123
Views
0
CrossRef citations to date
0
Altmetric
Articles

Microstructures and properties of ultrasonically surface-modified Cu–0.2Be–1.0Co alloy

, , &
Pages 751-760 | Received 28 Jun 2023, Accepted 24 Aug 2023, Published online: 06 Sep 2023

References

  • Sousa VFC, Castanheira J, Silva FJG, et al. Wear behavior of uncoated and coated tools in milling operations of AMPCO (Cu-Be) alloy. Appl Sci. 2021;11:7762.doi:10.3390/app11167762
  • Montecinos S, Tognana S, D'Angelo C, et al. High-temperature oxidation of Cu-2.1Be commercial alloy. Eur Phys J Plus. 2022;137:1175.doi:10.1140/epjp/s13360-022-03405-z
  • Liu S, Geethapriyan T, Muthuramalingam T, et al. Influence of heat-treated Cu-Be electrode on machining accuracy in ECMM with Monel 400 alloy. Arch Civ Mech Eng. 2022;22:154. doi:10.1007/s43452-022-00478-6
  • Liu Y, Sundman B, Du Y, et al. A stepwise thermodynamic modeling of the phase diagram for the Cu-Be system. J Mater Sci. 2018;53:3756–3766. doi:10.1007/s10853-017-1777-z
  • Li M, Wei KX, Wei W, et al. Thermal shock behaviours of atmospheric plasma sprayed NiCrAlY/Al2O3-20%TiO2 gradient coating on Cu-Be alloy. Surf Eng. 2020;36:1113–1120. doi:10.1080/02670844.2020.1766866
  • Tang D, Li J, Wang L, et al. Fabrication of gradient-structure CuNiBe alloy bars by laser remelting and water-cooling. Mater Manuf Processes. 2020;35:337–345. doi:10.1080/10426914.2020.1726948
  • Jiang H, Watanabe C, Miura H, et al. Microstructure and mechanical properties of the heterogeneous-nano structured Cu-Be system alloys. Mater Trans. 2022;63:21–26. doi:10.2320/matertrans.MT-D2021002
  • Zhou Y, Song K, Xing J, et al. Precipitation behavior and properties of aged Cu-0.23Be-0.84Co alloy. J Alloys Compd. 2016;658:920–930. doi:10.1016/j.jallcom.2015.10.290
  • Xie G, Wang Q, Mi X, et al. The precipitation behavior and strengthening of a Cu-2.0 wt% Be alloy. Mater Sci Eng A. 2012;558:326–330. doi:10.1016/j.msea.2012.08.007
  • Woodcraft A, Sudiwala RV, Bhatia RS. The thermal conductivity of C17510 beryllium-copper alloy below 1 K. Cryogenics. 2001;41:603–606. doi:10.1016/S0011-2275(01)00127-8
  • Watterson A, Beck M. An exploratory study of beryllium and UK soft touch regulation: an enduring example of weaknesses of UK occupational health and safety governance. Int J Environ Res Public Health. 2022;19:12771.doi:10.3390/ijerph191912771
  • Ahmed MP, Jailani HS. Enhancing wear resistance of cryo treated Cu-Be2 alloy. Silicon. 2019;11:105–115. doi:10.1007/s12633-018-9835-y
  • Xi W, Ding W, Meng T, et al. Microstructure and corrosion resistance of plasma Ta-coated C17200 beryllium copper alloy. China Surf Eng. 2019;32:63–69.
  • Xu Z, Huang Z, Wang Y, et al. Friction and wear behavior of C17200 copper-beryllium alloy in dry and wet environments. J Mater Eng Perform. 2021;30:7542–7551. doi:10.1007/s11665-021-05969-w
  • He S, Jiang Y, Xie J, et al. Effects of Ni content on the cast and solid-solution microstructures of Cu-0.4wt%Be alloys. Int J Min Met Mater. 2018;25:641–651. doi:10.1007/s12613-018-1611-x
  • Meng X, Zhao D, Majid S. Extending the lifetime of copper-beryllium alloys as plastic injection high-end needle valve mold nozzle tips through a heat-treatment-based microstructure optimization approach. J Wuhan Univ Technol. 2023;38:665–668. doi:10.1007/s11595-023-2743-z
  • Jiang Y, Zhang T, Lei Y, et al. Effects of Ni content on microstructure and properties of aged Cu-0.4Be alloy. Trans Nonferrous Met Soc China. 2021;31:679–691. doi:10.1016/S1003-6326(21)65529-2
  • Wang Y, Jia S, Zhou Y, et al. Influence of cobalt on microstructure and properties of as-extruded beryllium copper. Trans Mater Heat Treat. 2017;38:49–53.
  • Kishore A, John M, Ralls AM, et al. Ultrasonic nanocrystal surface modification: processes, characterization, properties, and applications. Nanomaterials. 2022;12:1415.doi:10.3390/nano12091415
  • Liang Y, Qin H, Mehra N, et al. Controllable hierarchical micro/nano patterns on biomaterial surfaces fabricated by ultrasonic nanocrystalline surface modification. Mater Des. 2018;137:325–334. doi:10.1016/j.matdes.2017.10.041
  • Zou Y, Liu S, Wang Q, et al. A comparative study on mechanical and corrosion behaviours of α/(α + β) Mg-Li alloys subjected to ultrasonic nanocrystal surface modification. Metals. 2022;12:681.doi:10.3390/met12040681
  • Zou Y, Shen R, Lu Z, et al. Enhanced low-cycle fatigue behavior LZ91 Mg-Li alloy with ultrasonic nanocrystal surface modification. Fatigue Fract Eng Mater Struct. 2023;46:2485–2495. doi:10.1111/ffe.14011
  • Sundeev R, Shalimova A, Rogachev S, et al. Structural aspects of the formation of multilayer composites from dissimilar materials upon high-pressure torsion. Materials. 2023;16:3849.doi:10.3390/ma16103849
  • Lee HH, Hwang KJ, Park HK, et al. Effect of processing route on microstructure and mechanical properties in single-roll angular-rolling. Materials. 2020;13:2471.doi:10.3390/ma13112471
  • Praveenkumar K, Sudhagara Rajan S, Swaroop S, et al. Laser shock peening: a promising tool for enhancing the aeroengine materials’ surface properties. Surf Eng. 2023;39:245–274. doi:10.1080/02670844.2023.2206186.
  • Zhang Q, Xu S, Zhang Z, et al. Residual stress and microhardness evolution induced by conventional and ultrasonic shot peening. Mater Sci Technol. 2022;38:436–443. doi:10.1080/02670836.2022.2045551
  • Yin F, Rakita M, Hu S, et al. Overview of ultrasonic shot peening. Surf Eng. 2017;33:651–666. doi:10.1080/02670844.2017.1278838
  • He Y, Wang K, Shin K. Correlation of orientation relationships and strain-induced martensitic transformation sequences in a gradient austenitic stainless steel. J Mater Sci. 2020;56:4858–4870. doi:10.1007/s10853-020-05551-0
  • Moon JH, Baek SM, Lee SG, et al. Effects of residual stress on the mechanical properties of copper processed using ultrasonic-nanocrystalline surface modification. Mater Res Lett. 2019;7:97–102. doi:10.1080/21663831.2018.1560370
  • Karimbaev RM, Cho IS, Pyun YS, et al. Effect of ultrasonic nanocrystal surface modification treatment at room and high temperatures on the high-frequency fatigue behavior of Inconel 718 fabricated by laser metal deposition. Metals. 2022;12:515. doi:10.3390/met12030515
  • Zhu Y, Yan M, Zhang Y, et al. Surface modification of C17200 copper-beryllium alloy by plasma nitriding of Cu-Ti gradient film. J Mater Eng Perform. 2018;27:961–969. doi:10.1007/s11665-018-3190-4
  • Kolubaev AV, Sizova OV, Denisova YA, et al. Structure and properties of CrN/TiN multilayer coatings produced by cathodic arc plasma deposition on copper and beryllium-copper alloy. Phys Mesomech. 2022;25:306–317. doi:10.1134/S102995992204004X
  • Liu J, Suslov S, Li S, et al. Electrically assisted ultrasonic nanocrystal surface modification of Ti6Al4 V alloy. Adv Eng Mater. 2018;20:1700470. doi:10.1002/adem.201700470
  • Xu G, Wang C, Li Q, et al. Effects of ultrasonic rolling on surface performance of 7B85-T6 alloy. Mater Manuf Processes. 2020;35:250–257. doi:10.1080/10426914.2020.1718701
  • Ahn S, Amanov A. Application of crosswise repetitive ultrasonic nanocrystal surface modification treatment to Inconel 690 alloy: efficiency of single-path and multi-paths. Surf Coat Technol. 2022;437:128343. doi:10.1016/j.surfcoat.2022.128343
  • Xiong Z, Jiang Y, Yang M, et al. Achieving superior strength and ductility in 7075 aluminum alloy through the design of multi-gradient nanostructure by ultrasonic surface rolling and aging. J Alloys Compd. 2022;918:165669. doi:10.1016/j.jallcom.2022.165669
  • Gladman T. Precipitation hardening in metals. Mater Sci Technol. 1999;15:30–36. doi:10.1179/026708399773002782
  • Ortiz AL, Tian JW, Villegas JC, et al. Interrogation of the microstructure and residual stress of a nickel-base alloy subjected to surface severe plastic deformation. Acta Mater. 2008;56:413–426. doi:10.1016/j.actamat.2007.10.003
  • Tsuru T, Shibutani Y. Anisotropic effects in elastic and incipient plastic deformation under (001. (110), and (111) nanoindentation of Al and Cu. Phys Rev B. 2007;75:035415. doi:10.1103/PhysRevB.75.035415
  • Zhao W, Liu D, Liu J, et al. The effects of laser-assisted ultrasonic nanocrystal surface modification on the microstructure and mechanical properties of 300M steel. Adv Eng Mater. 2020;23:2001203.
  • Tang Y, Zhu G, Kang Y, et al. Effect of microstructure on the fatigue crack growth behavior of Cu-Be-Co-Ni alloy. J Alloys Compd. 2016;663:784–795. doi:10.1016/j.jallcom.2015.12.017
  • Zhang L, Zhang W, Cao B, et al. Effects of texture and grain size on the yield strength of ZK61 alloy rods processed by cyclic extrusion and compression. Materials. 2017;10:1234. doi:10.3390/ma10111234
  • Bagherian Azhiri R, Jadidi A, Bideskan AS, et al. Ultrasonic nanocrystalline surface modification of low strength aluminum alloy: trade-off between surface integrity and production rate aiming at desired fatigue life. Int J Adv Manuf Tech. 2021;113:1237–1251. doi:10.1007/s00170-021-06617-2
  • Qu S, Wang J, Hu X, et al. Effect of ultrasonic nanocrystalline surface modification process on fretting wear behavior of laser surface textured 20CrMoH steel. Surf Coat Technol. 2021;427:127827. doi:10.1016/j.surfcoat.2021.127827
  • Chen X, Han Z, Li X, et al. Lowering coefficient of friction in Cu alloys with stable gradient nanostructures. Sci Adv. 2016;2:e1601942. doi:10.1126/sciadv.1601942
  • Amanov A, Karimbaev R, Li C, et al. Effect of surface modification technology on mechanical properties and dry fretting wear behavior of Inconel 718 alloy fabricated by laser powder-based direct energy deposition. Surf Coat Technol. 2023;454:129175. doi:10.1016/j.surfcoat.2022.129175
  • Wang Q, Li Y, Lu Z, et al. Effects of ultrasonic nanocrystal surface modification on mechanical and corrosion behavior of LZ91 Mg-Li alloy. Mater Trans. 2020;61:1258–1264. doi:10.2320/matertrans.MT-M2019314

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.