. Design of honeycomb structures produced by investment casting. Arch Foundry Eng. 2019;19:76–80. doi:10.24425/afe.2019.129633.
  • Wang L, Wang G, Dong H, et al. Plasma electrolytic oxidation coatings on additively manufactured aluminum–silicon alloys with superior tribological performance. Surf Coat Technol. 2022;435:128246. doi:10.1016/j.surfcoat.2022.128246
  • Wang P, Li JP, Guo YC, et al. Ceramic coating formation on high Si containing Al alloy by PEO process. Surf Eng. 2016;32:428–434. doi:10.1179/1743294415Y.0000000003
  • Martin J, Leone P, Nominé A, et al. Influence of electrolyte ageing on the plasma electrolytic oxidation of aluminium. Surf Coat Technol. 2015;269:36–46. doi:10.1016/j.surfcoat.2014.11.001
  • Ushak S, Marín P, Galazutdinova Y, et al. Compatibility of materials for macroencapsulation of inorganic phase change materials: experimental corrosion study. Appl Therm Eng. 2016;107:410–419. doi:10.1016/j.applthermaleng.2016.06.171
  • Wang L, Nie X. Silicon effects on formation of EPO oxide coatings on aluminum alloys. Thin Solid Films. 2006;494:211–218. doi:10.1016/j.tsf.2005.07.184
  • Ding W, Shi H, Xiu Y, et al. Hot corrosion behavior of commercial alloys in thermal energy storage material of molten MgCl2/KCl/NaCl under inert atmosphere. Sol Energy Mater Sol Cells. 2018;184:22–30. doi:10.1016/j.solmat.2018.04.025