322
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Endocrine dysregulation in aneurysmal subarachnoid haemorrhage

, & ORCID Icon
Pages 358-367 | Received 19 Nov 2021, Accepted 02 Feb 2022, Published online: 16 Feb 2022

References

  • Van Gijn J, Kerr R, Rinkel G. Subarachnoid haemorrhage. The Lancet 2007;369:306–18.
  • Steiner T, Juvela S, Unterberg A, et al. European Stroke Organization Guidelines for the management of intracranial aneurysms and subarachnoid haemorrhage. Cerebrovasc Dis 2013;35:93–112.
  • Long B, Koyfman A, Runyon M. Subarachnoid Hemorrhage: updates in Diagnosis and Management. Emerg Med Clin North Am 2017;35:803–24.
  • Kreitschmann-Andermahr I, Hoff C, Saller B, et al. Prevalence of pituitary deficiency in patients after aneurysmal subarachnoid hemorrhage. J Clin Endocrinol Metab 2004;89:4986–92.
  • De Rooij N, Linn F, van der Plas J, et al. Incidence of subarachnoid haemorrhage: a systematic review with emphasis on region, age, gender and time trends. J Neurol Neurosurg Psychiatry 2007;78:1365–72.
  • Nicholson P, O’Hare A, Power S, et al. Decreasing incidence of subarachnoid Haemorrhage. J NeuroIntervent Surg 2019;11:320–2.
  • Budohoski K, Guilfoyle M, Helmy A, et al. The pathophysiology and treatment of delayed cerebral ischaemia following subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry 2014;85:1343–53.
  • Schwartz T, Solomon R. Perimesencephalic nonaneurysmal subarachnoid hemorrhage: review of the literature. Neurosurgery 1996;39:433–40.
  • Karaca Z, Hacioglu A, Kelestimur F. Neuroendocrine changes after aneurysmal subarachnoid haemorrhage. Pituitary 2019;22:305–21.
  • Seoane LM, Tovar S, Dieguez C, Physiology of the hypothalamus pituitary unit. In: Casanueva F., Ghigo E., eds. Hypothalamic-pituitary diseases. Endocrinology. Cham: Springer; 2018
  • Kornblum R, Fisher R. Pituitary lesions in craniocerebral injuries. Arch Pathol 1969;88:242–8.
  • Crompton M. Hypothalamic lesions following the rupture of cerebral berry aneurysms. Brain 1963;86:301–14.
  • Tanriverdi F, Schneider H, Aimaretti G, et al. Pituitary dysfunction after traumatic brain injury: a clinical and pathophysiological approach. Endocr Rev 2015;36:305–42.
  • Rass V, Schoenherr E, Ianosi B, et al. Subarachnoid hemorrhage is followed by pituitary gland volume loss: a volumetric MRI observational study. Neurocrit Care 2020;32:492–501.
  • Schneider U, Xu R, Vajkoczy P. Inflammatory Events Following Subarachnoid Hemorrhage (SAH). Curr Neuropharmacol 2018;16:1385–95.
  • Cahill J, Cahill WJ, Calvert JW, Calvert JH, Zhang JH. Mechanisms of early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab 2006;26:1341–53.
  • Ostrowski R, Colohan A, Zhang J. Molecular mechanisms of early brain injury after subarachnoid hemorrhage. Neurol Res 2006;28:399–414.
  • Robba C, Bacigaluppi S, Bragazzi N, et al. Clinical prevalence and outcome impact of pituitary dysfunction after aneurysmal Subarachnoid hemorrhage: a systematic review with meta-analysis. Pituitary 2016;19:522–35.
  • Can A, Gross B, Smith T, et al. Pituitary dysfunction after aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis. Neurosurgery 2016;79:253–64.
  • Zetterling M, Engström B, Hallberg L, et al. Cortisol and adrenocorticotropic hormone dynamics in the acute phase of subarachnoid haemorrhage. Br J Neurosurg 2011;25:684–92.
  • Bender M, Stein M, Uhl E, et al. Serum cortisol as an early biomarker of cardiopulmonary parameters within the first 24 hours after aneurysmal subarachnoid hemorrhage in intensive care unit patients. J Intensive Care Med 2020;35:1173–9.
  • Van den Berghe G. Dynamic neuroendocrine responses to critical illness. Front Neuroendocrinol 2002;23:370–91.
  • Lanterna L, Spreafico V, Gritti P, et al. Hypocortisolism in noncomatose patients during the acute phase of subarachnoid hemorrhage. J Stroke Cerebrovasc Dis 2013;22:e189–e96.
  • Bethin K, Vogt S, Muglia L. Interleukin-6 is an essential, corticotropin-releasing hormone-independent stimulator of the adrenal axis during immune system activation. Proc Natl Acad Sci U S A 2000;97:9317–22.
  • Besedovsky H, del Rey A. Immune-neuroendocrine circuits: integrative role of cytokines. Front Neuroendocrinol 1992;13:61–94.
  • Poll E, Gilsbach J, Hans F, et al. Blunted serum and enhanced salivary free cortisol concentrations in the chronic phase after aneurysmal subarachnoid haemorrhage-is stress the culprit? Stress 2013;16:153–62.
  • Shin I, Joo H, Chung Y, et al. Abnormal diurnal pattern of cortisol secretion in patients after aneurysmal subarachnoid hemorrhage. Stress 2011;14:156–65.
  • Lindgren C, Dahlqvist P, Lindvall P, et al. Cortisol levels are influenced by sedation in the acute phase after subarachnoid haemorrhage. Acta Anaesthesiol Scand 2013;57:452–60.
  • Sun T, Sun Y, Huang X, et al. Sleep and circadian rhythm disturbances in intensive care unit (ICU)-acquired delirium: a case–control study. J Int Med Res 2021;49:1–10.
  • Khajeh L, Blijdorp K, Heijenbrok-Kal M, et al. Pituitary dysfunction after aneurysmal subarachnoid haemorrhage: course and clinical predictors—the HIPS study. J Neurol Neurosurg Psychiatry 2015;86:905–10.
  • Gardner C, Javadpour M, Stoneley C, et al. Low prevalence of hypopituitarism after subarachnoid haemorrhage using confirmatory testing and with BMI-specific GH cut-off levels. Eur J Endocrinol 2013;168:473–81.
  • Lammert A, Bode H, Hammes H, et al. Aneurysmal subarachnoid hemorrhage (aSAH) results in low prevalence of neuro-endocrine dysfunction and NOT deficiency. Pituitary 2012;15:505–12.
  • Klose M, Brennum J, Poulsgaard L, et al. Hypopituitarism is uncommon after aneurysmal subarachnoid haemorrhage. Clinical Endocrinology 2010;73:95–101.
  • Mangieri P, Suzuki K, Ferreira M, et al. Evaluation of pituitary and thyroid hormones in patients with subarachnoid hemorrhage due to ruptured intracranial aneurysm. Arq Neuro-Psiquiatr 2003;61:14–9.
  • Pereira J, Albuquerque L, Dellaretti M, et al. Pituitary deficiency after aneurysmal subarachnoid hemorrhage. Clinics 2013;68:745–9.
  • Tanriverdi F, Dagli A, Karaca Z, et al. High risk of pituitary dysfunction due to aneurysmal subarachnoid haemorrhage: a prospective investigation of anterior pituitary function in the acute phase and 12 months after the event. Clin Endocrinol 2007;67:931–7.
  • Khursheed N, Ramzan A, Shoaib Y, et al. Is Hypothyroidism and hypogonadism an issue after aneurysmal subarachnoid hemorrhage–an institutional experience? Int J Endocrinol Metab 2013;11:179–83.
  • Mukherjee K, Masoodi S, Pathak A, et al. Pituitary dysfunction in survivors of spontaneous subarachnoid hemorrhage of anterior communicating artery and middle cerebral artery aneurysms: a comparative study. Neurol India 2012;60:390–4.
  • Kronvall E, Valdemarsson S, Säveland H, et al. Pituitary dysfunction after aneurysmal subarachnoid hemorrhage is associated with impaired early outcome. World Neurosurg 2014;81:529–37.
  • Giritharan S, Cox J, Heal C, et al. The prevalence of growth hormone deficiency in survivors of subarachnoid haemorrhage: results from a large single centre study. Pituitary 2017;20:624–34.
  • Goto Y, Oshino S, Nishino A, et al. Pituitary dysfunction after aneurysmal subarachnoid hemorrhage in Japanese patients. J Clin Neurosci 2016;34:198–201.
  • Blijdorp K, Khajeh L, Ribbers G, et al. Diagnostic value of a ghrelin test for the diagnosis of GH deficiency after subarachnoid hemorrhage. Eur J Endocrinol 2013;169:497–502.
  • Jaiswal A, Yadav S, Sahu R, et al. An evaluation of neuroendocrine dysfunction following acute aneurysmal subarachnoid hemorrhage: a prospective study. Asian J Neurosurg 2017;12:34–6.
  • Gasco V, Beccuti G, Baldini C, et al. Acylated ghrelin as a provocative test for the diagnosis of GH deficiency in adults. Euro J Endocrinol 2013;168:23–30.
  • Karaca Z, Tanriverdi F, Dagli A, et al. Three years prospective investigation of pituitary functions following subarachnoid haemorrhage. Pituitary 2013;16:76–82.
  • Hannon M, Behan L, O’Brien M, et al. Chronic hypopituitarism is uncommon in survivors of aneurysmal subarachnoid haemorrhage. Clin Endocrinol 2015;82:115–21.
  • Çöven I, Kırcelli A, Duman E, et al. High prolactin level as a predictor of vasospasm in aneurysmal subarachnoidal hemorrhage. Med Sci Monit 2017;23:3831–6.
  • Ridwan S, Zur B, Kurscheid J, et al. Hyponatremia after spontaneous aneurysmal subarachnoid hemorrhage–a prospective observational study. World Neurosurg 2019;129:e538–e544.
  • Suarez J. Diagnosis and management of subarachnoid hemorrhage. Continuum 2015;21:1263–87.
  • Connolly E, Rabinstein A, Carhuapoma J, et al. Guidelines for the Management of Aneurysmal Subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/american Stroke Association. Stroke 2012;43:1711–37.
  • Hannon M, Behan L, O’Brien M, et al. Hyponatremia following mild/moderate subarachnoid hemorrhage is due to SIAD and glucocorticoid deficiency and not cerebral salt wasting. J Clin Endocrinol Metab 2014;99:291–8.
  • Yilmaz D, Haciyakupoglu E, Diril S, et al. Effects of arginine vasopressin and v1 receptor antagonist on cerebral vasospasm secondary to subarachnoid hemorrhage: an experimental study. Turk Neurosurg 2018;28:211–8.
  • Hockel K, Schöller K, Trabold R, et al. Vasopressin V 1a receptors mediate posthemorrhagic systemic hypertension thereby determining rebleeding rate and outcome after experimental subarachnoid hemorrhage. Stroke 2012;43:227–32.
  • Martin J, Kagerbauer S, Schuster T, et al. Vasopressin and oxytocin in CSF and plasma of patients with aneurysmal subarachnoid haemorrhage. Neuropeptides 2014;48:91–6.
  • Zheng B, Qiu Y, Jin H, et al. A predictive value of hyponatremia for poor outcome and cerebral infarction in high-grade aneurysmal subarachnoid haemorrhage patients. J Neurol Neurosurg Psychiatry 2011;82:213–7.
  • Bolignano D, Cabassi A, Fiaccadori E, et al. Copeptin (CTproAVP), a new tool for understanding the role of vasopressin in pathophysiology. Clin Chem Lab Med. 2014;52:1447–56.
  • Balanescu S, Kopp P, Gaskill M, et al. Correlation of plasma copeptin and vasopressin concentrations in Hypo-, Iso-, and hyperosmolar states. J Clin Endocrinol Metab 2011;96:1046–52.
  • Choi K, Kim H, Chun H, et al. Prognostic role of copeptin after stroke: a systematic review and meta-analysis of observational studies. Sci Rep 2015;5:11665.
  • Fernandez S, Barakat I, Ziogas J, et al. Association of copeptin, a surrogate marker of arginine vasopressin, with cerebral vasospasm and delayed ischemic neurologic deficit after aneurysmal subarachnoid hemorrhage. Journal of Neurosurgery 2019;130:1446–52.
  • Tasneem M, Mannix C, Wong A, et al. Is serum copeptin a modifiable biomarker in autosomal dominant polycystic kidney disease? World J Nephrol 2018;7:51–7.
  • Zhu X, Chen J, Zhou F, Liu Q, Chen G, Zhang J. Detection of copeptin in peripheral blood of patients with aneurysmal subarachnoid hemorrhage. Crit Care 2011;15:R288.
  • Liu Y, Jolly S, Pokala K. Prolonged paroxysmal sympathetic storming associated with spontaneous subarachnoid hemorrhage. Case Rep Med 2013;2013:1–4.
  • Moussouttas M, Mearns E, Walters A, et al. Plasma catecholamine profile of subarachnoid hemorrhage patients with neurogenic cardiomyopathy. Cerebrovasc Dis Extra 2015;5:57–67.
  • Moussouttas M, Lai E, Khoury J, et al. Determinants of central sympathetic activation in spontaneous primary subarachnoid hemorrhage. Neurocrit Care 2012;16:381–8.
  • Moussouttas M, Bhatnager M, Huynh T, et al. Association between sympathetic response, neurogenic cardiomyopathy, and venous thromboembolization in patients with primary subarachnoid hemorrhage. Acta Neurochir 2013;155:1501–10.
  • Ogura T, Satoh A, Ooigawa H, et al. Characteristics and prognostic value of acute catecholamine surge in patients with aneurysmal subarachnoid hemorrhage. Neurol Res 2012;34:484–90.
  • Johansson P, Haase N, Perner A, et al. Association between sympathoadrenal activation, fibrinolysis, and endothelial damage in septic patients: a prospective study. Journal of Critical Care 2014;29:327–33.
  • Sykora M, Diedler J, Turcani P, et al. Baroreflex: a new therapeutic target in human stroke? Stroke 2009;40:e678–e682.
  • Yeung P, Shen J, Chung S, et al. Targeted over-expression of endothelin-1 in astrocytes leads to more severe brain damage and vasospasm after subarachnoid hemorrhage. BMC Neurosci 2013;14:131.
  • Bellapart J, Jones L, Bandeshe H, et al. Plasma endothelin-1 as screening marker for cerebral vasospasm after subarachnoid hemorrhage. Neurocrit Care 2014;20:77–83.
  • Macdonald R, Higashida R, Keller E, et al. Clazosentan, an endothelin receptor antagonist, in patients with aneurysmal subarachnoid haemorrhage undergoing surgical clipping: a randomised, double-blind, placebo-controlled phase 3 trial (CONSCIOUS-2). Lancet Neurol 2011;10:618–25.
  • Chang M, Raval R, Southerland J, et al. Beta blockade and clinical outcomes in aneurysmal subarachnoid hemorrhage. Open Neurol J 2016;10:155–63.
  • Pinnamaneni S, Dutta T, Melcer J, Aronow WS. Neurogenic stress cardiomyopathy associated with subarachnoid hemorrhage. Future Cardiol 2015;11:77–87.
  • Sugimoto K, Inamasu J, Hirose Y, et al. The role of norepinephrine and estradiol in the pathogenesis of cardiac wall motion abnormality associated with subarachnoid hemorrhage. Stroke 2012;43:1897–903.
  • Liu Q, Ding J, Zhang H, et al. ECG change of acute subarachnoid haemorrhage patients. Acta Neurochir Suppl 2011;111:357–9.
  • Schmidt J, Crimmins M, Lantigua H, et al. Prolonged elevated heart rate is a risk factor for adverse cardiac events and poor outcome after subarachnoid hemorrhage. Neurocrit Care 2014;20:390–8.
  • Salem R, Vallée F, Dépret F, et al. Subarachnoid hemorrhage induces an early and reversible cardiac injury associated with catecholamine release: one-week follow-up study. Crit Care 2014;18:1.
  • Fukui S, Katoh H, Tsuzuki N, et al. Multivariate analysis of risk factors for QT prolongation following subarachnoid hemorrhage. Crit Care 2003;7:R7–R12.
  • Yoneda H, Nakamura T, Shirao S, et al. Multicenter prospective cohort study on volume management after subarachnoid hemorrhage: hemodynamic changes according to severity of subarachnoid hemorrhage and cerebral vasospasm. Stroke 2013;44:2155–61.
  • Nasr N, Gaio R, Czosnyka M, et al. Baroreflex impairment after subarachnoid hemorrhage is associated with unfavorable outcome. Stroke 2018;49:1632–8.
  • Davison D, Terek M, Chawla L. Neurogenic pulmonary edema. Crit Care 2012;16:212.
  • Vespa P, Bleck T. Neurogenic pulmonary edema and other mechanisms of impaired oxygenation after aneurysmal subarachnoid hemorrhage. J Neurocrit Care 2004;1:157–70.
  • Cobelens P, Tiebosch I, Dijkhuizen R, et al. Interferon-β attenuates lung inflammation following experimental subarachnoid hemorrhage. Crit Care 2010;14:R157.
  • Ulvi H, Demir R, Aygül R, et al. Experimental research effects of ischemic phrenic nerve root ganglion injury on respiratory disturbances in subarachnoid hemorrhage: an experimental study. aoms 2013;6:1125–31.
  • Audibert G, Steinmann G, de Talancé N, et al. Endocrine response after severe subarachnoid hemorrhage related to sodium and blood volume regulation. Anesth Analg 2009;108:1922–8.
  • Du Cheyron D, Lesage A, Daubin C, et al. Hyperreninemic hypoaldosteronism: a possible etiological factor of septic shock-induced acute renal failure. Intensive Care Med 2003;29:1703–9.
  • Leisman D, Fernandes T, Bijol V, et al. Impaired angiotensin II type 1 receptor signaling contributes to sepsis-induced acute kidney injury. Kidney Int 2021;99:148–60.
  • Fassot C, Lambert G, Gaudet-Lambert E, et al. Beneficial effect of renin-angiotensin system for maintaining blood pressure control following subarachnoid haemorrhage. Brain Res Bull 1999;50:127–32.
  • Crago E, Kerris K, Kuo C, et al. Cardiac abnormalities after aneurysmal subarachnoid hemorrhage: effects of -blockers and angiotensin-converting enzyme inhibitors. Am J Crit Care 2014;23:30–9.
  • Chen S, Li Q, Wu H, Krafft P, et al. The harmful effects of subarachnoid hemorrhage on extracerebral organs. Biomed Res Int 2014;2014:858496.
  • Biancardi V, Son S, Ahmadi S, et al. Circulating angiotensin II gains access to the hypothalamus and brain stem during hypertension via breakdown of the blood-brain barrier. Hypertension 2014;63:572–9.
  • Honda Y, Minato H, Fujitani B, et al. Alacepril, an angiotensin-converting enzyme inhibitor, prevents cerebral vasospasm in subarachnoid hemorrhage model in rats. Methods Find Exp Clin Pharmacol 1997;19:699–706.
  • Garg R, Bar B. Systemic complications following aneurysmal subarachnoid hemorrhage. Curr Neurol Neurosci Rep 2017;17:7.
  • Nyberg C, Karlsson T, Ronne-Engström E. Predictors of increased cumulative serum levels of the N-terminal prohormone of brain natriuretic peptide 4 days after acute spontaneous subarachnoid hemorrhage. J Neurosurg 2014;120:599–604.
  • Verbalis J. Hyponatremia with intracranial disease: not often cerebral salt wasting. J Clin Endocrinol Metab 2014;99:59–62.
  • Nakagawa I, Kurokawa S, Nakase H. Hyponatremia is predictable in patients with aneurysmal subarachnoid hemorrhage-clinical significance of serum atrial natriuretic peptide. Acta Neurochir 2010;152:2147–52.
  • Dorhout Mees S, Hoff R, Rinkel G, et al. Brain natriuretic peptide concentrations after aneurysmal subarachnoid hemorrhage: relationship with hypovolemia and hyponatremia. Neurocrit Care 2011;14:176–81.
  • Wasser K, Weber-Krüger M, Gröschel S, et al. Brain natriuretic peptide and discovery of atrial fibrillation after stroke: a subanalysis of the find-afrandomised trial. Stroke 2020;51:395–401.
  • Semler M, Marney A, Rice T, et al. B-type natriuretic peptide, aldosterone, and fluid management in ARDS. Chest 2016;150:102–11.
  • Metwaly A, Abdel khalik A, Mohammad Nasr F, et al. Brain natriuretic peptide in liver cirrhosis and fatty liver: correlation with cardiac performance. Electron Physician 2016;8:1984–93.
  • Yarlagadda S, Rajendran P, Miss J, et al. Cardiovascular predictors of in-patient mortality after subarachnoid hemorrhage. Neurocrit Care 2006;5:102–7.
  • McAteer A, Hravnak M, Chang Y, et al. The relationships between BNP and neurocardiac injury severity, noninvasive cardiac output, and outcomes after aneurysmal subarachnoid hemorrhage. Biol Res Nurs 2017;19:531–7.
  • Duello K, Nagel J, Thomas C, et al. Relationship of troponin T and age- and sex-adjusted BNP elevation following subarachnoid hemorrhage with 30-day mortality. Neurocrit Care 2015;23:59–65.
  • Yokobori S, Watanabe A, Igarashi Y, et al. The serum level of brain natriuretic peptide increases in severe subarachnoid hemorrhage thereby reflecting an increase in both cardiac preload and afterload. Cerebrovasc Dis 2014;38:276–83.
  • Taub P, Fields J, Wu A, et al. Elevated BNP is associated with vasospasm-independent cerebral infarction following aneurysmal subarachnoid hemorrhage. Neurocrit Care 2011;15:13–8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.