200
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Cognitive deficits following blast injury-induced neurotrauma: possible involvement of nitric oxide

Pages 593-612 | Published online: 03 Jul 2009

References

  • COUPLAND, R. M. and MEDDIN GS, D. R.: Mortality associated with use of weapons in armed conflicts, wartime atrocities, and civilian mass shootings: literature review. British Medical Journal, 319: 407–410, 1999.
  • CO UPLAND, R. M. and SAMNE GAARD, H. O.: Effect of type and transfer of conventional weapons on civilian injuries: retrospective analysis of prospective data from red cross hospitals. British Medical Journal, 319: 410–412, 1999.
  • KRUG, E. G. and GJINI, A. A.: Number of land mine victims in Kosovo is high. British Medical Journal, 319: 450, 1999.
  • CLEMEDSON, C. J.: Blast injury. Physiological Reviews, 36: 336–354, 1956.
  • PHILLIPS, Y. Y.: Primary blast injuries. Annals of Emergency Medicine, 15: 1446–1450, 1986.
  • CERNAK, I., SAVIC, J., MALICEVIC, Z. et al.: Involvement of the central nervous system in the general response to pulmonary blast injury. Journal of Trauma, 40: S100—S104, 1996.
  • CERNAK, I., SAVIC, J., IGNJATOVIC, D. et al.: Blast injury from explosive munitions. Journal of Trauma, 47: 96–103; discussion 103–104, 1999.
  • TRUDEAU, D. L., ANDERSON, J., HANSEN, L. M. et al.: Findings of mild traumatic brain injury in combat veterans with PTSD and a history of blast concussion.Journal of Neuropsychiatry and Clinical Neuroscience, 10: 308–313, 1998.
  • RIMEL, R. W., GIORDANI, B., BARTH, J. T. et al.: Disability caused by minor head injury. Neurosurgery, 9: 221–228, 1981.
  • BARTH, J. T., MACCIOCCHI, S. N., GIORDANI, B. et al.: Neuropsychological sequelae of minor head injury. Neurosurgery, 13: 529–533, 1983.
  • Fox, G. B., FAN, L., LEVASSEUR, R. A. et al.: Sustained sensory/motor and cognitive deficits with neuronal apoptosis following controlled cortical impact brain injury in the mouse. Journal of Neurotrauma, 15: 599–614, 1998.
  • PHILLIPS, L. L., LYETH, B. G., HAMM, R. J. et al.: Glutamate antagonism during secondary deaf-ferentation enhances cognition and axo-dendritic integrity after traumatic brain injury. Hippocampus, 8: 390–401, 1998.
  • MORI, T., KAWAMATA, T., KATAYAMA, Y. et al.: Antioxidant, OPC-14117, attenuates edema formation, and subsequent tissue damage following cortical contusion in rats. Acta Neurochirurgica Supplementum (Wien), 71: 120–122, 1998.
  • MONCADA, S., PALMER, R. M. and HIGGS, E. A.: The discovery of nitric oxide as the endogenous nitrovasodilator. Hypertension, 12: 365–372, 1988.
  • FuRcHGorr, R. F.: Nitric oxide: from basic research on isolated blood vessels to clinical relevance in diabetes. Anales de la Real Academica Nacional de Medicina (Madrid), 115: 317–331, 1998.
  • GARTHWAITE, J.: Glutamate, nitric oxide and cell—cell signalling in the nervous system. Trends in Neuroscience, 14: 60–7, 1991.
  • TURNBULL, A. V., LEE, S. and RIVIER, C.: Mechanisms of hypothalamic-pituitary-adrenal axis stimulation by immune signals in the adult rat. Annals of the New York Academy of Sciences, 840: 434–443, 1998.
  • GARTHWAITE, J. and BOULTON, C. L.: Nitric oxide signaling in the central nervous system. Annual Review of Physiology, 57: 683–706, 1995.
  • TOMINAGA, T., SATO, S., OHNISHI, T. et al.: Potentiation of nitric oxide formation following bilateral carotid occlusion and focal cerebral ischemia in the rat: in vivo detection of the nitric oxide radical by electron paramagnetic resonance spin trapping. Brain Research, 614: 342–346, 1993.
  • STRIJBOS, P. J.: Nitric oxide in cerebral ischemic neurodegeneration and excitotmdcity. Critical Reviews in Neurobiolology, 12: 223–243, 1998.
  • SAYAMA, T., SUZUKI, S. and FUKUI, M.: Role of inducible nitric oxide synthase in the cerebral vasospasm after subarachnoid hemorrhage in rats. Neurological Research, 21: 293–298, 1999.
  • WADA, K., CHATZIPANTELI, K., BUSTO, R. et al.: Role of nitric oxide in traumatic brain injury in the rat. Journal of Neurosurgery, 89: 807–818, 1998.
  • SPARROW, j. R.: Inducible nitric oxide synthase in the central nervous system. Journal of Molecular Neuroscience, 5: 219–229, 1994.
  • Ross, M. E. and IADECOLA, C.: Nitric oxide synthase expression in cerebral ischemia: neuro-chemical, immunocytochemical, and molecular approaches. Methods in Enzymology, 269: 408–426, 1996.
  • IADECOLA, C., ZHANG, F., CASEY, R. et al.: Inducible nitric oxide synthase gene expression in vascular cells after transient focal cerebral ischemia. Stroke, 27: 1373–1380, 1996.
  • FORSTER, C., CLARK, H. B., Ross, M. E. et al.: Inducible nitric oxide synthase expression in human cerebral infarcts. Acta Neuropathologica (Berlin), 97: 215–220, 1999.
  • WADA, K., CHATZIPANTELI, K., KRAYDIEH, S. et al.: Inducible nitric oxide synthase expression after traumatic brain injury and neuroprotection with aminoguanidine treatment in rats. Neurosurgery, 43: 1427–1436, 1998.
  • STRUBOS, P. J., LEACH, M. J. and GARTHWAITE, J.: Vicious cycle involving Na+ channels, glutamate release, and NMDA receptors mediates delayed neurodegeneration through nitric oxide formation. Journal of Neuroscience, 16: 5004–5013, 1996.
  • SZABO, C.: Physiological and pathophysiological roles of nitric oxide in the central nervous system. Brain Research Bulletin, 41: 131–141, 1996.
  • IADECOLA, C., ZHANG, F., CASEY, R. et al.: Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene. Journal of Neuroscience, 17: 9157–9164, 1997.
  • BARATTI, C. M. and KOPF, S. R.: A nitric oxide synthase inhibitor impairs memory storage in mice. Neurobiology of Learning and Memory, 65: 197–201, 1996.
  • TELEGDY, G. and KOICAVSZKY, R.: The role of nitric oxide in passive avoidance learning. Neuropharmacology, 36: 1583–1587, 1997.
  • QIANG, M., CHEN, Y. C., WANG, R. et al.: Nitric oxide is involved in the formation of learning and memory in rats: studies using passive avoidance response and Morris water maze task. Behavioural Pharmacology, 8: 183–187, 1997.
  • HAWKINS, R. D., SON, H. and ARANCIO, O.: Nitric oxide as a retrograde messenger during long—term potentiation in hippocampus. Progress in Brain Research, 118: 155–172, 1998.
  • SINZ, E. H., KOCHANEK, P. M., DIXON, C. E. et al.: Inducible nitric oxide synthase is an endogenous neuroprotectant after traumatic brain injury in rats and mice. Journal of Clinical Investigation, 104: 647–656, 1999.
  • FERRANTE, R. J., HANTRAYE, P., BROUILLET, E. et al.: Increased nitrotyrosine immunoreactivity in substantia nigra neurons in MPTP treated baboons is blocked by inhibition of neuronal nitric oxide synthase. Brain Research, 823: 177–182, 1999.
  • HANTRAYE, P., BROUILLE T, E., FERRANTE, R. et al.: Inhibition of neuronal nitric oxide synthase prevents MPTP—induced parkinsonism in baboons. Nature Medicine, 2: 1017–1021, 1996.
  • MAATSCH, J. L.: Learning and fixation after a single shock trial. Journal of Comparative Physiolology and Psychology, 52: 408–410, 1959.
  • POPOVIC, M., JovANovA-NEsic, K., POPOVIC, N. et al.: Behavioral and adaptive status in an experimental model of Alzheimer's disease in rats. International Journal of Neuroscience, 86: 281–299, 1996.
  • WANG, Z., SUN, L., YANG, Z. et al.: Development of serial bio-shock tubes and their application. Chinese Medical Journal (English), 111: 109–113, 1998.
  • YELVERTON, J. T.: Pathology scoring system for blast injuries. Journal of Trauma, 40: S111—S115, 1996.
  • GREEN, L. C., WAGNER, D. A., GLOGOWSKI, J. et al.: Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Analytical Biochemistry, 126: 131–138, 1982.
  • PRADELLES, P., GRASSI, J., CHABARDES, D. et al.: Enzyme immunoassays of adenosine cyclic 3/,51—monophosphate and guanosine cyclic 3/,5/—monophosphate using acetylcholinesterase. Analytical Chemistry, 61: 447–453, 1989.
  • CHOMCZYNSKI, P. and SACCHI, N.: Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry, 162: 156–159, 1987.
  • BRADFORD, M. M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248–254, 1976.
  • SOUTHAM, E. and GARTHWAITE, J.: The nitric oxide-cyclic GMP signalling pathway in rat brain. Neuropharmacology, 32: 1267–1277, 1993.
  • CERNAK, I., RADOSEVIC, P., MALICEVIC, Z. et al.: Experimental magnesium depletion in adult rabbits caused by blast overpressure. Magnesium Research, 8: 249–259, 1995.
  • PovusxocK, J. T., BECKER, D. P., CHENG, C. L. et al.: Axonal change in minor head injury. Journal of Neuropathology and Experimental Neurolology, 42: 225–242, 1983.
  • SMITH, D. H., CHEN, X. H., XU, B. N. et al.: Characterization of diffuse axonal pathology and selective hippocampal damage following inertial brain trauma in the pig.Journal of Neuropathology and Experimental Neurolology, 56: 822–834, 1997.
  • KOTAPKA, M. J., GENNARELLI, T. A., GRAHAM, DI. et al.: Selective vulnerability of hippocampal neurons in acceleration-induced experimental head injury. Journal of Neurotrauma, 8: 247–258, 1991.
  • KAUR, C., SINGH, J., LIM, M. K. et al.: The response of neurons and microglia to blast injury in the rat brain. Neuropathology and Applied Neurobiology, 21: 369–377, 1995.
  • KAUR, C., SINGH, J., LIM, M. K. et al.: Studies of the choroid plexus and its associated epiplexus cells in the lateral ventricles of rats following an exposure to a single non-penetrative blast. Archive of Histology and Cytology, 59: 239–248, 1996.
  • KAUR, C., SINGH, J., LIM, M. K. et al.: Macrophages/microglia as 'sensors' of injury in the pineal gland of rats following a non—penetrative blast. Neuroscience Research, 27: 317–322, 1997.
  • SUNESON, A., HANSSON, H. A. and SEEMAN, T.: Pressure wave injuries to the nervous System caused by high-energy missile extremity impact: Part I. Local and distant effects on the peripheral nervous system—a light and electron microscopic study on pigs. Journal of Trauma, 30: 281–294, 1990.
  • SUNESON, A., HANSSON, H. A. and SEEMAN, T.: Pressure wave injuries to the nervous System caused by high—energy missile extremity impact: Part II. Distant effects on the central nervous system—a light and electron microscopic study on pigs. Journal of Trauma, 30: 295–306, 1990.
  • BERLIN, R.: Energy transfer and regional blood flow changes following missile trauma. Journal of Trauma, 19: 170–176, 1979.
  • DEKOSKY, S. T., KOCHANEK, P. M., CLARK, R. S. et al.: Secondary injury after head trauma: subacute and long-term mechanisms. Seminars in Clinical Neuropsychiatry, 3: 176–185, 1998.
  • STRUGAR, J., SASS, K. J., BUCHANAN, C. P. et al.: Long-term consequences of minimal brain injury: loss of consciousness does not predict memory impairment. Journal of Trauma, 34: 555–558; discussion 558–559, 1993.
  • RIMEL, R. W., GIORDANI, B., BARTH, j. T. et al.: Moderate head injury: completing the clinical spectrum of brain trauma. Neurosurgery, 11: 344–351, 1982.
  • CAPRUS O, D. X. and LEVIN, H. S.: Cognitive impairment following closed head injury. Neurologic Clinics, 10: 879–893, 1992.
  • LOWENSTEIN, D. H., THOMAS, M. J., SMITH, D. H. et al.: Selective vulnerability of dentate hilar neurons following traumatic brain injury: a potential mechanistic link between head trauma and disorders of the hippocampus. Journal of Neuroscience, 12: 4846–4853, 1992.
  • SMITH, D. H., LOWENSTEIN, D. H., GENNARELLI, T. A. et al.: Persistent memory dysfunction is associated with bilateral hippocampal damage following experimental brain injury. Neuroscience Letters, 168: 151–154, 1994.
  • Coucos, M. A. and DASH, P. K.: Apoptotic morphology of dentate gyms granule cells following experimental cortical impact injury in rats: possible role in spatial memory deficits. Brain Research, 739: 120–131, 1996.
  • YAMAKI, T., MURAKAMI, N., IwAmoTo, Y. et al.: Cognitive dysfunction and histological findings in rats with chronic-stage contusion and diffuse axonal injury. Brain Research. Brain Research Protocols, 3: 100–106, 1998.
  • DAVIS, H. P., BARANOWSKI, J. R., PULS1NELLI, W. A. et al.: Retention of reference memory following ischemic hippocampal damage. Physiology and Behavior, 39: 783–786, 1987.
  • MIYAZAKI, S., KATAYAMA, Y., LYETH, B. G. et al.: Enduring suppression of hippocampal long-term potentiation following traumatic brain injury in rat. Brain Research, 585: 335–339, 1992.
  • HOGG, S., SANGER, D. J. and MOSER, P. C.: Mild traumatic lesion of the right parietal cortex in the rat: characterisation of a conditioned freezing deficit and its reversal by dizocilpine. Behavioural Brain Research, 93: 157–165, 1998.
  • HAMM, R. J., TEMPLE, M. D., PIKE, B. R. et al.: Working memory deficits following traumatic brain injury in the rat. Journal of Neurotrauma, 13: 317–323, 1996.
  • SCHEFF, S. W., BALDWIN, S. A., BROWN, R. W. et al.: Morris water maze deficits in rats following traumatic brain injury: lateral controlled cortical impact. Journal of Neurotrauma, 14: 615–627, 1997.
  • SQUIRE, L. R.: Memory systems. Comptes Rendus De L'Academie Des Sciences. Serie III Sciences De La Vie, 321: 153–156, 1998.
  • KLINGBERG, F., MAGER, P. and MAGER, R.: The mesencephalic reticular formation as a link in the cortical control of exploratory and goal-directed behaviour. Acta Physiologica Hungarica, 74: 121–134, 1989.
  • ARUSHANIAN, E. B., BELOZERTSEV IU, A. and AIVAZOV, K. G.: [Influence of phenamin on the reaction of cortical neurons evoked by stimulation of mesodiencephalic structures]. Farmakologiia i Toksikologiia, 38: 389–392, 1975.
  • VERTES, R. P., MARTIN, G. F. and WALTZER, R.: An autoradiographic analysis of ascending projections from the medullary reticular formation in the rat. Neuroscience, 19: 873–898, 1986.
  • KOPELMAN, M. D., STANHOPE, N. and KINGSLEY, D.: Retrograde amnesia in patients with diencephalic, temporal lobe or frontal lesions. Neuropsychologia, 37: 939–958, 1999.
  • CAVE, C. B. and SQUIRE, L. R.: Intact verbal and nonverbal short-term memory following damage to the human hippocampus. Hippocampus, 2: 151–163, 1992.
  • KAASIK, A. E., KYIV, L. E., PAIU, A. A. et al.: [The dependence of the function of the sympa-thetic-adrenal and hypothalamo-hypophyseal-adrenal cortical systems on the severity of the trau-matic brain lesion]. Zhurnal Voprosy Neirokhirurgii Imeni N. N Burdenko, 1: 26–29, 1994.
  • GotAER, J. and YEHUDA, R.: Neuroendocrine activity and memory-related impairments in post-traumatic stress disorder. Development and Psychopathology, 10: 857–869, 1998.
  • ONAYA, M., TOMINAGA, I., KATO, Y. et al.: [Diffuse axonal injury (DAI) in an autopsy case of head trauma with long survival]. No To Shinkei Brain and Nerve, 43: 283–287, 1991.
  • PAIVA, T., LOPES DA SILVA, F. H. and MOLLEVANGER, W.: Modulating systems of hippocampal EEG. Electroencephalography and Clinical Neurophysiology, 40: 470–480, 1976.
  • THOMPSON, R.: A behavioral atlas of the rat brain (New York: Oxford University Press), 1978.
  • SMITH, D. H., OKIYAMA, K., THOMAS, M. j. et al.: Evaluation of memory dysfunction following experimental brain injury using the Morris water maze. Journal of Neurotrauma, 8: 259–269, 1991.
  • HICKS, R. R., SMITH, D. H., LOWENSTEIN, D. H. et al.: Mild experimental brain injury in the rat induces cognitive deficits associated with regional neuronal loss in the hippocampus. Journal of Neurotrauma, 10: 405–414, 1993.
  • SKELTON, R. W.: Modelling recovery of cognitive function after traumatic brain injury: spatial navigation in the Morris water maze after complete or partial transections of the perforant path in rats. Behavioural Brain Research, 96: 13–35, 1998.
  • Wti.cocK, J. and FULKER, D. W.: Avoidance learning in rats: genetic evidence for two distinct behavioral processes in the shuttle box. Journal of Comparative and Physiological Psychology, 82: 247–253, 1973.
  • MCINTOSH, T. K., SAATMAN, K. E., RAGHUPATHI, R. et al.: The Dorothy Russell Memorial Lecture. The molecular and cellular sequelae of experimental traumatic brain injury: pathogenetic mechanisms. Neuropathology and Applied Neurobiology, 24: 251–267, 1998.
  • SALTER, M., C., D., GARTHWAITE, J. et al.: Ex vivo measurement of brain tissue nitrite and nitrate accurately reflects nitric oxide synthase activity in vivo. Journal of Neurochemistry, 66: 1683–1690, 1996.
  • YAMADA, K., KOMORI, Y., TANAKA, T. et al.: Brain dysfunction associated with an induction of nitric oxide synthase following an intracerebral injection oflipopolysaccharide in rats. Neuroscience, 88: 281–294, 1999.
  • IADECOLA, C., XU, X., ZHANG, F. et al.: Marked induction of calcium-independent nitric oxide synthase activity after focal cerebral ischemia.Journal of Cerebral Blood Flow and Metabolism, 15: 52–59, 1995.
  • CHAKRABORTI, T., DAS, S., MONDAL, M. et al.: Oxidant, mitochondria and calcium: an Over-view. Cellular Signalling, 11: 77–85, 1999.
  • SQUADRITO, G. L. and PRYOR, W. A.: Oxidative chemistry of nitric oxide: the roles of super-oxide, peroxynitrite, and carbon dioxide. Free Radical Biology and Medicine, 25: 392–403, 1998.
  • TAMATANI, M., OGAWA, S., NIITSU, Y. et al.: Involvement of Bc1-2 family and caspase-3-like protease in NO-mediated neuronal apoptosis. Journal of Neurochemistry, 71: 1588–1596, 1998.
  • ISHIKAWA, Y., SATOH, T., ENOKIDO, Y. et al.: Generation of reactive oxygen species, release of L—glutamate and activation of caspases are required for oxygen-induced apoptosis of embryonic hippocampal neurons in culture. Brain Research, 824: 71–80, 1999.
  • ZWEIER, J. L., SAMOUILOV, A. and KUPPUSAMY, P.: Non-enzymatic nitric oxide synthesis in biological systems. Biochimica et Biophysica Acta, 1411: 250–262, 1999.
  • ZWEIER, J. L., WANG, P., SAMOUILOV, A. et al.: Enzyme-independent formation of nitric oxide in biological tissues. Nature Medicine, 1: 804–809, 1995.
  • WADA, K., CHATZ1PANTELI, K., BUSTO, R. et al.: Effects of L-NANIE and 7-NI on NOS catalytic activity and behavioral outcome after traumatic brain injury in the rat. Journal of Neurotrauma, 16: 203–212, 1999.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.