2,881
Views
13
CrossRef citations to date
0
Altmetric
Review Articles

The use of augmented reality in transsphenoidal surgery: A systematic review

, , , , , , & show all
Pages 457-471 | Received 30 Dec 2021, Accepted 20 Mar 2022, Published online: 08 Apr 2022

References

  • Kelly PJ, Alker GJ, Goerss S. Computer-assisted stereotactic microsurgery for the treatment of intracranial neoplasms. Neurosurgery 1982;10:324–31.
  • Roberts DW, Strohbehn JW, Hatch JF, Murray W, Kettenberger H. A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope. J Neurosurg 1986;65:545–9.
  • Mascitelli JR, Schlachter L, Chartrain AG, et al. Navigation-linked heads-up display in intracranial surgery: early experience. Oper Neurosurg 2018;15:184–93.
  • Inoue D, Cho B, Mori M, et al. Preliminary study on the clinical application of augmented reality neuronavigation. J Neurol Surg A Cent Eur Neurosurg 2013;74:71–6.
  • Kockro RA, Tsai YT, Ng I, et al. Dex-ray: augmented reality neurosurgical navigation with a handheld video probe. Neurosurgery 2009;65:795–807. discussion 807–8.
  • Coelho G, Rabelo NN, Vieira E, et al. Augmented reality and physical hybrid model simulation for preoperative planning of metopic craniosynostosis surgery. Neurosurg Focus 2020;148:E19.
  • Darbar A, Mustansir F, Hani U, Sajid MI. A review of common endoscopic intracranial approaches. Asian J Neurosurg 2020;15:471–8.
  • Møller MW, Andersen MS, Glintborg D, et al. Endoscopic vs. microscopic transsphenoidal pituitary surgery: a single centre study. Sci Rep 2020;10:21942.
  • Batista RL, Trarbach EB, Marques MD, et al. Nonfunctioning pituitary adenoma recurrence and its relationship with sex, size, and hormonal immunohistochemical profile. World Neurosurgery 2018;120:e241–e246.
  • Pasquini E, Zoli M, Frank G. Endoscopic endonasal surgery: new perspectives in recurrent and residual pituitary adenomas. World Neurosurg 2012;77:457–8.
  • Cavallo LM, Solari D, Tasiou A, et al. Endoscopic endonasal transsphenoidal removal of recurrent and regrowing pituitary adenomas: experience on a 59-patient series. World Neurosurg 2013;80:342–50.
  • Cho J, Rahimpour S, Cutler A, Goodwin CR, Lad SP, Codd P. Enhancing reality: a systematic review of augmented reality in neuronavigation and education. World Neurosurg 2020;1139:186–95.
  • López WO, Navarro PA, Crispin S. Intraoperative clinical application of augmented reality in neurosurgery: a systematic review. Clin Neurol Neurosurg 2019;1177:6–11.
  • Meola A, Cutolo F, Carbone M, Cagnazzo F, Ferrari M, Ferrari V. Augmented reality in neurosurgery: a systematic review. Neurosurg Rev 2017;40:537–48.
  • Cochrane. Handbook for systematic reviews of interventions. 2021 Training.cochrane.org. https://training.cochrane.org/handbook.
  • Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg 2010;8:336–41.
  • Covidence (2020) Covidence – Better systematic review management. Available from: https://www.covidence.org.
  • Sterne JAC, Savović J, Page MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 2019;366:l4898.
  • Sterne JAC, Hernán MA, Reeves BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016;355:i4919.
  • Campbell M, McKenzie JE, Sowden A, et al. Synthesis without meta-analysis (SWiM) in systematic reviews: reporting guideline. BMJ 2020;368:l6890.
  • Core RT, R: A language and environment for statistical computing. R Foundation for Statistical Computing 2013;1–523.
  • McKenzie JE, Brennan SE. Synthesizing and presenting findings using other methods. Cochrane Handbook for Systematic Reviews of Interventions 2019;321–47.
  • Mirota DJ, Wang H, Taylor RH, Ishii M, Gallia GL, Hager GD. A system for video-based navigation for endoscopic endonasal skull base surgery. IEEE Trans Med Imaging 2012;31:963–76.
  • Carl B, Bopp M, Voellger B, Saß B, Nimsky C. Augmented reality in transsphenoidal surgery. World Neurosurg 2019;125:e873–e883.
  • Caversaccio M, Langlotz F, Nolte L-P, Häusler R. Impact of a self-developed planning and self-constructed navigation system on skull base surgery: 10 years experience. Acta Otolaryngol 2007;127:403–7.
  • Lapeer R, Chen MS, Gonzalez G, Linney A, Alusi G. Image-enhanced surgical navigation for endoscopic sinus surgery: evaluating calibration, registration and tracking. Int J Med Robot 2008;4:32–45.
  • Bong JH, Song H-J, Oh Y, Park N, Kim H, Park S. Endoscopic navigation system with extended field of view using augmented reality technology. Int J Med Robot 2018;14: e1886.
  • Citardi MJ, Agbetoba A, Bigcas J-L, Luong A. Augmented reality for endoscopic sinus surgery with surgical navigation: a cadaver study. Int Forum Allergy Rhinol 2016;6:523–8.
  • Dixon BJ, Chan H, Daly MJ, Vescan AD, Witterick IJ, Irish JC. The effect of augmented real-time image guidance on task workload during endoscopic sinus surgery. Int Forum Allergy Rhinol 2012;2:405–10.
  • Dixon BJ, Daly MJ, Chan H, Vescan A, Witterick IJ, Irish JC. Augmented image guidance improves skull base navigation and reduces task workload in trainees: a preclinical trial. Laryngoscope 2011;121:2060–4.
  • Dixon BJ, Daly MJ, Chan H, Vescan A, Witterick IJ, Irish JC. Augmented real-time navigation with critical structure proximity alerts for endoscopic skull base surgery. Laryngoscope 2014;124:853–9.
  • Kawamata T, Iseki H, Shibasaki T, Hori T. Endoscopic augmented reality navigation system for endonasal transsphenoidal surgery to treat pituitary tumors: technical note. Neurosurgery 2002;50:1393–7.
  • Lai M, Skyrman S, Shan C, Babic D, Homan R. Fusion of augmented reality imaging with the endoscopic view for endonasal skull base surgery; a novel application for surgical navigation based on intraoperative cone beam computed tomography and optical tracking. PLOS One 2020;15(2):e0229454.
  • Li L, Yang J, Chu Y, et al. A novel augmented reality navigation system for endoscopic sinus and skull base surgery: a feasibility study. PLOS One 2016;11:e0146996.
  • Linxweiler M, Pillong L, Kopanja D, et al. Augmented reality-enhanced navigation in endoscopic sinus surgery: a prospective, randomized, controlled clinical trial. Laryngoscope Investig Otolaryngol 2020;5:621–9.
  • Onishi K, Fumiyama S, Miki Y, Nonaka M, Koeda M, Noborio H. Study on the development of augmented-reality navigation system for transsphenoidal surgery. human-computer interaction. human values and quality of life. Cham, Switzerland: Springer International Publishing, 2020; pp. 623–638.
  • Pennacchietti V, Stoelzel K, Tietze A, et al. First experience with augmented reality neuronavigation in endoscopic assisted midline skull base pathologies in children. Childs Nerv Syst 2021;37:1525–34.
  • Prisman E, Daly MJ, Chan H, Siewerdsen JH, Vescan A, Irish JC. Real-time tracking and virtual endoscopy in cone-beam CT-guided surgery of the sinuses and skull base in a cadaver model. Int Forum Allergy Rhinol 2011;1:70–7.
  • Zeiger J, Costa A, Bederson J, Shrivastava RK, Iloreta AMC. Use of mixed reality visualization in endoscopic endonasal skull base surgery. Oper Neurosurg 2020;19:43–52.
  • Cappabianca P, Solari D. The endoscopic endonasal approach for the treatment of recurrent or residual pituitary adenomas: widening what to see expands what to do? World Neurosurg 2012;77:455–6.
  • Cappabianca P, Cavallo LM, Colao A, de Divitiis E. Surgical complications associated with the endoscopic endonasal transsphenoidal approach for pituitary adenomas. J Neurosurg 2002;97:293–8.
  • Black PM, Zervas NT, Candia GL. Incidence and management of complications of transsphenoidal operation for pituitary adenomas. Neurosurgery 1987;20:920–4.
  • Irugu DV, Stammberger HR. A note on the technical aspects and evaluation of the role of navigation system in endoscopic endonasal surgeries. Indian J Otolaryngol Head Neck Surg 2014;66:307–13.
  • Guha D, Alotaibi NM, Nguyen N, Gupta S, McFaul C, Yang VXD. Augmented reality in neurosurgery: a review of current concepts and emerging applications. Can J Neurol Sci 2017;44:235–45.
  • Raban MZ, Walter SR, Douglas HE, Strumpman D, Mackenzie J, Westbrook JI. Measuring the relationship between interruptions, multitasking and prescribing errors in an emergency department: a study protocol. BMJ Open 2015;5:e009076.
  • Westbrook JI, Woods A, Rob MI, Dunsmuir WT, Day RO. Association of interruptions with an increased risk and severity of medication administration errors. Arch Intern Med 2010;170:683–90.
  • Marcus HJ, Pratt P, Hughes-Hallett A, et al. Comparative effectiveness and safety of image guidance systems in neurosurgery: a preclinical randomized study. JNS 2015;123:307–13.
  • Vávra P, Roman J, Zonča P, et al. Recent development of augmented reality in surgery: a review. J Healthc Eng 2017; 2017:4574172.
  • Azuma RT, Bishop G. Improving static and dynamic registration in an optical see-through HMD. Proceedings of the 21st annual conference on Computer graphics and interactive techniques. New York: ACM; 1994.
  • Koivukangas T, Katisko JP, Koivukangas JP. Technical accuracy of optical and the electromagnetic tracking systems. Spriner Plus 2013;2:1–7.
  • Dusick JR, Esposito F, Malkasian D, Kelly DF. Avoidance of carotid artery injuries in transsphenoidal surgery with the doppler probe and micro-hook blades. Operative Neurosurgery 2007;1:ONS–322.
  • Yamasaki T, Moritake K, Hatta J, Nagai H. Intraoperative monitoring with pulse doppler ultrasonography in transsphenoidal surgery: technique application. Neurosurgery 1996;38:95–8.
  • Dai C, Sun B, Wang R, Kang J. The application of artificial intelligence and machine learning in pituitary adenomas. Front Oncol 2021;11:5433.
  • Soldozy S, Young S, Yağmurlu K, et al. Transsphenoidal surgery using robotics to approach the Sella turcica: integrative use of artificial intelligence, realistic motion tracking and telesurgery. Clin Neurol Neurosurg 2020;197:106152.
  • Gilbert H, Hendrick R, Remirez A, Webster IIR. A robot for transnasal surgery featuring needle-sized tentacle-like arms. Expert Rev Med Devices 2014;11:5–7.
  • McCabe C, Claxton K, Culyer AJ. The NICE cost-effectiveness threshold: what it is and what that means. Pharmacoeconomics 2008;26:733–44.