541
Views
0
CrossRef citations to date
0
Altmetric
Articles

Tailoring Ti Grade 2 and TNTZ alloy surfaces in a two-step mechanical–chemical modification

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 666-676 | Received 21 Mar 2023, Accepted 13 Aug 2023, Published online: 30 Sep 2023

References

  • Liu X, Chu PK, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater Sci Eng R. 2004;47(3–4):49–121. doi:10.1016/j.mser.2004.11.001
  • Chen Q, Thouas GA. Metallic implant biomaterials. Mater Sci Eng R. 2015;87:1–57. doi:10.1016/j.mser.2014.10.001
  • Geetha M, Singh AK, Asokamani R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants – A review. Prog Mater Sci. 2009;54(3):397–425. doi:10.1016/j.pmatsci.2008.06.004
  • Saha S, Roy S. Metallic dental implants wear mechanisms, materials, and manufacturing processes: a literature review. Materials (Basel). 2023;16(1):161–193. doi:10.3390/ma16010161
  • Sasikumar Y, Indira K, Rajendran N. Surface modification methods for titanium and its alloys and their corrosion behavior in biological environment: A review. J Bio Tribo-Corros. 2019;5; doi:10.1007/s40735-019-0229-5
  • Long M, Rack HJ. Titanium alloys in total joint replacement—a materials science perspective. Biomaterials. 1998;19(18):1621–1639. doi:10.1016/s0142-9612(97)00146-4
  • Annur D, Kartika I, Supriadi S, et al. Titanium and titanium based alloy prepared by spark plasma sintering method for biomedical implant applications—a review. Mater Res Express. 2021;8; doi:10.1088/2053-1591/abd969
  • Hasan J, Bright R, Hayles A, et al. Preventing peri-implantitis: the quest for a next generation of titanium dental implants. ACS Biomater Sci Eng. 2022;8(11):4697–4737. doi:10.1021/acsbiomaterials.2c00540
  • Domingo J. Vanadium and tungsten derivatives as antidiabetic agents. Biol Trace Elem Res. 2002;88(2):97–112. doi:10.1385/bter:88:2:097
  • Klotz K, Weistenhöfer W, Neff F, et al. The health effects of aluminum exposure. Dtsch Arztebl Int. 2017;114:653–659. doi:10.3238/arztebl.2017.0653
  • Huang J, Li X, Guo ZX. Biomechanical and biochemical compatibility in innovative biomaterials. Biocompat Perform Med Dev. 2019: 23–46. doi:10.1016/B978-0-08-102643-4.00004-5
  • Okazaki Y, Gotoh E. Comparison of metal release from various metallic biomaterials in vitro. Biomaterials. 2005;26(1):11–21. doi:10.1016/j.biomaterials.2004.02.005
  • Pereira RM, Koga-Ito CY, Rovetta SM, et al. Bone tissue engineering: production of TNTZ alloy by powder metallurgy. Biointerface Res Appl Chem. 2022;12(2):1526–1546. doi:10.33263/BRIAC122.15261546
  • Niinomi M, Nakai M. Titanium-Based biomaterials for preventing stress shielding between implant devices and bone. Int J Biomater. 2011: 1–10. doi:10.1155/2011/836587
  • Annunziata M, Guida L. The effect of titanium surface modifications on dental implant osseointegration. Front Oral Biol. 2015;17:62–77. doi:10.1159/000381694
  • Weng W, Biesiekierski A, Li Y, et al. Effects of selected metallic and interstitial elements on the microstructure and mechanical properties of beta titanium alloys for orthopedic applications. Materialia. 2019;6; doi:10.1016/j.mtla.2019.100323
  • Niinomi M. Mechanical properties of biomedical titanium alloys. Mater Sci Eng A. 1998;243(1-2):231–236. doi:10.1016/s0921-5093(97)00806-x
  • Kuroda D, Niinomi M, Morinaga M, et al. Design and mechanical properties of new b type titanium alloys for implant materials. Mater Sci Eng A. 1998;243(1-2):244–249. doi:10.1016/s0921-5093(97)00808-3
  • Sotniczuk A, Kuczyńska-Zemła D, Kwaśniak P, et al. Corrosion behavior of Ti-29Nb-13Ta-4.6Zr and commercially pure Ti under simulated inflammatory conditions - comparative effect of grain refinement and non-toxic β phase stabilizers. Electrochim Acta. 2019;312(3):369–379. doi:10.1016/j.electacta.2019.04.138
  • Raducanu D, Cojocaru VD, Nocivin A, et al. β-Phase stability of Two biomedical β-titanium alloys during severe plastic deformation. JOM. 2020;72:2937–2948. doi:10.1007/s11837-020-04235-z
  • Sotniczuk A, Garbacz H. Nanostructured bulk titanium with enhanced properties—strategies and prospects for dental applications. Adv Eng Mater. 2021;23(4). doi:10.1002/adem.202000909
  • Gil FJ, Espinar E, Llamas JM, et al. Fatigue life of bioactive titanium dental implants treated by means of grit-blasting and thermo-chemical treatment. Clin Implant Dent Relat Res. 2014;16(2):273–281. doi:10.1111/j.1708-8208.2012.00468.x
  • Aparicio C, et al. Acceleration of apatite nucleation on microrough bioactive titanium for bone-replacing implants. Biomed Mater Res Part A. 2007;82(3):521–529. doi:10.1002/jbm.a.31164
  • Klokkevold PR, Nishimura RD, Adachi M, et al. Osseointegration enhanced by chemical etching of the titanium surface. A torque removal study in the rabbit. Clin Implant Dent Relat Res. 1997;8(6):442–447. doi:10.1034/j.1600-0501.1997.080601.x
  • Escobar Claros CA, Contri Campanelli L, Moreira Jorge A, et al. Corrosion behaviour of biomedical β-titanium alloys with the surface-modified by chemical etching and electrochemical methods. Corros Sci. 2021;188; doi:10.1016/j.corsci.2021.109544
  • Zahran R, Rosales Leal JI, Rodríguez Valverde MA, et al. Effect of hydrofluoric acid etching time on titanium topography, chemistry, wettability, and cell adhesion. PLOS ONE. 2016;11(11). doi:10.1371/journal.pone.0165296
  • Ercan B, Taylor E, Alpaslan E, et al. Diameter of titanium nanotubes influences anti-bacterial efficacy. Nanotechnology. 2011;22(29). doi:10.1088/0957-4484/22/29/295102
  • Zhong J, Li X, Yao Y, et al. Effect of acid-alkali treatment on serum protein adsorption and bacterial adhesion to porous titanium. J Mater Sci: Mater Med. 2022;33(20). doi:10.1007/s10856-022-06646-7
  • Celesti C, Gervasi T, Cicero N, et al. Titanium surface modification for implantable medical devices with anti-bacterial adhesion properties. Materials (Basel). 2022;15(9):3283. doi:10.3390/ma15093283
  • Stich T, Alagboso F, Křenek T, et al. Implant-bone-interface: reviewing the impact of titanium surface modifications on osteogenic processes in vitro and in vivo. Bioeng Transl Med. 2021;7; doi:10.1002/btm2.10239
  • Kieswetter K, Schwartz Z, Dean DD, et al. The role of implant surface characteristics in the healing of bone. Crit Rev Oral Biol Med. 1996;7(4):329–345. doi:10.1177/10454411960070040301
  • Ramazanoglu M, Oshi Y. Osseointegration and bioscience of implant surfaces—current concepts at bone-implant interface. Implant Dent – Rapidly Evolv Pract. 2011. doi:10.5772/16936
  • Liao P-B, Cheng H-C, Huang C-F, et al. The cell culture of titanium alloy surface modifications by micro-powder blasting and co-blast techniques. Surf Eng. 2019;35(7):643–651. doi:10.1080/02670844.2019.1587570
  • Elias CN, Lima JHC, da Silva MP, et al. Titanium dental implants WITH different morphologies. Surf Eng. 2002;18(1):46–49. doi:10.1179/026708401225001200
  • Smeets R, Stadlinger B, Schwarz F, et al. Impact of dental implant surface modifications on osseointegration. BioMed Res Int. 2016: 1–16. doi:10.1155/2016/6285620
  • Webster TJ, Ejiofor JU. Increased osteoblast adhesion on nanophasemetals: Ti, Ti6Al4V, and CoCrMo. Biomaterials. 2004;25(19):4731–4739. doi:10.1016/j.biomaterials.2003.12.002
  • Coelho PG, Zavanelli RA, Salles MB, et al. Enhanced bone bonding to nanotextured implant surfaces at a short healing period: a biomechanical tensile testing in the rat femur. Implant Dent. 2016;25(3):322–327. doi:10.1097/id.0000000000000436
  • Ou K-L, Hsu H-J, Yang T-S, et al. Osseointegration of titanium implants with SLAffinity treatment: a histological and biomechanical study in miniature pigs. Clin Oral Investig. 2016;20(7):1515–1524. doi:10.1007/s00784-015-1629-7
  • Hori N, Iwasa F, Ueno T, et al. Selective cell affinity of biomimetic micro-nano-hybrid structured TiO2 overcomes the biological dilemma of osteoblasts. Dent Mater. 2010;26(4):275–287. doi:10.1016/j.dental.2009.11.077
  • Harvey AG, Hill EW, Bayat A. Designing implant surface topography for improved biocompatibility. Expert Rev Med Devices. 2013;10(2):257–267. doi:10.1586/erd.12.82
  • Kennedy SB, Washburn NR, Simon Jr. CG, et al. Combinatorial screen of the effect of surface energy on fibronectin-mediated osteoblast adhesion, spreading and proliferation. Biomaterials. 2006;27(20):3817–3824. doi:10.1016/j.biomaterials.2006.02.044
  • Wang W, Caetano G, Ambler W, et al. Enhancing the hydrophilicity and cell attachment of 3D printed PCL/graphene scaffolds for bone tissue engineering. Materials (Basel). 2016;9(12):992. doi:10.3390/ma9120992
  • Zhou H, Li Y, Liu L, et al. Early osseointegration of implants with cortex-like TiO2 coatings formed by micro-arc oxidation: a histomorphometric study in rabbits. J Huazhong Univ Sci Technol Med Sci. 2017;37(1):122–130. doi:10.1007/s11596-017-1705-0
  • Pelegrine AA, Moy PK, Moshaverinia A, et al. Development of a novel nanotextured titanium implant. An experimental study in rats. J Clin Med. 2019;8(7):954. doi:10.3390/jcm8070954
  • Sartoretto SC, Alves ATNN, Zarranz L, et al. Hydrophilic surface of Ti6Al4V-ELI alloy improves the early bone apposition of sheep tibia. Clin Oral Implants Res. 2017;28(8):893–901. doi:10.1111/clr.12894
  • Wennerberg A, Jimbo R, Stübinger S, et al. Nanostructures and hydrophilicity influence osseointegration: a biomechanical study in the rabbit tibia. Clin Oral Implants Res. 2014;25(9):1041–1050. doi:10.1111/clr.12213
  • Velasco-Ortega E, Ortiz-García I, Jiménez-Guerra A, et al. Comparison between sandblasted acid-etched and oxidized titanium dental implants: In vivo study. Int J Mol Sci. 2019;20:3267. doi:10.3390/ijms20133267
  • Kaluđerović MR, Schreckenbach JP, Graf H-L. Titanium dental implant surfaces obtained by anodic spark deposition—from the past to the future. Mater Sci Eng C. 2016;69:1429–1441. doi:10.1016/j.msec.2016.07.068
  • Kim H, Choi SH, Ryu JJ, et al. The biocompatibility of SLA-treated titanium implants. Biomed Mater. 2008;3(2):02501. doi:10.1088/1748-6041/3/2/025011
  • Young TS, Johansson C, Wennerberg A, et al. Optimum surface properties of oxidized implants for reinforcement of osseointegration: surface chemistry, oxide thickness, porosity, roughness, and crystal structure. Int J Oral Maxillofac Implants. 2005;20(3):349–359.
  • Nazarov D, Zemtsova E, Solokhin A, et al. Modification of the surface topography and composition of ultrafine and coarse grained titanium by chemical etching. Nanomaterials. 2017;7(1). doi:10.3390/nano7010015
  • Lubas M, Jasinski JJ, Zawada A, et al. Influence of sandblasting and chemical etching on titanium 99.2–dental porcelain bond strength. Materials (Basel). 2022;15(1):116. doi:10.3390/ma15010116
  • Xie Y, Zuo J, Zhou B, et al. Sandblast-free double-etched titanium for dental implants application. Mater Lett. 2016;176:74–77. doi:10.1016/j.matlet.2016.04.076
  • Souza JCM, Sordi MB, Kanazawa M, et al. Nano-scale modification of titanium implant surfaces to enhance osseointegration. Acta Biomater. 2019;94:112–131. doi:10.1016/j.actbio.2019.05.045
  • Ganesh BKC, Sha W, Ramanaiah N, et al. Effect of shotpeening on sliding wear and tensile behavior of titanium implant alloys. Mater Des. 2014;56:480–486. doi:10.1016/j.matdes.2013.11.052
  • Kheradmandfard M, Kashani-Bozorg SF, Kim CL, et al. Nanostructured β-type titanium alloy fabricated by ultrasonic nanocrystal surface modification. Ultrason – Sonochem. 2017;39:698–706. doi:10.1016/j.ultsonch.2017.03.061
  • Kheradmandfard M, Kashani-Bozorg SF, Lee JS, et al. Significant improvement in cell adhesion and wear resistance of biomedical β-type titanium alloy through ultrasonic nanocrystal surface modification. J Alloys Compd. 2018;762:941–949. doi:10.1016/j.jallcom.2018.05.088
  • Prakash C, Singh S, Pramanik A, et al. Experimental investigation into nano-finishing of β-TNTZ alloy using magnetorheological fluid magnetic abrasive finishing process for orthopedic applications. J Mater Res Technol. 2021;11:600–617. doi:10.1016/j.jmrt.2021.01.046
  • Singh S, Prakash C. Effect of cryogenic treatment on the microstructure, mechanical properties and finishability of β-TNTZ alloy for orthopedic applications. Mater Lett. 2020;278; doi:10.1016/j.matlet.2020.128461
  • Kuczyńska-Zemła D, Kwasniak P, Sotniczuk A, et al. Microstructure and mechanical properties of titanium subjected to direct laser interference lithography. Surf Coat Technol. 2019;364; doi:10.1016/j.surfcoat.2019.02.026
  • Zhang C, Fu T, Chen H, et al. Microstructure evolution of surface gradient nanocrystalline by shot peening of TA17 titanium alloy. Metall Mater Transact A. 2021;52(5):1790–1798. doi:10.1007/s11661-021-06189-6
  • Sotniczuk A, Kuczyńska-Zemła D, Majchrowicz K, et al. Tailoring mechanical and surface properties of UFG CP-Ti by the low-temperature annealing. Appl Surf Sci. 2023;607; doi:10.1016/j.apsusc.2022.155038
  • Kuczyńska-Zemła D, Kijeńska-Gawrońska E, Chlanda A, et al. Biological properties of a novel β-Ti alloy with a low young’s modulus subjected to cold rolling. Appl Surf Sci. 2020;511; doi:10.1016/j.apsusc.2020.145523
  • Sotniczuk A, Majchrowicz K, Kuczyńska-Zemła D, et al. Surface properties and mechanical performance of Ti-based dental materials: comparative effect of valve alloying elements and structural defects. Metall Mater Transact A. 2022;53(1):225–239. doi:10.1007/s11661-021-06515-y
  • Sotniczuk A, Kuczyńska-Zemła D, Królikowski A, et al. Enhancement of the corrosion resistance and mechanical properties of nanocrystalline titanium by low-temperature annealing. Corros Sci. 2018;147:342–349. doi:10.1016/j.corsci.2018.11.016
  • Sun Y, Xu S, Shan A. Effects of annealing on microstructure and mechanical properties of nano-grained Ni-based alloy produced by severe cold rolling. Mater Sci Eng A. 2015;641:181–188. doi:10.1016/j.msea.2015.06.043
  • Yilmazer H, Niinomi M, Akahori T, et al. Effect of high-pressure torsion processing on microstructure and mechanical properties of a novel biomedical β-type Ti-29Nb-13Ta-4.6Zr after cold rolling. Int J Microstruct Mater Prop. 2012;7:168–186. doi:10.1504/ijmmp.2012.047498
  • Zhu G, Wang G, Li JJ. Advances in implant surface modifications to improve osseointegration. Mater Adv. 2021;2:6901–6927. doi:10.1039/D1MA00675D
  • Cordova LA, Stresing V, Gobin B, et al. Orthopaedic implant failure: aseptic implant loosening – the contribution and future challenges of mouse models in translational research. Clin Sci. 2014;127(5):277–293. doi:10.1042/cs20130338
  • Lorenzetti M, Dogša I, Stošicki T, et al. The influence of surface modification on bacterial adhesion to titanium-based substrates. ACS Appl Mater Interfaces. 2015;7(3):1644–1651. doi:10.1021/am507148n
  • Pier-Francesco A, Adams RJ, Waters MGJ, et al. Titanium surface modification and its effect on the adherence of porphyromonas gingivalis:an in vitro study. Clin Oral Implants Res. 2006;17(6):633–637. doi:10.1111/j.1600-0501.2006.01274.x
  • Chauhan P, Koul V, Bhatnagar N. Critical role of etching parameters in the evolution of nano micro SLA surface on the Ti6Al4V alloy dental implants. Materials (Basel). 2021;14(21). doi:10.3390/ma14216344