822
Views
38
CrossRef citations to date
0
Altmetric
Review Article

Paediatric high and low grade glioma: the impact of tumour biology on current and future therapy

Pages 351-363 | Received 21 Jun 2009, Accepted 03 Jul 2009, Published online: 15 Sep 2009

References

  • Hargrave D., Messental B., Plowman P. N. Tumours of the central nervous system. Paediatric Oncology, 3rd ed, C. R. Pinkerton, P. N. Plowman, R. Pieters. Hodder, London 2004; 287–322
  • Louis D. N., Ohgaki H., Wiestler O. D., Cavenee W. K., Burger P. C., Jouvet A., Scheithauer B. W., Kleihues P. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007; 114: 97–109
  • Kleihues P., Louis D. N., Scheithauer B. W., Rorke L. B., Reifenberger G., Burger P. C., Cavenee W. K. The WHO classification of tumors of the nervous system. J.Neuropathol.Exp.Neurol 2002; 61: 215–225
  • Kepes J. J., Rubinstein L. J., Eng L. F. Pleomorphic xanthoastrocytoma: a distinctive meningocerebral glioma of young subjects with relatively favorable prognosis. A study of 12 cases. Cancer 1979; 44: 1839–1852
  • Hirose T., Ishizawa K., Sugiyama K., Kageji T., Ueki K., Kannuki S. Pleomorphic xanthoastrocytoma: a comparative pathological study between conventional and anaplastic types. Histopathology 2008; 52: 183–193
  • Tihan T., Fisher P. G., Kepner J. L., Godfraind C., McComb R. D., Goldthwaite P. T., Burger P. C. Pediatric astrocytomas with monomorphous pilomyxoid features and a less favorable outcome. J Neuropathol.Exp. Neurol 1999; 58: 1061–1068
  • Listernick R., Ferner R. E., Liu G. T., Gutmann D. H. Optic pathway gliomas in neurofibromatosis-1: controversies and recommendations. Ann.Neurol 2007; 61: 189–198
  • Ferner R. E. Neurofibromatosis 1 and neurofibromatosis 2: a twenty first century perspective. Lancet Neurol 2007; 6: 340–351
  • Brems H., Beert E., de Ravel T., Legius E. Mechanisms in the pathogenesis of malignant tumours in neurofibromatosis type 1. Lancet Oncol 2009; 10: 508–515
  • Napolioni V., Curatolo P. Genetics and molecular biology of tuberous sclerosis complex. Curr.Genomics 2008; 9: 475–487
  • Rosner M., Hanneder M., Siegel N., Valli A., Hengstschlager M. The tuberous sclerosis gene products hamartin and tuberin are multifunctional proteins with a wide spectrum of interacting partners. Mutat.Res 2008; 658: 234–246
  • Reuss D., von Deimling A. Hereditary tumor syndromes and gliomas. Recent Results Cancer Res 2009; 171: 83–102
  • Gustafson S., Zbuk K. M., Scacheri C., Eng C. Cowden syndrome. Semin.Oncol 2007; 34: 428–434
  • Robinson S., Cohen A. R. Cowden disease and Lhermitte-Duclos disease: characterization of a new phakomatosis. Neurosurgery 2000; 46: 371–383
  • Murata J., Tada M., Sawamura Y., Mitsumori K., Abe H., Nagashima K. Dysplastic gangliocytoma (Lhermitte-Duclos disease) associated with Cowden disease: report of a case and review of the literature for the genetic relationship between the two diseases. J Neurooncol 1999; 41: 129–136
  • Eng C. Genetics of Cowden syndrome: through the looking glass of oncology. Int.J Oncol 1998; 12: 701–710
  • Bar E. E., Lin A., Tihan T., Burger P. C., Eberhart C. G. Frequent gains at chromosome 7q34 involving BRAF in pilocytic astrocytoma. J Neuropathol.Exp.Neurol 2008; 67: 878–887
  • Sievert A. J., Jackson E. M., Gai X., Hakonarson H., Judkins A. R., Resnick A. C., Sutton L. N., Storm P. B., Shaikh T. H., Biegel J. A. Duplication of 7q34 in Pediatric Low-Grade Astrocytomas Detected by High-Density Single-Nucleotide Polymorphism-Based Genotype Arrays Results in a Novel BRAF Fusion Gene. Brain Pathol 2008
  • Pfister S., Janzarik W. G., Remke M., Ernst A., Werft W., Becker N., Toedt G., Wittmann A., Kratz C., Olbrich H., Ahmadi R., Thieme B., Joos S., Radlwimmer B., Kulozik A., Pietsch T., Herold-Mende C., Gnekow A., Reifenberger G., Korshunov A., Scheurlen W., Omran H., Lichter P. BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J Clin Invest 2008; 118: 1739–1749
  • Jones D. T., Kocialkowski S., Liu L., Pearson D. M., Backlund L. M., Ichimura K., Collins V. P. Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res 2008; 68: 8673–8677
  • Jones D. T., Kocialkowski S., Liu L., Pearson D. M., Ichimura K., Collins V. P. Oncogenic RAF1 rearrangement and a novel BRAF mutation as alternatives to KIAA1549:BRAF fusion in activating the MAPK pathway in pilocytic astrocytoma. Oncogene 2009; 28: 2119–2123
  • Forshew T., Tatevossian R. G., Lawson A. R., Ma J., Neale G., Ogunkolade B. W., Jones T. A., Aarum J., Dalton J., Bailey S., Chaplin T., Carter R. L., Gajjar A., Broniscer A., Young B. D., Ellison D. W., Sheer D. Activation of the ERK/MAPK pathway: a signature genetic defect in posterior fossa pilocytic astrocytomas. J Pathol 2009; 218: 172–181
  • Parsons D. W., Jones S., Zhang X., Lin J. C., Leary R. J., Angenendt P., Mankoo P., Carter H., Siu I. M., Gallia G. L., Olivi A., McLendon R., Rasheed B. A., Keir S., Nikolskaya T., Nikolsky Y., Busam D. A., Tekleab H., Diaz L. A., Jr, Hartigan J., Smith D. R., Strausberg R. L., Marie S. K., Shinjo S. M., Yan H., Riggins G. J., Bigner D. D., Karchin R., Papadopoulos N., Parmigiani G., Vogelstein B., Velculescu V. E., Kinzler K. W. An integrated genomic analysis of human glioblastoma multiforme. Science 2008; 321: 1807–1812
  • Ducray F., Marie Y., Sanson M. IDH1 and IDH2 mutations in gliomas. N.Engl.J Med 2009; 360: 2248
  • De Carli E., Wang X., Puget S. IDH1 and IDH2 mutations in gliomas. N.Engl.J Med 2009; 360: 2248
  • Kang M. R., Kim M. S., Oh J. E., Kim Y. R., Song S. Y., Seo S. I., Lee J. Y., Yoo N. J., Lee S. H. Mutational analysis of IDH1 codon 132 in glioblastomas and other common cancers. Int.J Cancer 2009; 125: 353–355
  • Zhao S., Lin Y., Xu W., Jiang W., Zha Z., Wang P., Yu W., Li Z., Gong L., Peng Y., Ding J., Lei Q., Guan K. L., Xiong Y. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science 2009; 324: 261–265
  • Watanabe T., Vital A., Nobusawa S., Kleihues P., Ohgaki H. Selective acquisition of IDH1 R132C mutations in astrocytomas associated with Li-Fraumeni syndrome. Acta Neuropathol 2009; 117: 653–656
  • Watanabe T., Nobusawa S., Kleihues P., Ohgaki H. IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am.J Pathol 2009; 174: 1149–1153
  • Yan H., Parsons D. W., Jin G., McLendon R., Rasheed B. A., Yuan W., Kos I., Batinic-Haberle I., Jones S., Riggins G. J., Friedman H., Friedman A., Reardon D., Herndon J., Kinzler K. W., Velculescu V. E., Vogelstein B., Bigner D. D. IDH1 and IDH2 mutations in gliomas. N.Engl.J Med 2009; 360: 765–773
  • Bleeker F. E., Lamba S., Leenstra S., Troost D., Hulsebos T., Vandertop W. P., Frattini M., Molinari F., Knowles M., Cerrato A., Rodolfo M., Scarpa A., Felicioni L., Buttitta F., Malatesta S., Marchetti A., Bardelli A. IDH1 mutations at residue p.R132 (IDH1(R132)) occur frequently in high-grade gliomas but not in other solid tumors. Hum Mutat 2009; 30: 7–11
  • Balss J., Meyer J., Mueller W., Korshunov A., Hartmann C., von Deimling A. Analysis of the IDH1 codon 132 mutation in brain tumors. Acta Neuropathol 2008; 116: 597–602
  • Thompson C. B. Metabolic enzymes as oncogenes or tumor suppressors. N.Engl.J Med 2009; 360: 813–815
  • Wisoff J. H., Sanford R., Holmes E., Sposto R., Kun L. E., Heier L. Impact of surgical resection on low grade gliomas of childhood: A report from the CCG 9891/POG 9130 low grade astrocytoma study. Neuro-oncology 2003; 5: 71
  • Grill J., Laithier V., Rodriguez D., Raquin M. A., Pierre-Kahn A., Kalifa C. When do children with optic pathway tumours need treatment? An oncological perspective in 106 patients treated in a single centre. Eur.J Pediatr 2000; 159: 692–696
  • Cappelli C., Grill J., Raquin M., Pierre-Kahn A., Lellouch-Tubiana A., Terrier-Lacombe M. J., Habrand J. L., Couanet D., Brauner R., Rodriguez D., Hartmann O., Kalifa C. Long-term follow up of 69 patients treated for optic pathway tumours before the chemotherapy era. Arch Dis.Child 1998; 79: 334–338
  • Horwich A., Bloom H. J. Optic gliomas: radiation therapy and prognosis. Int.J Radiat.Oncol.Biol.Phys 1985; 11: 1067–1079
  • Jenkin D., Angyalfi S., Becker L., Berry M., Buncic R., Chan H., Doherty M., Drake J., Greenberg M., Hendrick B. Optic glioma in children: surveillance, resection, or irradiation?. Int.J Radiat.Oncol.Biol.Phys 1993; 25: 215–225
  • Grill J., Couanet D., Cappelli C., Habrand J. L., Rodriguez D., Sainte-Rose C., Kalifa C. Radiation-induced cerebral vasculopathy in children with neurofibromatosis and optic pathway glioma. Ann.Neurol 1999; 45: 393–396
  • Kestle J. R., Hoffman H. J., Mock A. R. Moyamoya phenomenon after radiation for optic glioma. J.Neurosurg 1993; 79: 32–35
  • Kony S. J., de Vathaire F., Chompret A., Shamsaldim A., Grimaud E., Raquin M. A., Oberlin O., Brugieres L., Feunteun J., Eschwege F., Chavaudra J., Lemerle J., Bonaiti-Pellie C. Radiation and genetic factors in the risk of second malignant neoplasms after a first cancer in childhood. Lancet 1997; 350: 91–95
  • Little M. P., de Vathaire F., Shamsaldin A., Oberlin O., Campbell S., Grimaud E., Chavaudra J., Haylock R. G., Muirhead C. R. Risks of brain tumour following treatment for cancer in childhood: modification by genetic factors, radiotherapy and chemotherapy. Int.J.Cancer 1998; 78: 269–275
  • Packer R. J., Lange B., Ater J., Nicholson H. S., Allen J., Walker R., Prados M., Jakacki R., Reaman G., Needles M. N. Carboplatin and vincristine for recurrent and newly diagnosed low-grade gliomas of childhood. J.Clin.Oncol 1993; 11: 850–856
  • Packer R. J., Ater J., Allen J., Phillips P., Geyer R., Nicholson H. S., Jakacki R., Kurczynski E., Needle M., Finlay J., Reaman G., Boyett J. M. Carboplatin and vincristine chemotherapy for children with newly diagnosed progressive low-grade gliomas. J.Neurosurg 1997; 86: 747–754
  • Walker D., Gnekow A. K., Perilongo G., Zanetti I. Vincristine/carboplatin in hypothalamic-chiasmatic glioma: A report from the international consortium on low grade glioma. Med Ped Oncol 2002; 39: 229
  • Prados M. D., Edwards M. S., Rabbitt J., Lamborn K., Davis R. L., Levin V. A. Treatment of pediatric low-grade gliomas with a nitrosourea-based multiagent chemotherapy regimen. J Neurooncol 1997; 32: 235–241
  • Lafay-Cousin L., Holm S., Qaddoumi I., Nicolin G., Bartels U., Tabori U., Huang A., Bouffet E. Weekly vinblastine in pediatric low-grade glioma patients with carboplatin allergic reaction. Cancer 2005; 103: 2636–2642
  • Chamberlain M. C., Grafe M. R. Recurrent chiasmatic-hypothalamic glioma treated with oral etoposide. J Clin Oncol 1995; 13: 2072–2076
  • Baruchel S., Diezi M., Hargrave D., Stempak D., Gammon J., Moghrabi A., Coppes M. J., Fernandez C. V., Bouffet E. Safety and pharmacokinetics of temozolomide using a dose-escalation, metronomic schedule in recurrent paediatric brain tumours. Eur.J Cancer 2006; 42: 2335–2342
  • Bertolini F., Mancuso P., Kerbel R. S. Circulating endothelial progenitor cells. N.Engl.J Med 2005; 353: 2613–2616
  • Kerbel R. S., Kamen B. A. The anti-angiogenic basis of metronomic chemotherapy. Nat.Rev.Cancer 2004; 4: 423–436
  • Peyrl A., Azizi A., Czech T., Gruber-Olipitz M., Jones N., Haberler C., Prayer D., Autzinger E., Slavc I. Tumor stabilization under treatment with imatinib in progressive hypothalamic-chiasmatic glioma. Pediatr.Blood Cancer 2009; 52: 476–480
  • McLaughlin M. E., Robson C. D., Kieran M. W., Jacks T., Pomeroy S. L., Cameron S. Marked regression of metastatic pilocytic astrocytoma during treatment with imatinib mesylate (STI-571, Gleevec): a case report and laboratory investigation. J Pediatr.Hematol.Oncol 2003; 25: 644–648
  • Benesch M., Windelberg M., Sauseng W., Witt V., Fleischhack G., Lackner H., Gadner H., Bode U., Urban C. Compassionate use of bevacizumab (Avastin) in children and young adults with refractory or recurrent solid tumors. Ann.Oncol 2008; 19: 807–813
  • Packer R. J., Jakacki R., Horn M., Rood B., Vezina G., Macdonald T., Fisher M. J., Cohen B. Objective response of multiply recurrent low-grade gliomas to bevacizumab and irinotecan. Pediatr.Blood Cancer 2009; 52: 791–795
  • Hegedus B., Banerjee D., Yeh T. H., Rothermich S., Perry A., Rubin J. B., Garbow J. R., Gutmann D. H. Preclinical cancer therapy in a mouse model of neurofibromatosis-1 optic glioma. Cancer Res 2008; 68: 1520–1528
  • Inoki K., Guan K. L. Tuberous sclerosis complex, implication from a rare genetic disease to common cancer treatment. Hum Mol.Genet 2009; 18: R94–100
  • Sampson J. R. Therapeutic targeting of mTOR in tuberous sclerosis. Biochem.Soc.Trans 2009; 37: 259–264
  • Krymskaya V. P., Goncharova E. A. PI3K/mTORC1 activation in hamartoma syndromes: therapeutic prospects. Cell Cycle 2009; 8: 403–413
  • Koenig M. K., Butler I. J., Northrup H. Regression of subependymal giant cell astrocytoma with rapamycin in tuberous sclerosis complex. J Child Neurol 2008; 23: 1238–1239
  • Franz D. N., Leonard J., Tudor C., Chuck G., Care M., Sethuraman G., Dinopoulos A., Thomas G., Crone K. R. Rapamycin causes regression of astrocytomas in tuberous sclerosis complex. Ann.Neurol 2006; 59: 490–498
  • Wong K. K. Recent developments in anti-cancer agents targeting the Ras/Raf/MEK/ERK pathway. Recent Pat Anticancer Drug Discov 2009; 4: 28–35
  • Friday B. B., Adjei A. A. Advances in targeting the Ras/Raf/MEK/Erk mitogen-activated protein kinase cascade with MEK inhibitors for cancer therapy. Clin Cancer Res 2008; 14: 342–346
  • Roberts P. J., Der C. J. Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 2007; 26: 3291–3310
  • Diaz-Gonzalez J. A., Russell J., Rouzaut A., Gil-Bazo I., Montuenga L. Targeting hypoxia and angiogenesis through HIF-1alpha inhibition. Cancer Biol.Ther 2005; 4: 1055–1062
  • Semenza G. L. Evaluation of HIF-1 inhibitors as anticancer agents. Drug Discov.Today 2007; 12: 853–859
  • Semenza G. L. Development of novel therapeutic strategies that target HIF-1. Expert.Opin.Ther.Targets 2006; 10: 267–280
  • Kleihues P., Burger P. C., Scheithauer B. W. The new WHO classification of brain tumours. Brain Pathol 1993; 3: 255–268
  • Wiestler O. D., Wolf H. K. [Revised WHO classification and new developments in diagnosis of central nervous system tumors]. Pathologe 1995; 16: 245–255
  • Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008; 455: 1061–1068
  • Pollack I. F., Finkelstein S. D., Burnham J., Holmes E. J., Hamilton R. L., Yates A. J., Finlay J. L., Sposto R. Age and TP53 mutation frequency in childhood malignant gliomas: results in a multi-institutional cohort. Cancer Res 2001; 61: 7404–7407
  • Pollack I. F., Finkelstein S. D., Woods J., Burnham J., Holmes E. J., Hamilton R. L., Yates A. J., Boyett J. M., Finlay J. L., Sposto R. Expression of p53 and prognosis in children with malignant gliomas. N.Engl.J Med 2002; 346: 420–427
  • Louis D. N., Rubio M. P., Correa K. M., Gusella J. F., von Deimling A. Molecular genetics of pediatric brain stem gliomas. Application of PCR techniques to small and archival brain tumor specimens. J.Neuropathol.Exp.Neurol 1993; 52: 507–515
  • Cheng Y., Ng H. K., Zhang S. F., Ding M., Pang J. C., Zheng J., Poon W. S. Genetic alterations in pediatric high-grade astrocytomas. Hum.Pathol 1999; 30: 1284–1290
  • Newcomb E. W., Alonso M., Sung T., Miller D. C. Incidence of p14ARF gene deletion in high-grade adult and pediatric astrocytomas. Hum.Pathol 2000; 31: 115–119
  • Sung T., Miller D. C., Hayes R. L., Alonso M., Yee H., Newcomb E. W. Preferential inactivation of the p53 tumor suppressor pathway and lack of EGFR amplification distinguish de novo high grade pediatric astrocytomas from de novo adult astrocytomas. Brain Pathol 2000; 10: 249–259
  • Wong K. K., Tsang Y. T., Chang Y. M., Su J., Di Francesco A. M., Meco D., Riccardi R., Perlaky L., Dauser R. C., Adesina A., Bhattacharjee M., Chintagumpala M., Lau C. C. Genome-wide allelic imbalance analysis of pediatric gliomas by single nucleotide polymorphic allele array. Cancer Res 2006; 66: 11172–11178
  • Muracciole X., Romain S., Dufour H., Palmari J., Chinot O., Ouafik L., Grisoli F., Branger D. F., Martin P. M. PAI-1 and EGFR expression in adult glioma tumors: toward a molecular prognostic classification. Int.J Radiat.Oncol Biol. Phys 2002; 52: 592–598
  • Saito T., Hama S., Kajiwara Y., Sugiyama K., Yamasaki F., Arifin M. T., Arita K., Kurisu K. Prognosis of cerebellar glioblastomas: correlation between prognosis and immunoreactivity for epidermal growth factor receptor compared with supratentorial glioblastomas. Anticancer Res 2006; 26: 1351–1357
  • Smith J. S., Tachibana I., Passe S. M., Huntley B. K., Borell T. J., Iturria N., O'Fallon J. R., Schaefer P. L., Scheithauer B. W., James C. D., Buckner J. C., Jenkins R. B. PTEN mutation, EGFR amplification, and outcome in patients with anaplastic astrocytoma and glioblastoma multiforme. J Natl.Cancer Inst 2001; 93: 1246–1256
  • Narita Y., Nagane M., Mishima K., Huang H. J., Furnari F. B., Cavenee W. K. Mutant epidermal growth factor receptor signaling down-regulates p27 through activation of the phosphatidylinositol 3-kinase/Akt pathway in glioblastomas. Cancer Res 2002; 62: 6764–6769
  • Shinojima N., Tada K., Shiraishi S., Kamiryo T., Kochi M., Nakamura H., Makino K., Saya H., Hirano H., Kuratsu J., Oka K., Ishimaru Y., Ushio Y. Prognostic value of epidermal growth factor receptor in patients with glioblastoma multiforme. Cancer Res 2003; 63: 6962–6970
  • Pollack I. F., Hamilton R. L., James C. D., Finkelstein S. D., Burnham J., Yates A. J., Holmes E. J., Zhou T., Finlay J. L. Rarity of PTEN deletions and EGFR amplification in malignant gliomas of childhood: results from the Children's Cancer Group 945 cohort. J Neurosurg 2006; 105: 418–424
  • Bredel M., Pollack I. F., Hamilton R. L., James C. D. Epidermal growth factor receptor expression and gene amplification in high-grade non-brainstem gliomas of childhood. Clin.Cancer Res 1999; 5: 1786–1792
  • Khatua S., Peterson K. M., Brown K. M., Lawlor C., Santi M. R., LaFleur B., Dressman D., Stephan D. A., MacDonald T. J. Overexpression of the EGFR/FKBP12/HIF-2alpha pathway identified in childhood astrocytomas by angiogenesis gene profiling. Cancer Res 2003; 63: 1865–1870
  • Liang M. L., Ma J., Ho M., Solomon L., Bouffet E., Rutka J. T., Hawkins C. Tyrosine kinase expression in pediatric high grade astrocytoma. J Neurooncol 2008; 87: 247–253
  • Bax D. A., Little S. E., Gaspar N., Perryman L., Marshall L., Viana-Pereira M., Jones T. A., Williams R. D., Grigoriadis A., Vassal G., Workman P., Sheer D., Reis R. M., Pearson A. D., Hargrave D., Jones C. Molecular and phenotypic characterisation of paediatric glioma cell lines as models for preclinical drug development. PLoS.One 2009; 4: e5209
  • Thorarinsdottir H. K., Santi M., McCarter R., Rushing E. J., Cornelison R., Jales A., MacDonald T. J. Protein expression of platelet-derived growth factor receptor correlates with malignant histology and PTEN with survival in childhood gliomas. Clin Cancer Res 2008; 14: 3386–3394
  • Rood B. R., MacDonald T. J. Pediatric high-grade glioma: molecular genetic clues for innovative therapeutic approaches. J Neurooncol 2005; 75: 267–272
  • Hegi M. E., Diserens A. C., Gorlia T., Hamou M. F., de Tribolet N., Weller M., Kros J. M., Hainfellner J. A., Mason W., Mariani L., Bromberg J. E., Hau P., Mirimanoff R. O., Cairncross J. G., Janzer R. C., Stupp R. MGMT gene silencing and benefit from temozolomide in glioblastoma. N.Engl.J Med 2005; 352: 997–1003
  • Pollack I. F., Hamilton R. L., Sobol R. W., Burnham J., Yates A. J., Holmes E. J., Zhou T., Finlay J. L. O6-methylguanine-DNA methyltransferase expression strongly correlates with outcome in childhood malignant gliomas: results from the CCG-945 Cohort. J Clin Oncol 2006; 24: 3431–3437
  • Cahill D. P., Levine K. K., Betensky R. A., Codd P. J., Romany C. A., Reavie L. B., Batchelor T. T., Futreal P. A., Stratton M. R., Curry W. T., Iafrate A. J., Louis D. N. Loss of the mismatch repair protein MSH6 in human glioblastomas is associated with tumor progression during temozolomide treatment. Clin Cancer Res 2007; 13: 2038–2045
  • Hunter C., Smith R., Cahill D. P., Stephens P., Stevens C., Teague J., Greenman C., Edkins S., Bignell G., Davies H., O'Meara S., Parker A., Avis T., Barthorpe S., Brackenbury L., Buck G., Butler A., Clements J., Cole J., Dicks E., Forbes S., Gorton M., Gray K., Halliday K., Harrison R., Hills K., Hinton J., Jenkinson A., Jones D., Kosmidou V., Laman R., Lugg R., Menzies A., Perry J., Petty R., Raine K., Richardson D., Shepherd R., Small A., Solomon H., Tofts C., Varian J., West S., Widaa S., Yates A., Easton D. F., Riggins G., Roy J. E., Levine K. K., Mueller W., Batchelor T. T., Louis D. N., Stratton M. R., Futreal P. A., Wooster R. A hypermutation phenotype and somatic MSH6 mutations in recurrent human malignant gliomas after alkylator chemotherapy. Cancer Res 2006; 66: 3987–3991
  • Cahill D. P., Codd P. J., Batchelor T. T., Curry W. T., Louis D. N. MSH6 inactivation and emergent temozolomide resistance in human glioblastomas. Clin Neurosurg 2008; 55: 165–171
  • Eckert A., Kloor M., Giersch A., Ahmadi R., Herold-Mende C., Hampl J. A., Heppner F. L., Zoubaa S., Holinski-Feder E., Pietsch T., Wiestler O. D., von Knebel D. M., Roth W., Gebert J. Microsatellite instability in pediatric and adult high-grade gliomas. Brain Pathol 2007; 17: 146–150
  • Oka N., Soeda A., Inagaki A., Onodera M., Maruyama H., Hara A., Kunisada T., Mori H., Iwama T. VEGF promotes tumorigenesis and angiogenesis of human glioblastoma stem cells. Biochem.Biophys.Res.Commun 2007; 360: 553–559
  • Bodey B., Siegel S. E., Kaiser H. E. Up-regulation of VEGF expression and related neo-angiogenesis in childhood high-grade gliomas: implications for anti-angiogenic anti-neoplastic therapy. In Vivo 2006; 20: 511–518
  • Simonavicius N., Robertson D., Bax D. A., Jones C., Huijbers I. J., Isacke C. M. Endosialin (CD248) is a marker of tumor-associated pericytes in high-grade glioma. Mod.Pathol 2008; 21: 308–315
  • Puputti M., Tynninen O., Sihto H., Blom T., Maenpaa H., Isola J., Paetau A., Joensuu H., Nupponen N. N. Amplification of KIT, PDGFRA, VEGFR2, and EGFR in gliomas. Mol.Cancer Res 2006; 4: 927–934
  • Joensuu H., Puputti M., Sihto H., Tynninen O., Nupponen N. N. Amplification of genes encoding KIT, PDGFRalpha and VEGFR2 receptor tyrosine kinases is frequent in glioblastoma multiforme. J Pathol 2005; 207: 224–231
  • Chi A. S., Sorensen A. G., Jain R. K., Batchelor T. T. Angiogenesis as a therapeutic target in malignant gliomas. Oncologist 2009; 14: 621–636
  • Jensen R. L. Brain tumor hypoxia: tumorigenesis, angiogenesis, imaging, pseudoprogression, and as a therapeutic target. J Neurooncol 2009; 92: 317–335
  • Dirks P. B. Brain tumour stem cells: the undercurrents of human brain cancer and their relationship to neural stem cells. Philos.Trans.R.Soc.Lond B Biol.Sci 2007
  • Singh S. K., Hawkins C., Clarke I. D., Squire J. A., Bayani J., Hide T., Henkelman R. M., Cusimano M. D., Dirks P. B. Identification of human brain tumour initiating cells. Nature 2004; 432: 396–401
  • Singh S. K., Clarke I. D., Terasaki M., Bonn V. E., Hawkins C., Squire J., Dirks P. B. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003; 63: 5821–5828
  • Sposto R., Ertel I. J., Jenkin R. D., Boesel C. P., Venes J. L., Ortega J. A., Evans A. E., Wara W., Hammond D. The effectiveness of chemotherapy for treatment of high grade astrocytoma in children: results of a randomized trial. A report from the Childrens Cancer Study Group. J Neurooncol 1989; 7: 165–177
  • Marchese M. J., Chang C. H. Malignant astrocytic gliomas in children. Cancer 1990; 65: 2771–2778
  • Wisoff J. H., Boyett J. M., Berger M. S., Brant C., Li H., Yates A. J., McGuire-Cullen P., Turski P. A., Sutton L. N., Allen J. C., Packer R. J., Finlay J. L. Current neurosurgical management and the impact of the extent of resection in the treatment of malignant gliomas of childhood: a report of the Children's Cancer Group trial no. CCG-945. J Neurosurg 1998; 89: 52–59
  • Stupp R., Mason W. P., Van den Bent M. J., Weller M., Fisher B., Taphoorn M. J., Belanger K., Brandes A. A., Marosi C., Bogdahn U., Curschmann J., Janzer R. C., Ludwin S. K., Gorlia T., Allgeier A., Lacombe D., Cairncross J. G., Eisenhauer E., Mirimanoff R. O. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N.Engl.J Med 2005; 352: 987–996
  • Estlin E. J., Lashford L., Ablett S., Price L., Gowing R., Gholkar A., Kohler J., Lewis I. J., Morland B., Pinkerton C. R., Stevens M. C., Mott M., Stevens R., Newell D. R., Walker D., Dicks-Mireaux C., McDowell H., Reidenberg P., Statkevich P., Marco A., Batra V., Dugan M., Pearson A. D. Phase I study of temozolomide in paediatric patients with advanced cancer. United Kingdom Children's Cancer Study Group. Br.J Cancer 1998; 78: 652–661
  • Nicholson H. S., Krailo M., Ames M. M., Seibel N. L., Reid J. M., Liu-Mares W., Vezina L. G., Ettinger A. G., Reaman G. H. Phase I study of temozolomide in children and adolescents with recurrent solid tumors: a report from the Children's Cancer Group. J Clin Oncol 1998; 16: 3037–3043
  • Lashford L. S., Thiesse P., Jouvet A., Jaspan T., Couanet D., Griffiths P. D., Doz F., Ironside J., Robson K., Hobson R., Dugan M., Pearson A. D., Vassal G., Frappaz D. Temozolomide in malignant gliomas of childhood: a United Kingdom Children's Cancer Study Group and French Society for Pediatric Oncology Intergroup Study. J Clin Oncol 2002; 20: 4684–4691
  • Freeman B. B., III, Daw N. C., Geyer J. R., Furman W. L., Stewart C. F. Evaluation of gefitinib for treatment of refractory solid tumors and central nervous system malignancies in pediatric patients. Cancer Invest 2006; 24: 310–317
  • Daw N. C., Furman W. L., Stewart C. F., Iacono L. C., Krailo M., Bernstein M. L., Dancey J. E., Speights R. A., Blaney S. M., Croop J. M., Reaman G. H., Adamson P. C. Phase I and pharmacokinetic study of gefitinib in children with refractory solid tumors: a Children's Oncology Group Study. J Clin.Oncol 2005; 23: 6172–6180
  • Broniscer A., Baker S. J., Stewart C. F., Merchant T. E., Laningham F. H., Schaiquevich P., Kocak M., Morris E. B., Endersby R., Ellison D. W., Gajjar A. Phase I and pharmacokinetic studies of erlotinib administered concurrently with radiotherapy for children, adolescents, and young adults with high-grade glioma. Clin Cancer Res 2009; 15: 701–707
  • Jakacki R. I., Hamilton M., Gilbertson R. J., Blaney S. M., Tersak J., Krailo M. D., Ingle A. M., Voss S. D., Dancey J. E., Adamson P. C. Pediatric phase I and pharmacokinetic study of erlotinib followed by the combination of erlotinib and temozolomide: a Children's Oncology Group Phase I Consortium Study. J Clin Oncol 2008; 26: 4921–4927
  • Bode U, Buchen G., Janssen T., Reinhard M., Warmuth-Metz M., Bach F., Fleischhack G. Results of a phase II trial of h-R3 monoclonal antibody (nimotuzumab) in the treatment of resistant or relapsed high-grade gliomas in children and adolescents. J Clin Oncol 2006; 24(18S)
  • Geoerger B., Hargrave D., Thomas F., Andreiuolo F., Varlet P., Frappaz D., Doz F., Riccardi R., Jaspan T., Vassal G. Pharmacokinetic and biological study of erlotinib in children as monotherapy for refractory brain tumors or with radiation for newly diagnosed brain stem gliomas. J.Clin.Oncol 2009; 27(15S), (abstract 10019)
  • Naumov G. N., Nilsson M. B., Cascone T., Briggs A., Straume O., Akslen L. A., Lifshits E., Byers L. A., Xu L., Wu H. K., Janne P., Kobayashi S., Halmos B., Tenen D., Tang X. M., Engelman J., Yeap B., Folkman J., Johnson B. E., Heymach J. V. Combined vascular endothelial growth factor receptor and epidermal growth factor receptor (EGFR) blockade inhibits tumor growth in xenograft models of EGFR inhibitor resistance. Clin Cancer Res 2009; 15: 3484–3494
  • Agarwal S., Zerillo C., Kolmakova J., Christensen J. G., Harris L. N., Rimm D. L., Digiovanna M. P., Stern D. F. Association of constitutively activated hepatocyte growth factor receptor (Met) with resistance to a dual EGFR/Her2 inhibitor in non-small-cell lung cancer cells. Br.J Cancer 2009; 100: 941–949
  • Tang Z., Du R., Jiang S., Wu C., Barkauskas D. S., Richey J., Molter J., Lam M., Flask C., Gerson S., Dowlati A., Liu L., Lee Z., Halmos B., Wang Y., Kern J. A., Ma P. C. Dual MET-EGFR combinatorial inhibition against T790M-EGFR-mediated erlotinib-resistant lung cancer. Br.J Cancer 2008; 99: 911–922
  • Michalczyk A., Kluter S., Rode H. B., Simard J. R., Grutter C., Rabiller M., Rauh D. Structural insights into how irreversible inhibitors can overcome drug resistance in EGFR. Bioorg.Med.Chem 2008; 16: 3482–3488
  • Bean J., Brennan C., Shih J. Y., Riely G., Viale A., Wang L., Chitale D., Motoi N., Szoke J., Broderick S., Balak M., Chang W. C., Yu C. J., Gazdar A., Pass H., Rusch V., Gerald W., Huang S. F., Yang P. C., Miller V., Ladanyi M., Yang C. H., Pao W. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc.Natl.Acad.Sci.U.S.A 2007; 104: 20932–20937
  • Wen P. Y., Yung W. K., Lamborn K. R., Dahia P. L., Wang Y., Peng B., Abrey L. E., Raizer J., Cloughesy T. F., Fink K., Gilbert M., Chang S., Junck L., Schiff D., Lieberman F., Fine H. A., Mehta M., Robins H. I., DeAngelis L. M., Groves M. D., Puduvalli V. K., Levin V., Conrad C., Maher E. A., Aldape K., Hayes M., Letvak L., Egorin M. J., Capdeville R., Kaplan R., Murgo A. J., Stiles C., Prados M. D. Phase I/II study of imatinib mesylate for recurrent malignant gliomas: North American Brain Tumor Consortium Study 99–08. Clin Cancer Res 2006; 12: 4899–4907
  • Reardon D. A., Egorin M. J., Quinn J. A., Rich J. N., Gururangan S., Vredenburgh J. J., Desjardins A., Sathornsumetee S., Provenzale J. M., Herndon J. E., Dowell J. M., Badruddoja M. A., McLendon R. E., Lagattuta T. F., Kicielinski K. P., Dresemann G., Sampson J. H., Friedman A. H., Salvado A. J., Friedman H. S. Phase II study of imatinib mesylate plus hydroxyurea in adults with recurrent glioblastoma multiforme. J Clin.Oncol 2005; 23: 9359–9368
  • Desjardins A., Quinn J. A., Vredenburgh J. J., Sathornsumetee S., Friedman A. H., Herndon J. E., McLendon R. E., Provenzale J. M., Rich J. N., Sampson J. H., Gururangan S., Dowell J. M., Salvado A., Friedman H. S., Reardon D. A. Phase II study of imatinib mesylate and hydroxyurea for recurrent grade III malignant gliomas. J Neurooncol 2007
  • Pollack I. F., Jakacki R. I., Blaney S. M., Hancock M. L., Kieran M. W., Phillips P., Kun L. E., Friedman H., Packer R., Banerjee A., Geyer J. R., Goldman S., Poussaint T. Y., Krasin M. J., Wang Y., Hayes M., Murgo A., Weiner S., Boyett J. M. Phase I trial of imatinib in children with newly diagnosed brainstem and recurrent malignant gliomas: A Pediatric Brain Tumor Consortium report. Neuro.-oncol 2007
  • Nghiemphu P. L., Liu W., Lee Y., Than T., Graham C., Lai A., Green R. M., Pope W. B., Liau L. M., Mischel P. S., Nelson S. F., Elashoff R., Cloughesy T. F. Bevacizumab and chemotherapy for recurrent glioblastoma: a single-institution experience. Neurology 2009; 72: 1217–1222
  • Kreisl T. N., Kim L., Moore K., Duic P., Royce C., Stroud I., Garren N., Mackey M., Butman J. A., Camphausen K., Park J., Albert P. S., Fine H. A. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol 2009; 27: 740–745
  • Ali S. A., McHayleh W. M., Ahmad A., Sehgal R., Braffet M., Rahman M., Bejjani G., Friedland D. M. Bevacizumab and irinotecan therapy in glioblastoma multiforme: a series of 13 cases. J Neurosurg 2008; 109: 268–272
  • Schiff D., Purow B. Bevacizumab in combination with irinotecan for patients with recurrent glioblastoma multiforme. Nat.Clin Pract.Oncol 2008; 5: 186–187
  • Chamberlain M. C. Bevacizumab plus irinotecan in recurrent glioblastoma. J Clin Oncol 2008; 26: 1012–1013
  • Vredenburgh J. J., Desjardins A., Herndon J. E., Dowell J. M., Reardon D. A., Quinn J. A., Rich J. N., Sathornsumetee S., Gururangan S., Wagner M., Bigner D. D., Friedman A. H., Friedman H. S. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res 2007; 13: 1253–1259
  • Stark-Vance V. Bevacizumab and CPT-11 in the treatment of relapsed malignant glioma. Neuro-oncol 2005; 7: 370
  • Gutin P. H., Iwamoto F. M., Beal K., Mohile N. A., Karimi S., Hou B. L., Lymberis S., Yamada Y., Chang J., Abrey L. E. Safety and Efficacy of Bevacizumab with Hypofractionated Stereotactic Irradiation for Recurrent Malignant Gliomas. Int.J Radiat.Oncol Biol.Phys 2009
  • Mathieu V., De Neve N., Le Mercier M., Dewelle J., Gaussin J. F., Dehoux M., Kiss R., Lefranc F. Combining bevacizumab with temozolomide increases the antitumor efficacy of temozolomide in a human glioblastoma orthotopic xenograft model. Neoplasia 2008; 10: 1383–1392
  • Lai A., Filka E., McGibbon B., Nghiemphu P. L., Graham C., Yong W. H., Mischel P., Liau L. M., Bergsneider M., Pope W., Selch M., Cloughesy T. Phase II pilot study of bevacizumab in combination with temozolomide and regional radiation therapy for up-front treatment of patients with newly diagnosed glioblastoma multiforme: interim analysis of safety and tolerability. Int.J Radiat.Oncol Biol.Phys 2008; 71: 1372–1380
  • Batchelor T. T., Sorensen A. G., di Tomaso E., Zhang W. T., Duda D. G., Cohen K. S., Kozak K. R., Cahill D. P., Chen P. J., Zhu M., Ancukiewicz M., Mrugala M. M., Plotkin S., Drappatz J., Louis D. N., Ivy P., Scadden D. T., Benner T., Loeffler J. S., Wen P. Y., Jain R. K. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 2007; 11: 83–95
  • Miletic H., Niclou S. P., Johansson M., Bjerkvig R. Anti-VEGF therapies for malignant glioma: treatment effects and escape mechanisms. Expert.Opin.Ther.Targets 2009; 13: 455–468
  • Reardon D. A., Wen P. Y., Desjardins A., Batchelor T. T., Vredenburgh J. J. Glioblastoma multiforme: an emerging paradigm of anti-VEGF therapy. Expert.Opin.Biol.Ther 2008; 8: 541–553
  • Norden A. D., Young G. S., Setayesh K., Muzikansky A., Klufas R., Ross G. L., Ciampa A. S., Ebbeling L. G., Levy B., Drappatz J., Kesari S., Wen P. Y. Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurology 2008; 70: 779–787
  • Siegel M. J., Finlay J. L., Zacharoulis S. State of the art chemotherapeutic management of pediatric brain tumors. Expert.Rev.Neurother 2006; 6: 765–779
  • MacDonald T. J., Stewart C. F., Kocak M., Goldman S., Ellenbogen R. G., Phillips P., Lafond D., Poussaint T. Y., Kieran M. W., Boyett J. M., Kun L. E. Phase I clinical trial of cilengitide in children with refractory brain tumors: Pediatric Brain Tumor Consortium Study PBTC-012. J Clin Oncol 2008; 26: 919–924
  • Smith A. R., Hennessy J. M., Kurth M. A., Nelson S. C. Reversible skeletal changes after treatment with bevacizumab in a child with cutaneovisceral angiomatosis with thrombocytopenia syndrome. Pediatr.Blood Cancer 2008; 51: 418–420
  • Fan Q. W., Knight Z. A., Goldenberg D. D., Yu W., Mostov K. E., Stokoe D., Shokat K. M., Weiss W. A. A dual PI3 kinase/mTOR inhibitor reveals emergent efficacy in glioma. Cancer Cell 2006; 9: 341–349
  • Choe G., Horvath S., Cloughesy T. F., Crosby K., Seligson D., Palotie A., Inge L., Smith B. L., Sawyers C. L., Mischel P. S. Analysis of the phosphatidylinositol 3′-kinase signaling pathway in glioblastoma patients in vivo. Cancer Res 2003; 63: 2742–2746
  • Klingler-Hoffmann M., Bukczynska P., Tiganis T. Inhibition of phosphatidylinositol 3-kinase signaling negates the growth advantage imparted by a mutant epidermal growth factor receptor on human glioblastoma cells. Int.J Cancer 2003; 105: 331–339
  • Knobbe C. B., Trampe-Kieslich A., Reifenberger G. Genetic alteration and expression of the phosphoinositol-3-kinase/Akt pathway genes PIK3CA and PIKE in human glioblastomas. Neuropathol.Appl.Neurobiol 2005; 31: 486–490
  • Koul D., Shen R., Bergh S., Sheng X., Shishodia S., Lafortune T. A., Lu Y., de Groot J. F., Mills G. B., Yung W. K. Inhibition of Akt survival pathway by a small-molecule inhibitor in human glioblastoma. Mol.Cancer Ther 2006; 5: 637–644
  • Cheng C. L., Johnson S. P., Keir S. T., Quinn J. A., Ali-Osman F., Szabo C., Li H., Salzman A. L., Dolan M. E., Modrich P., Bigner D. D., Friedman H. S. Poly(ADP-ribose) polymerase-1 inhibition reverses temozolomide resistance in a DNA mismatch repair-deficient malignant glioma xenograft. Mol.Cancer Ther 2005; 4: 1364–1368
  • Curtin N. J., Wang L. Z., Yiakouvaki A., Kyle S., Arris C. A., Canan-Koch S., Webber S. E., Durkacz B. W., Calvert H. A., Hostomsky Z., Newell D. R. Novel poly(ADP-ribose) polymerase-1 inhibitor, AG14361, restores sensitivity to temozolomide in mismatch repair-deficient cells. Clin. Cancer Res 2004; 10: 881–889
  • Miknyoczki S. J., Jones-Bolin S., Pritchard S., Hunter K., Zhao H., Wan W., Ator M., Bihovsky R., Hudkins R., Chatterjee S., Klein-Szanto A., Dionne C., Ruggeri B. Chemopotentiation of temozolomide, irinotecan, and cisplatin activity by CEP-6800, a poly(ADP-ribose) polymerase inhibitor. Mol.Cancer Ther 2003; 2: 371–382
  • Tentori L., Portarena I., Torino F., Scerrati M., Navarra P., Graziani G. Poly(ADP-ribose) polymerase inhibitor increases growth inhibition and reduces G(2)/M cell accumulation induced by temozolomide in malignant glioma cells. Glia 2002; 40: 44–54
  • Liu L., Gerson S. L. Therapeutic impact of methoxyamine: blocking repair of abasic sites in the base excision repair pathway. Curr.Opin.Investig.Drugs 2004; 5: 623–627
  • Yan L., Bulgar A., Miao Y., Mahajan V., Donze J. R., Gerson S. L., Liu L. Combined Treatment with Temozolomide and Methoxyamine: Blocking Apurininc/Pyrimidinic Site Repair Coupled with Targeting Topoisomerase II{alpha}. Clin Cancer Res 2007; 13: 1532–1539
  • Beier D., Rohrl S., Pillai D. R., Schwarz S., Kunz-Schughart L. A., Leukel P., Proescholdt M., Brawanski A., Bogdahn U., Trampe-Kieslich A., Giebel B., Wischhusen J., Reifenberger G., Hau P., Beier C. P. Temozolomide preferentially depletes cancer stem cells in glioblastoma. Cancer Res 2008; 68: 5706–5705
  • Calabrese C., Poppleton H., Kocak M., Hogg T. L., Fuller C., Hamner B., Oh E. Y., Gaber M. W., Finklestein D., Allen M., Frank A., Bayazitov I. T., Zakharenko S. S., Gajjar A., Davidoff A., Gilbertson R. J. A perivascular niche for brain tumor stem cells. Cancer Cell 2007; 11: 69–82
  • Bar E. E., Chaudhry A., Lin A., Fan X., Schreck K., Matsui W., Piccirillo S., Vescovi A. L., Dimeco F., Olivi A., Eberhart C. G. Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells 2007; 25: 2524–2523
  • Clement V., Sanchez P., de Tribolet N., Radovanovic I., Altaba A. HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr.Biol 2007; 17: 165–162
  • Gilbertson R. J., Rich J. N. Making a tumour's bed: glioblastoma stem cells and the vascular niche. Nat.Rev.Cancer 2007; 7: 733–736
  • Fan X., Matsui W., Khaki L., Stearns D., Chun J., Li Y. M., Eberhart C. G. Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res 2006; 66: 7445–7452
  • Kimura H., Ng J. M., Curran T. Transient inhibition of the Hedgehog pathway in young mice causes permanent defects in bone structure. Cancer Cell 2008; 13: 249–260
  • Hargrave D., Bartels U., Bouffet E. Diffuse brainstem glioma in children: critical review of clinical trials. Lancet Oncol 2006; 7: 241–248
  • Gilbertson R. J., Hill D. A., Hernan R., Kocak M., Geyer R., Olson J., Gajjar A., Rush L., Hamilton R. L., Finkelstein S. D., Pollack I. F. ERBB1 is amplified and overexpressed in high-grade diffusely infiltrative pediatric brain stem glioma. Clin Cancer Res 2003; 9: 3620–3624
  • Korones D. N. Treatment of newly diagnosed diffuse brain stem gliomas in children: in search of the holy grail. Expert.Rev.Anticancer Ther 2007; 7: 663–674
  • Leach P. A., Estlin E. J., Coope D. J., Thorne J. A., Kamaly-Asl I. D. Diffuse brainstem gliomas in children: should we or shouldn't we biopsy?. Br.J Neurosurg 2008; 22: 619–624
  • Hargrave D. Pontine glioma. To biopsy or not to biopsy: that is the question. Br.J Neurosurg 2008; 22: 624
  • Frazier J. L., Lee J., Thomale U. W., Noggle J. C., Cohen K. J., Jallo G. I. Treatment of diffuse intrinsic brainstem gliomas: failed approaches and future strategies. J Neurosurg.Pediatr 2009; 3: 259–269
  • Freeman B. B., III, Daw N. C., Geyer J. R., Furman W. L., Stewart C. F. Evaluation of gefitinib for treatment of refractory solid tumors and central nervous system malignancies in pediatric patients. Cancer Invest 2006; 24: 310–317
  • Broniscer A., Laningham F. H., Kocak M., Krasin M. J., Fouladi M., Merchant T. E., Kun L. E., Boyett J. M., Gajjar A. Intratumoral hemorrhage among children with newly diagnosed, diffuse brainstem glioma. Cancer 2006; 106: 1364–1371

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.