340
Views
6
CrossRef citations to date
0
Altmetric
Review Article

Nanotechnology in neurosurgery: thinking small, dreaming big

, &
Pages 538-550 | Received 03 Aug 2016, Accepted 02 May 2017, Published online: 24 May 2017

References

  • Dunn IF, Black PM. The neurosurgeon as local oncologist: cellular and molecular neurosurgery in malignant glioma therapy. Neurosurgery 2003;52:1411–22. Discussion 1422-1414
  • Garbayo E, Estella-Hermoso de Mendoza A, Blanco-Prieto MJ. Diagnostic and therapeutic uses of nanomaterials in the brain. Curr Med Chem 2014;21:4100–31.
  • Silva GA. Nanotechnology approaches for the regeneration and neuroprotection of the central nervous system. Surg Neurol 2005;63:301–6.
  • Conniot J, Silva JM, Fernandes JG, et al. Cancer immunotherapy: nanodelivery approaches for immune cell targeting and tracking. Front Chem 2014;2:105.
  • Mahapatro A, Singh DK. Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J Nanobiotechnol 2011;9:55.
  • Swierczewska M, Lee S, Chen X. Inorganic nanoparticles for multimodal molecular imaging. Mol Imaging 2011;10:3–16.
  • Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv Pharm Bull 2015;5:305–13.
  • De Jong WH, Borm PJ. Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 2008;3:133–49.
  • Mattei TA, Rehman AA. “Extremely minimally invasive”: recent advances in nanotechnology research and future applications in neurosurgery. Neurosurg Rev 2015;38:27–37. Discussion 37.
  • Lee J-H, Huh YM, Jun Y-W et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med 2007;13:95–9.
  • Na HB, Song IC, Hyeon T. Inorganic nanoparticles for MRI contrast agents. Adv Mater 2009;21:2133–48.
  • Corot C, Robert P, Idée J-M, Port M. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 2006;58:1471–504.
  • Mejías R, Pérez-Yagüe S, Roca AG, et al. Liver and brain imaging through dimercaptosuccinic acid-coated iron oxide nanoparticles. Nanomedicine 2010;5:397–408.
  • Dósa E, Tuladhar S, Muldoon LL, et al. Using ferumoxytol improves the visualization of central nervous system vascular malformations. Stroke 2011;42:1581–8.
  • Hahn MA, Singh AK, Sharma P, Brown SC, Moudgil BM. Nanoparticles as contrast agents for in-vivo bioimaging: current status and future perspectives. Anal Bioanal Chem 2011;399:3–27.
  • Michalet X, Pinaud FF, Bentolila LA, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005;307:538–44.
  • Pathak S, Cao E, Davidson MC, Jin S, Silva GA. Quantum dot applications to neuroscience: new tools for probing neurons and glia. J Neurosci 2006;26:1893–5.
  • Kim S, Lim YT, Soltesz EG, et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 2004;22:93–7.
  • Parak WJ, Pellegrino T, Plank C. Labelling of cells with quantum dots. Nanotechnology 2005;16:R9
  • Taghva A, Khalessi AA, Kim PE, Liu CY, Apuzzo ML. From atom to brain: applications of molecular imaging to neurosurgery. World Neurosurg 2010;73:477–85.
  • Deisseroth K. Optogenetics. Nat Methods 2011;8:26–9.
  • Deisseroth K. Optogenetics: 10 years of microbial opsins in neuroscience. Nat Neurosci 2015;18:1213–25.
  • Buchen L. Neuroscience: Illuminating the brain. Nature 2010;465:26
  • Lima SQ, Hromádka T, Znamenskiy P, Zador AM. PINP: A New Method of Tagging Neuronal Populations for Identification during In Vivo Electrophysiological Recording. PLoS One 2009;4:e6099.
  • Hallett M. Transcranial magnetic stimulation and the human brain. Nature 2000;406:147–50.
  • Kobayashi M, Pascual-Leone A. Transcranial magnetic stimulation in neurology. Lancet Neurol 2003;2:145–56.
  • Cheng MY, Woodson WJ, Wang S, et al. Optogenetic neuronal stimulation promotes functional recovery after stroke. Proc Natl Acad Sci U S A 2014;111:12913–8.
  • Mahmoudi K, Hadjipanayis CG. The application of magnetic nanoparticles for the treatment of brain tumors. Front Chem 2014;2:109.
  • Reddy GR, Bhojani MS, McConville P, et al. Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin Cancer Res 2006;12:6677–86.
  • Setua S, Ouberai M, Piccirillo SG, Watts C, Welland M. Cisplatin-tethered gold nanospheres for multimodal chemo-radiotherapy of glioblastoma. Nanoscale 2014;6:10865–73.
  • Maier-Hauff K, Ulrich F, Nestler D, et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 2011;103:317–24.
  • Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA. The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 2012;41:2740–79.
  • Huang X, El-Sayed MA. Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res 2010;1:13–28.
  • Qian X, Peng XH, Ansari DO, et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol 2008;26:83–90.
  • Karabeber H, Huang R, Iacono P, et al. Guiding brain tumor resection using surface-enhanced Raman scattering nanoparticles and a hand-held Raman scanner. ACS Nano 2014;8:9755–66.
  • Stummer W, Tonn JC, Goetz C, et al. 5-Aminolevulinic acid-derived tumor fluorescence: the diagnostic accuracy of visible fluorescence qualities as corroborated by spectrometry and histology postoperative imaging. Neurosurgery 2014;74:310–9. discussion 319-320.
  • Halani SH, Adamson DC. Clinical utility of 5-aminolevulinic acid HCl to better visualize and more completely remove gliomas. OTT 2016;9, 5629.
  • Zhang W, Wang Y, Sun X, Wang W, Chen L. Mesoporous titania based yolk-shell nanoparticles as multifunctional theranostic platforms for SERS imaging and chemo-photothermal treatment. Nanoscale 2014;6:14514–22.
  • Diaz RJ, McVeigh PZ, O'Reilly MA, et al. Focused ultrasound delivery of Raman nanoparticles across the blood-brain barrier: potential for targeting experimental brain tumors. Nanomedicine 2014;10:1075–87.
  • Santos T, Ferreira R, Maia J, et al. Polymeric nanoparticles to control the differentiation of neural stem cells in the subventricular zone of the brain. ACS Nano 2012;6:10463–74.
  • Chen MS, Huber AB, van der Haar ME, et al. Nogo-A is a myelin-associated neurite outgrowth inhibitor and an antigen for monoclonal antibody IN-1. Nature 2000;403:434–9.
  • Yiu G, He Z. Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 2006;7:617–27.
  • Back SA, Tuohy TM, Chen H, et al. Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nat Med 2005;11:966–72.
  • Yiu G, He Z. Signaling mechanisms of the myelin inhibitors of axon regeneration. Curr Opin Neurobiol 2003;13:545–51.
  • Zhang L, Webster TJ. Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today 2009;4:66–80.
  • Gilbert RJ, McKeon RJ, Darr A, et al. CS-4,6 is differentially upregulated in glial scar and is a potent inhibitor of neurite extension. Mol Cell Neurosci 2005;29:545–58.
  • Wang H, Katagiri Y, McCann TE, et al. Chondroitin-4-sulfation negatively regulates axonal guidance and growth. J Cell Sci 2008;121:3083–91.
  • Fawcett JW, Asher RA. The glial scar and central nervous system repair. Brain Res Bull 1999;49:377–91.
  • Baumann MD, Kang CE, Tator CH, Shoichet MS. Intrathecal delivery of a polymeric nanocomposite hydrogel after spinal cord injury. Biomaterials 2010;31:7631–9.
  • Fabbro A, Prato M, Ballerini L. Carbon nanotubes in neuroregeneration and repair. Adv Drug Deliv Rev 2013;65:2034–44.
  • Zito K, Svoboda K. Activity-dependent synaptogenesis in the adult Mammalian cortex. Neuron 2002;35:1015–7.
  • Wolford LM, Stevao ELL. Considerations in nerve repair. Proc (Bayl Univ Med Cent) 2003;16:152–6.
  • Barker RA, Widner H. Immune Problems in Central Nervous System Cell Therapy. NeuroRx 2004;1:472–81.
  • Borlongan CV, Stahl CE, Cameron DF, et al. CNS immunological modulation of neural graft rejection and survival. Neurol Res 1996;18:297–304.
  • Polikov VS, Block ML, Fellous J-M, Hong J-S, Reichert WM. In vitro model of glial scarring around neuroelectrodes chronically implanted in the CNS. Biomaterials 2006;27:5368–76.
  • Reier PJ, Houle JD. The glial scar: its bearing on axonal elongation and transplantation approaches to CNS repair. Adv Neurol 1988;47:87–138.
  • Cellot G, Toma FM, Varley ZK, et al. Carbon nanotube scaffolds tune synaptic strength in cultured neural circuits: novel frontiers in nanomaterial–tissue interactions. J Neurosci 2011;31:12945–53.
  • Lee W, Parpura V. Chapter 6 - Carbon nanotubes as substrates/scaffolds for neural cell growth. Prog Brain Res 2009;180:110–25.
  • Rao A, Richter E, Bandow S, et al. Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science 1997;275:187–91.
  • Heller DA, Baik S, Eurell TE, Strano MS. Single‐walled carbon nanotube spectroscopy in live cells: towards long‐term labels and optical sensors. Adv Mater 2005;17:2793–9.
  • Liu Y, Wu D-C, Zhang W-D, et al. Polyethylenimine‐grafted multiwalled carbon nanotubes for secure noncovalent immobilization and efficient delivery of DNA. Angew Chem 2005;117:4860–3.
  • Liu Z, Tabakman S, Welsher K, Dai H. Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res 2009;2:85–120.
  • Sucapane A, Cellot G, Prato M, et al. Interactions between cultured neurons and carbon nanotubes: a nanoneuroscience vignette. J Nanoneurosci 2009;1:10–6.
  • Gilmore JL, Yi X, Quan L, Kabanov AV. Novel nanomaterials for clinical neuroscience. J Neuroimmune Pharmacol 2008;3:83–94.
  • Hu H, Ni Y, Montana V, Haddon RC, Parpura V. Chemically Functionalized Carbon Nanotubes as Substrates for Neuronal Growth. Nano Lett 2004;4:507–11.
  • Lovat V, Pantarotto D, Lagostena L, et al. Carbon nanotube substrates boost neuronal electrical signaling. Nano Lett 2005;5:1107–10.
  • Moon SU, Kim J, Bokara KK, et al. Carbon nanotubes impregnated with subventricular zone neural progenitor cells promotes recovery from stroke. Int J Nanomedicine 2012;7:2751–65.
  • Jan E, Kotov NA. Successful differentiation of mouse neural stem cells on layer-by-layer assembled single-walled carbon nanotube composite. Nano Lett 2007;7:1123–8.
  • MK, Gheith VAS. Single‐Walled Carbon Nanotube Polyelectrolyte Multilayers and Freestanding Films as a Biocompatible Platform for Neuroprosthetic Implants. Adv Mater 2005;17:2663–70.
  • Nguyen-Vu TDB, Chen H, Cassell AM, et al. Vertically aligned carbon nanofiber architecture as a multifunctional 3-D neural electrical interface. IEEE Trans Biomed Eng 2007;54:1121–8.
  • Gardin C, Piattelli A, Zavan B. Graphene in regenerative medicine: focus on stem cells and neuronal differentiation. Trends Biotechnol 2016;34:435–7.
  • Geim AK, Novoselov KS. The rise of graphene. Nat Mater 2007;6:183–91.
  • Park SY, Park J, Sim SH, et al. Enhanced differentiation of human neural stem cells into neurons on graphene. Adv Mater 2011;23:263–7.
  • Wang Y, Lee WC, Manga KK, et al. Fluorinated graphene for promoting neuro-induction of stem cells. Adv Mater Weinheim 2012;24:4285–90.
  • Song Q, Jiang Z, Li N, et al. Anti-inflammatory effects of three-dimensional graphene foams cultured with microglial cells. Biomaterials 2014;35:6930–40.
  • Martino G, Pluchino S. The therapeutic potential of neural stem cells. Nat Rev Neurosci 2006;7:395–406.
  • Blurton-Jones M, Kitazawa M, Martinez-Coria H, et al. Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc Natl Acad Sci 2009;106:13594–9.
  • Orive G, Anitua E, Pedraz JL, Emerich DF. Biomaterials for promoting brain protection, repair and regeneration. Nat Rev Neurosci 2009;10:682–92.
  • Tiwari SK, Agarwal S, Seth B, et al. Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer's disease model via canonical Wnt/beta-catenin pathway. ACS Nano 2014;8:76–103.
  • Lim TC, Rokkappanavar S, Toh WS, et al. Chemotactic recruitment of adult neural progenitor cells into multifunctional hydrogels providing sustained SDF-1alpha release and compatible structural support. Faseb J 2013;27:1023–33.
  • Chatterjee N, Yang JS, Park K, et al. Screening of toxic potential of graphene family nanomaterials using in vitro and alternative in vivo toxicity testing systems. Environ Health Toxicol 2015;30:e2015007.
  • Ivask A, Voelcker NH, Seabrook SA, et al. DNA melting and genotoxicity induced by silver nanoparticles and graphene. Chem Res Toxicol 2015;28:1023–35.
  • Sanchez VC, Jachak A, Hurt RH, Kane AB. Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem Res Toxicol 2012;25:15–34.
  • Guo X, Mei N. Assessment of the toxic potential of graphene family nanomaterials. J Food Drug Anal 2014;22:105–15.
  • Hong G, Diao S, Antaris AL, Dai H. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem Rev 2015;115:10816–906.
  • Yang K, Feng L, Shi X, Liu Z. Nano-graphene in biomedicine: theranostic applications. Chem Soc Rev 2013;42:530–47.
  • Choi HS, Liu W, Misra P, et al. Renal clearance of quantum dots. Nat Biotechnol 2007;25:1165–70.
  • Resnik DB, Tinkle SS. Ethics in nanomedicine. Nanomedicine (Lond) 2007;2:345–50.
  • Resnik DB, Tinkle SS. Ethical issues in clinical trials involving nanomedicine. Contemp Clin Trials 2007;28:433–41.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.