407
Views
41
CrossRef citations to date
0
Altmetric
Review Article

The role of advanced MR imaging in understanding brain tumour pathology

Pages 562-575 | Received 11 Sep 2007, Accepted 24 Sep 2007, Published online: 06 Jul 2009

References

  • Lunsford L D, Martinez A J, Latchaw R E. Magnetic resonance imaging does not define tumor boundaries. Acta Radiol 1986; 369(Suppl)154–6
  • Johnson P C, Hunt S J, Drayer B P. Human cerebral gliomas: correlation of postmortem MR imaging and neuropathologic findings. Radiology 1989; 170: 211–17
  • Kelly P J, Daumas-Duport C, Scheithauer B W, Kall B A, Kispert D B. Stereotactic histologic correlations of computed tomography—and magnetic resonance imaging-defined abnormalities in patients with glial neoplasms. Mayo Clin Proc 1987; 62: 450–9
  • Oppitz U, Maessen D, Zunterer H, Richter S, Flentje M. 3D-recurrence-patterns of glioblastomas after CT-planned postoperative irradiation. Radiother Oncol 1999; 53: 53–57
  • Chan J L, Lee S W, Fraass B A, et al. Survival and failure patterns of high-grade gliomas after three-dimensional conformal radiotherapy. J Clin Oncol 2002; 20: 1635–42
  • Glantz M J, Burger P C, Herndon J E, et al. Influence of the type of surgery on the histologic diagnosis in patients with anaplastic gliomas. Neurology 1991; 41: 1741–4
  • Jackson R J, Fuller G N, bi-Said D, et al. Limitations of stereotactic biopsy in the initial management of gliomas. Neuro-oncol 2001; 3(3)193–200
  • McGirt M J, Villavicencio A T, Bulsara K R, Friedman A H. MRI-guided stereotactic biopsy in the diagnosis of glioma: comparison of biopsy and surgical resection specimen. Surg Neurol 2003; 59(4)277–81
  • Julia-Sape M, Acosta D, Majos C, et al. Comparison between neuroimaging classifications and histopathological diagnoses using an international multicenter brain tumor magnetic resonance imaging database. J Neurosurg 2006; 105: 6–14
  • Kondziolka D, Lunsford L D, Martinez A J. Unreliability of contemporary neurodiagnostic imaging in evaluating suspected adult supratentorial (low-grade) astrocytoma. J Neurosurg 1993; 79: 533–6
  • Scott J N, Brasher P MA, Sevick R J, Rewcastle N B, Forsyth P A. How often are nonenhancing supratentorial gliomas malignant? A population study. Neurology 2002; 59: 947–9
  • Galanis E, Buckner J C, Novotny P, et al. Efficacy of neuroradiological imaging, neurological examination, and symptom status in follow-up assessment of patients with high-grade gliomas. J Neurosurg 2000; 93: 201–7
  • Filipek P A, Kennedy D N, Caviness V S, Jr. Volumetric analyses of central nervous system neoplasm based on MRI. Pediatr Neurol 1991; 7(5)347–51
  • Therasse P, Arbuck S G, Eisenhauer E A, et al. New guidelines to evaluate the response to treatment in solid tumors. J Natl Cancer Inst 2000; 92: 205–16
  • Macdonald D R, Cascino T L, Schold S C, Cairncross J G. Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 1990; 8: 1277–80
  • Chow K L, Gobin Y P, Cloughesy T, et al. Prognostic factors in recurrent glioblastoma multiforme and anaplastic astrocytoma treated with selective intra-arterial chemotherapy. AJNR Am J Neuroradiol 2000; 21: 471–8
  • Galanis E, Buckner J C, Maurer M J, et al. Validation of neuroradiologic response assessment in gliomas: measurement by RECIST, two-dimensional, computer-assisted tumor area, and computer-assisted tumor volume methods. Neuro-oncol 2006; 8: 156–65
  • Shah G D, Kesari S, Xu R, et al. Comparison of linear and volumetric criteria in assessing tumor response in adult high-grade gliomas. Neuro-oncol 2006; 8: 38–46
  • Hammoud M A, Sawaya R, Shi W, Thall P F, Leeds N E. Prognostic significance of preoperative MRI scans in glioblastoma multiforme. J Neurooncol 1996; 27: 65–73
  • Kowalczuk A, Macdonald R L, Amidei C, et al. Quantitative imaging study of extent of surgical resection and prognosis of malignant astrocytomas. Neurosurgery 1997; 41: 1028–36
  • Ojemann J G, Miller J W, Silbergeld D L. Preserved function in brain invaded by tumor. Neurosurgery 1996; 39: 253–8
  • Skirboll S S, Ojemann G A, Berger M S, Lettich E, Winn H R. Functional cortex and subcortical white matter located within gliomas. Neurosurgery 1996; 38: 678–84
  • Tsuruda J S, Chew W M, Moseley M E, Norman D. Diffusion-weighted MR imaging of the brain: value of differentiating between extraaxial cysts and epidermoid tumors. AJNR Am J Neuroradiol 1990; 11: 925–31
  • Krabbe K, Gideon P, Wagn P, et al. MR diffusion imaging of human intracranial tumours. Neuroradiology 1997; 39(7)483–9
  • Kim D G, Yang H J, Park I A, et al. Gliomatosis cerebri: clinical features, treatment, and prognosis. Acta Neurochir (Wien) 1998; 140: 755–62
  • Lai P H, Ho J T, Chen W L, et al. Brain abscess and necrotic brain tumor: discrimination with proton MR spectroscopy and diffusion-weighted imaging. AJNR Am J Neuroradiol 2002; 23: 1369–77
  • Latour L L, Svoboda K, Mitra P P, Sotak C H. Time-dependent diffusion of water in a biological model system. Proc Natl Acad Sci USA 1994; 91: 1229–33
  • Brunberg J A, Chenevert T L, McKeever P E, et al. In vivo MR determination of water diffusion coefficients and diffusion anisotropy: correlation with structural alteration in gliomas of the cerebral hemispheres. AJNR Am J Neuroradiol 1995; 16: 361–71
  • Bulakbasi N, Kocaoglu M, Ors F, Tayfun C, Ucoz T. Combination of single-voxel proton MR spectroscopy and apparent diffusion coefficient calculation in the evaluation of common brain tumors. AJNR Am J Neuroradiol 2003; 24: 225–33
  • Castillo M, Smith J K, Kwock L, Wilber K. Apparent diffusion coefficients in the evaluation of high-grade cerebral gliomas. AJNR Am J Neuroradiol 2001; 22: 60–64
  • Kono K, Inoue Y, Nakayama K, et al. The role of diffusion-weighted imaging in patients with brain tumors. AJNR Am J Neuroradiol 2001; 22: 1081–8
  • Lam W W, Poon W S, Metreweli C. Diffusion MR imaging in glioma: does it have any role in the pre-operation determination of grading of glioma?. Clin Radiol 2002; 57: 219–25
  • Maier S E, Bogner P, Bajzik G, et al. Normal brain and brain tumor: multicomponent apparent diffusion coefficient line scan imaging. Radiology 2001; 219: 842–9
  • Stadnik T W, Chaskis C, Michotte A, et al. Diffusion-weighted MR imaging of intracerebral masses: comparison with conventional MR imaging and histologic findings. AJNR Am J Neuroradiol 2001; 22: 969–76
  • Tien R D, Felsberg G J, Friedman H, Brown M, MacFall J. MR imaging of high-grade cerebral gliomas: value of diffusion-weighted echoplanar pulse sequences. AJR Am J Roentgenol 1994; 162: 671–7
  • Guo A C, Cummings T J, Dash R C, Provenzale J M. Lymphomas and high-grade astrocytomas: comparison of water diffusibility and histologic characteristics. Radiology 2002; 224: 177–83
  • Sugahara T, Korogi Y, Kochi M, et al. Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 1999; 9: 53–60
  • Pajevic S, Pierpaoli C. Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain. Magn Reson Med 1999; 42: 526–40
  • Beppu T, Inoue T, Shibata Y, et al. Fractional anisotropy value by diffusion tensor magnetic resonance imaging as a predictor of cell density and proliferation activity of glioblastomas. Surg Neurol 2005; 63: 56–61
  • Stadlbauer A, Ganslandt O, Buslei R, et al. Gliomas: histopathologic evaluation of changes in directionality and magnitude of water diffusion at diffusion-tensor MR imaging. Radiology 2006; 240: 803–10
  • Witwer B P, Moftakhar R, Hasan K M, et al. Diffusion-tensor imaging of white matter tracts in patients with cerebral neoplasm. J Neurosurg 2002; 97: 568–75
  • Tofts P S, Kermode A G. Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 1991; 17: 357–67
  • Tofts P S, Brix G, Buckley D L, et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 1999; 10: 223–32
  • Aronen H J, Gazit I E, Louis D N, et al. Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 1994; 191: 41–51
  • Sugahara T, Korogi Y, Kochi M, et al. Correlation of MR imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. AJR Am J Roentgenol 1998; 171: 1479–86
  • Aronen H J, Pardo F S, Kennedy D N, et al. High microvascular blood volume is associated with high glucose uptake and tumor angiogenesis in human gliomas. Clin Cancer Res 2000; 6: 2189–200
  • Simmons M L, Frondoza C G, Coyle J T. Immunocytochemical localization of N-acetyl-aspartate with monoclonal antibodies. Neuroscience 1991; 45: 37–45
  • Star-Lack J, Spielman D, Adalsteinsson E, et al. In vivo lactate editing with simultaneous detection of choline, creatine, NAA, and lipid singlets at 1.5 T using PRESS excitation with applications to the study of brain and head and neck tumors. J Magn Reson 1998; 133: 243–54
  • Remy C, Fouilhe N, Barba I, et al. Evidence that mobile lipids detected in rat brain glioma by 1H nuclear magnetic resonance correspond to lipid droplets. Cancer Res 1997; 57: 407–14
  • McBride D Q, Miller B L, Nikas D L, et al. Analysis of brain tumors using 1H magnetic resonance spectroscopy. Surg Neurol 1995; 44: 137–44
  • Negendank W G, Sauter R, Brown T R, et al. Proton magnetic resonance spectroscopy in patients with glial tumors: a multicenter study. J Neurosurg 1996; 84: 449–58
  • Croteau D, Scarpace L, Hearshen D, et al. Correlation between magnetic resonance spectroscopy imaging and image-guided biopsies: semiquantitative and qualitative histopathological analyses of patients with untreated glioma. Neurosurgery 2001; 49: 823–9
  • Murphy M, Loosemore A, Clifton A G, et al. The contribution of proton magnetic resonance spectroscopy (1HMRS) to clinical brain tumour diagnosis. Br J Neurosurg 2002; 16: 329–34
  • Law M, Yang S, Wang H, et al. Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol 2003; 24: 1989–98
  • Howe F A, Barton S J, Cudlip S A, et al. Metabolic profiles of human brain tumors using quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med 2003; 49: 223–32
  • Meyerand M E, Pipas J M, Mamourian A, Tosteson T D, Dunn J F. Classification of biopsy-confirmed brain tumors using single-voxel MR spectroscopy. AJNR Am J Neuroradiol 1999; 20: 117–23
  • Remy C, Fouilhe N, Barba I, et al. Evidence that mobile lipids detected in rat brain glioma by 1H nuclear magnetic resonance correspond to lipid droplets. Cancer Res 1997; 57: 407–14
  • Nafe R, Herminghaus S, Raab P, et al. Preoperative proton-MR spectroscopy of gliomas – correlation with quantitative nuclear morphology in surgical specimen. J Neurooncol 2003; 63: 233–45
  • Gupta R K, Cloughesy T F, Sinha U, et al. Relationships between choline magnetic resonance spectroscopy, apparent diffusion coefficient and quantitative histopathology in human glioma. J Neurooncol 2000; 50: 215–26
  • McKnight T R, Lamborn K R, Love T D, et al. Correlation of magnetic resonance spectroscopic and growth characteristics within Grades II and III gliomas. J Neurosurg 2007; 106: 660–6
  • Achten E, Jackson G D, Cameron J A, et al. Presurgical evaluation of the motor hand area with functional MR imaging in patients with tumors and dysplastic lesions. Radiology 1999; 210: 529–38
  • Fandino J, Kollias S S, Wieser H G, Valavanis A, Yonekawa Y. Intraoperative validation of functional magnetic resonance imaging and cortical reorganization patterns in patients with brain tumors involving the primary motor cortex. J Neurosurg 1999; 91: 238–50
  • Roux F E, Boulanouar K, Lotterie J A, et al. Language functional magnetic resonance imaging in preoperative assessment of language areas: correlation with direct cortical stimulation. Neurosurgery 2003; 52: 1335–47
  • Roux F E, Tremoulet M. Organization of language areas in bilingual patients: a cortical stimulation study. J Neurosurg 2002; 97: 857–64
  • Holodny A I, Schulder M, Liu W C, Maldjian J A, Kalnin A J. Decreased BOLD functional MR activation of the motor and sensory cortices adjacent to a glioblastoma multiforme: implications for image-guided neurosurgery. AJNR Am J Neuroradiol 1999; 20: 609–12
  • Ulmer J L, Krouwer H G, Mueller W M, et al. Pseudo-reorganization of language cortical function at fMR imaging: a consequence of tumor-induced neurovascular uncoupling. Am J Neuroradiol 2003; 24: 213–17
  • Kim M JJ, Holodny A I, Hou B L, et al. The effect of prior surgery on blood oxygen level-dependent functional MR imaging in the preoperative assessment of brain tumors. AJNR Am J Neuroradiol 2005; 26: 1980–5
  • Krishnan R, Raabe A, Hattingen E, et al. Functional magnetic resonance imaging-integrated neuronavigation: correlation between lesion-to-motor cortex distance and outcome. Neurosurgery 2004; 55: 904–15
  • Berman J I, Berger M S, Mukherjee P, Henry R G. Diffusion-tensor imaging-guided tracking of fibers of the pyramidal tract combined with intraoperative cortical stimulation mapping in patients with gliomas. J Neurosurg 2004; 101: 66–72
  • Clark C A, Barrick T R, Murphy M M, Bell B A. White matter fiber tracking in patients with space-occupying lesions of the brain: a new technique for neurosurgical planning?. Neuroimage 2003; 20: 1601–8
  • Coenen V A, Krings T, Axer H, et al. Intraoperative three-dimensional visualization of the pyramidal tract in a neuronavigation system (PTV) reliably predicts true position of principal motor pathways. Surg Neurol 2003; 60(5)381–90
  • Tummala R P, Chu R M, Liu H, T C L, Hall W A. Application of diffusion tensor imaging to magnetic-resonance-guided brain tumor resection. Pediatr Neurosurg 2003; 39: 39–43
  • Nimsky C, Ganslandt O, Hastreiter P, et al. Intraoperative diffusion-tensor MR imaging: shifting of white matter tracts during neurosurgical procedures—initial experience. Radiology 2005; 234: 218–25
  • Rutten G J, Ramsey N F, van Rijen P C, van Veelen C W. Reproducibility of fMRI-determined language lateralization in individual subjects. Brain Lang 2002; 80: 421–37
  • Ramsey N F, Tallent K, Van Gelderen P, et al. Reproducibility of human 3D fMRI brain maps acquired during a motor task. Hum Brain Mapping 1996; 4: 113–21
  • Price S J, Burnet N G, Donovan T, et al. Diffusion tensor imaging of brain tumours at 3T: a potential tool for assessing white matter tract invasion?. Clin Radiol 2003; 58(6)455–62
  • Provenzale J M, McGraw P, Mhatre P, Guo A C, Delong D. Peritumoral brain regions in gliomas and meningiomas: investigation with isotropic diffusion-weighted MR imaging and diffusion-tensor MR imaging. Radiology 2004; 232: 451–60
  • Tropine A, Vucurevic G, Delani P, et al. Contribution of diffusion tensor imaging to delineation of gliomas and glioblastomas. J Magn Reson Imaging 2004; 20: 905–12
  • Lu S, Ahn D, Johnson G, Cha S. Peritumoral diffusion tensor imaging of high-grade gliomas and metastatic brain tumors. AJNR Am J Neuroradiol 2003; 24: 937–41
  • van Westen D, Lätt J, Englund E, Brockstedt S, Larsson E-M. Tumor extension in high-grade gliomas assessed with diffusion magnetic resonance imaging: values and lesion-to-brain ratios of apparent diffusion coefficient and fractional anisotropy. Acta Radiol 2006; 47(3)311–19
  • Green H A, Pena A, Price C J, et al. Increased anisotropy in acute stroke: a possible explanation. Stroke 2002; 33: 1517–21
  • Price S J, Pena A, Burnet N G, et al. Tissue signature characterisation of diffusion tensor abnormalities in cerebral gliomas. Eur Radiol 2004; 14: 1909–17
  • Lu S, Ahn D, Johnson G, et al. Diffusion-tensor MR imaging of intracranial neoplasia and associated peritumoral edema: introduction of the Tumor Infiltration Index. Radiology 2004; 232: 221–8
  • Zhou X J, Leeds N E. Assessing glioma cell infiltration using a fiber coherence index: a DTI study. Proc Int Soc Mag Reson Med 2005; 13: 365
  • Morita K, Matsuzawa H, Fujii Y, et al. Diffusion tensor analysis of peritumoral edema using lambda chart analysis indicative of the heterogeneity of the microstructure within edema. J Neurosurg 2005; 102: 336–41
  • Price S J, Jena R, Burnet N G, et al. Improved delineation of glioma margins and regions of infiltration with the use of diffusion tensor imaging: an image-guided biopsy study. AJNR Am J Neuroradiol 2006; 27: 1969–74
  • Price S J, Jena R, Burnet N G, et al. Predicting patterns of glioma recurrence using diffusion tensor imaging. Eur Radiol 2007; 17: 1675–84
  • Jena R, Price S J, Baker C, et al. Diffusion tensor imaging: possible implications for radiotherapy treatment planning of patients with high-grade glioma. Clin Oncol 2005; 17: 581–90
  • Sijens P E, Oudkerk M. 1H chemical shift imaging characterization of human brain tumor and edema. Eur Radiol 2002; 12: 2056–61
  • McKnight T R, dem Bussche M H, Vigneron D B, et al. Histopathological validation of a three-dimensional magnetic resonance spectroscopy index as a predictor of tumor presence. J Neurosurg 2002; 97: 794–802
  • Stadlbauer A, Nimsky C, Gruber S, et al. Changes in fiber integrity, diffusivity, and metabolism of the pyramidal tract adjacent to gliomas: a quantitative diffusion tensor fiber tracking and MR spectroscopic imaging study. AJNR Am J Neuroradiol 2007; 28: 462–9
  • Murakami R, Sugahara T, Nakamura H, et al. Malignant supratentorial astrocytoma treated with postoperative radiation therapy: prognostic value of pretreatment quantitative diffusion-weighted MR imaging. Radiology 2007; 243: 493–9
  • Kleihues P, Cavenee W K. Pathology and genetics of tumours of the nervous system. IARC Press, Lyon 2000
  • Law M, Yang S, Babb J S, et al. Comparison of cerebral blood volume and vascular permeability from dynamic susceptibility contrast-enhanced perfusion MR imaging with glioma grade. AJNR Am J Neuroradiol 2004; 25: 746–55
  • Knopp E A, Cha S, Johnson G, et al. Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging. Radiology 1999; 211: 791–8
  • Shin J H, Lee H K, Kwun B D, et al. Using relative cerebral blood flow and volume to evaluate the histopathologic grade of cerebral gliomas: preliminary results. AJR Am J Roentgenol 2002; 179: 783–9
  • Sugahara T, Korogi Y, Kochi M, Ushio Y, Takahashi M. Perfusion-sensitive MR imaging of gliomas: comparison between gradient-echo and spin-echo echo-planar imaging techniques. AJNR Am J Neuroradiol 2001; 22: 1306–15
  • Boxerman J L, Schmainda K M, Weisskoff R M. Relative cerebral blood volume maps corrected for contrast agent extravasation significantly correlate with glioma tumor grade, whereas uncorrected maps do not. AJNR Am J Neuroradiol 2006; 27: 859–67
  • Donahue K M, Krouwer H G, Rand S D, et al. Utility of simultaneously acquired gradient-echo and spin-echo cerebral blood volume and morphology maps in brain tumor patients. Magn Reson Med 2000; 43: 845–53
  • Lev M H, Ozsunar Y, Henson J W, et al. Glial tumor grading and outcome prediction using dynamic spin-echo MR susceptibility mapping compared with conventional contrast-enhanced MR: confounding effect of elevated rCBV of oligodendrogliomas. AJNR Am J Neuroradiol 2004; 25: 214–21
  • Law M, Oh S, Johnson G, et al. Perfusion magnetic resonance imaging predicts patient outcome as an adjunct to histopathology: a second reference standard in the surgical and nonsurgical treatment of low-grade gliomas. Neurosurgery 2006; 58: 1099–107
  • Law M, Oh S, Babb J S, et al. Low-grade gliomas: dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging—prediction of patient clinical response. Radiology 2006; 238: 658–67
  • Cha S, Tihan T, Crawford F, et al. Differentiation of low-grade oligodendrogliomas from low-grade astrocytomas by using quantitative blood-volume measurements derived from dynamic susceptibility contrast-enhanced MR imaging. AJNR Am J Neuroradiol 2005; 26: 266–73
  • Jenkinson M D, Smith T S, Joyce K A, et al. Cerebral blood volume, genotype and chemosensitivity in oligodendroglial tumours. Neuroradiology 2006; 48(10)703–13
  • Law M, Brodsky J E, Babb J, et al. High cerebral blood volume in human gliomas predicts deletion of chromosome 1p: preliminary results of molecular studies in gliomas with elevated perfusion. J Magn Reson Imaging 2007; 25: 1113–19
  • Donahue K M, Krouwer H G, Rand S D, et al. Utility of simultaneously acquired gradient-echo and spin-echo cerebral blood volume and morphology maps in brain tumor patients. Magn Reson Med 2000; 43: 845–53
  • Roberts H C, Roberts T P, Brasch R C, Dillon W P. Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imaging: correlation with histologic grade. AJNR Am J Neuroradiol 2000; 21: 891–9
  • Provenzale J M, Wang G R, Brenner T, Petrella J R, Sorensen A G. Comparison of permeability in high-grade and low-grade brain tumors using dynamic susceptibility contrast MR imaging. AJR Am J Roentgenol 2002; 178: 711–16
  • Roberts H C, Roberts T P, Bollen A W, et al. Correlation of microvascular permeability derived from dynamic contrast-enhanced MR imaging with histologic grade and tumor labeling index: a study in human brain tumors. Acad Radiol 2001; 8(5)384–91
  • Ludemann L, Hamm B, Zimmer C. Pharmacokinetic analysis of glioma compartments with dynamic Gd-DTPA-enhanced magnetic resonance imaging. Magn Reson Imaging 2000; 18: 1201–14
  • Tate A R, Majos C, Moreno A, et al. Automated classification of short echo time in in vivo 1H brain tumor spectra: a multicenter study. Magn Reson Med 2003; 49: 29–36
  • Chenevert T L, McKeever P E, Ross B D. Monitoring early response of experimental brain tumors to therapy using diffusion magnetic resonance imaging. Clin Cancer Res 1997; 3: 1457–66
  • Chenevert T L, Stegman L D, Taylor J M, et al. Diffusion magnetic resonance imaging: an early surrogate marker of therapeutic efficacy in brain tumors. J Natl Cancer Inst 2000; 92: 2029–36
  • Mardor Y, Roth Y, Lidar Z, et al. Monitoring response to convection-enhanced taxol delivery in brain tumor patients using diffusion-weighted magnetic resonance imaging. Cancer Res 2001; 61: 4971–3
  • Moffat B A, Chenevert T L, Lawrence T S, et al. Functional diffusion map: a noninvasive MRI biomarker for early stratification of clinical brain tumor response. PNAS 2005; 102: 5524–9
  • Hall D E, Moffat B A, Stojanovska J, et al. Therapeutic efficacy of DTI-015 using diffusion magnetic resonance imaging as an early surrogate marker. Clin Cancer Res 2004; 10: 7852–9
  • Akella N S, Twieg D B, Mikkelsen T, et al. Assessment of brain tumor angiogenesis inhibitors using perfusion magnetic resonance imaging: quality and analysis results of a phase I trial. J Magn Reson Imaging 2004; 20: 913–22
  • Nabors L B, Mikkelsen T, Rosenfeld S S, et al. Phase I and correlative biology study of cilengitide in patients with recurrent malignant glioma. J Clin Oncol 2007; 25: 1651–7
  • Cao Y, Tsien C I, Nagesh V, et al. Survival prediction in high-grade gliomas by MRI perfusion before and during early stage of RT. Int J Radiat Oncol Biol Phys 2006; 64: 876–85
  • Lee M C, Cha S, Chang S M, Nelson S J. Dynamic susceptibility contrast perfusion imaging of radiation effects in normal-appearing brain tissue: changes in the first-pass and recirculation phases. J Magn Reson Imaging 2005; 21: 683–93
  • Price S J, Jena R, Green H A, et al. Early radiotherapy dose response and lack of hypersensitivity effect in normal brain tissue: a sequential dynamic susceptibility imaging study of cerebral perfusion. Clin Oncol 2007, Published online, Jul 11: doi:10.1016/j.clon.2007.04.010
  • Tarnawski R, Sokol M, Pieniazek P, et al. 1H-MRS in vivo predicts the early treatment outcome of postoperative radiotherapy for malignant gliomas. Int J Radiat Oncol Biol Phys 2002; 52: 1271–6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.