912
Views
26
CrossRef citations to date
0
Altmetric
Reviews

The diagnostic values of UCH-L1 in traumatic brain injury: A meta-analysis

, , , , , , , & ORCID Icon show all

References

  • Faul M, Xu L, Wald MM, Coronado VG. Traumatic brain injury in the United States: emergency department visits, hospitalizations and deaths 2002–2006. USA: Centers for Disease Control and Prevention; 2010.
  • Wintermark M, Sanelli PC, Anzai Y, Tsiouris AJ, Whitlow CT, Druzgal TJ, Gean AD, Lui YW, Norbash AM, Raji C, et al. Imaging evidence and recommendations for traumatic brain injury: conventional neuroimaging techniques. J Am Coll Radiol. 2015;12(2):e1–e14. doi:10.1016/j.jacr.2014.10.014.
  • Yue JK, Robinson CK, Winkler EA, Upadhyayula PS, Burke JF, Pirracchio R, Suen CG, Deng H, Ngwenya LB, Dhall SS, et al. Circadian variability of the initial Glasgow Coma Scale score in traumatic brain injury patients. Neurobiology Sleep Circadian Rhythms. 2016;9:1–9. doi:10.1016/j.nbscr.2016.09.002.
  • La Rosa G, Conti A, Cardali S, Cacciola F, Tomasello F. Does early decompression improve neurological outcome of spinal cord injured patients? Appraisal of the literature using a meta-analytical approach. Spinal Cord. 2004;42(9):503–12. doi:10.1038/sj.sc.3101627.
  • Rundhaug NP, Moen KG, Skandsen T, Schirmer-Mikalsen K, Lund SB, Hara S, Vik A. Moderate and severe traumatic brain injury: effect of blood alcohol concentration on Glasgow Coma Scale score and relation to computed tomography findings. Jns. 2015;122(January):211–18. doi:10.3171/2014.9.JNS14322.Disclosure.
  • Sherer M, Sander AM, Maestas KL, Pastorek NJ, Nick TG, Li J. Accuracy of self-reported length of coma and posttraumatic amnesia in persons with medically verified traumatic brain injury. Arch Phys Med Rehabil. 2015;96(4):652–58. doi:10.1016/j.apmr.2014.10.024.
  • Meares SE, Shores A, Smyth T, Batchelor J, Murphy M, Vukasovic M. Identifying posttraumatic amnesia in individuals with a glasgow coma scale of 15 after mild traumatic brain injury. Arch Phys Med Rehabil. 2015;96(5):956–59. doi:10.1016/j.apmr.2014.12.014.
  • Sharp AL, Nagaraj G, Rippberger EJ, Shen E, Swap CJ, Silver MA, McCormick T, Vinson DR, Hoffman JR. Computed tomography use for adults with head injury: describing likely avoidable ED imaging based on the canadian CT head rule. Acad Emerg Med. 2016. doi:10.1111/ACEM.13061.
  • Melnick ER, Szlezak CM, Bentley SK, Dziura JD, Kotlyar S, Post LACT. Overuse for mild traumatic brain injury. Jt Comm J Qual Patient Saf. 2012;38:483–89. doi:10.1016/S1553-7250(12)38064-1.
  • Aziz H, Rhee P, Pandit V, Ibrahim-Zada IZ, Kulvatunyou N, Wynne J, Zangbar B, O’Keeffe T, Tang A, Friese RS, et al. Mild and moderate pediatric traumatic brain injury: replace routine repeat head computed tomography with neurologic examination. J Trauma Acute Care Surgery. 2013;75:550–54. doi:10.1097/TA.0b013e3182a53a77.
  • Tea R, Helen M, Benjamin D, Jeff E, Hannah P, Michelle F, Ambuj K. Value of repeat head computed tomography after traumatic brain injury: systematic review and meta-analysis. J Neurotrauma. 2014;31(1):78–98. doi:10.1089/neu.2013.2873.
  • Brown CVR, Weng J, Oh D, Salim A, Kasotakis G, Demetriades D, Velmahos GC, Rhee P. Does routine serial computed tomography of the head influence management of traumatic brain injury? A prospective evaluation. Journal Trauma: Injury, Infection, Critical Care. 2004;57(5):939–43. doi:10.1097/01.TA.0000149492.92558.03.
  • Jacobs B, Beems T, Stulemeijer M, Van Vugt AB, van der Vliet TM, Borm GF, Vos PE. Outcome prediction in mild traumatic brain injury: age and clinical variables are stronger predictors than CT abnormalities. J Neurotrauma. 2010;27(4):655–68. doi:10.1089/neu.2009.1059.
  • Stippler M, Smith C, McLean a R, Carlson A, Morley S, Murray-Krezan C, Kraynik J, Kennedy G. Utility of routine follow-up head CT scanning after mild traumatic brain injury: a systematic review of the literature. Emerg Med J. 2012;29(7):528–32. doi:10.1136/emermed-2011-200162.
  • Kou Z, Gattu R, Kobeissy F, Welch RD, Neil BJO, Woodard JL, Ayaz SI, Kulek A, Kas-Shamoun R, Mika V, et al. Combining biochemical and imaging markers to improve diagnosis and characterization of mild traumatic brain injury in the acute setting: results from a pilot study. Plos One. 2013;8(11):1–14. doi:10.1371/journal.pone.0080296.
  • Mondello S, Muller U, Jeromin A, Streeter J, Hayes RL, Wang KKW. Blood-based diagnostics of traumatic brain injuries. Expert Rev Mol Diagn. 2011;11(1):65–78. doi:10.1586/erm.10.104.
  • Mondello S, Schmid K, Berger RP, Kobeissy F, Italiano D, Jeromin A, Hayes RL, Tortella FC, Buki A. The challenge of mild traumatic brain injury: role of biochemical markers in diagnosis of brain Damage. Med Res Rev. 2014;34(3):503–31. doi:10.1002/med.21295.
  • Pineda JA, Lewis SB, Valadka AB, Papa L, Hannay HJ, Heaton SC, Demery JA, Liu MC, Aikman JM, Akle V, et al. Clinical significance of alphaII-spectrin breakdown products in cerebrospinal fluid after severe traumatic brain injury. J Neurotrauma. 2007;24(2):354–66. doi:10.1089/neu.2006.003789.
  • Ringger NC, O’Steen BE, Brabham JG, Silver X, Pineda J, Wang KK, Hayes RL, Papa L. A novel marker for traumatic brain injury: CSF alphaII-spectrin breakdown product levels. J Neurotrauma. 2004;21(10):1443–56. doi:10.1089/neu.2004.21.1443.
  • Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 1999;22(9):391–97. doi:10.1016/S0166-2236(99)01401-0.
  • Roine RO, Somer H, Kaste M, Viinikka L, Karonen SL. Neurological outcome after out-of-hospital cardiac arrest. Prediction by cerebrospinal fluid enzyme analysis. Arch Neurol. 1989;46(7):753–56. doi:10.1001/archneur.1989.00520430047015.
  • Martens P. Serum neuron-specific enolase as a prognostic marker for irreversible brain damage in comatose cardiac arrest survivors. Acad Emerg Med. 1996;3(2):126–31. doi:10.1111/j.1553-2712.1996.tb03399.x.
  • Bishop P, Rocca D, Henley JM. Ubiquitin C-terminal hydrolase L1 (UCH-L1): structure, distribution and roles in brain function and dysfunction. Biochem J. 2016;473(16):2453–62. doi:10.1042/BCJ20160082.
  • Jackson P, Thompson RJ. The demonstration of new human brain-specific proteins by high-resolution two-dimensional polyacrylamide gel electrophoresis. J Neurol Sci. 1981;49(3):429–38. doi:10.1016/0022-510X(81)90032-0.
  • Wilkinson KD, Deshpande S, Larsen CN. Comparisons of neuronal (PGP 9.5) and non-neuronal ubiquitin C-terminal hydrolases. Biochem Soc Trans. 1992;20(3):631–37. doi:10.1042/bst0200631.
  • Kobeissy FH, Ottens AK, Zhang Z, Liu MC, Denslow ND, Dave JR, Tortella FC, Hayes RL, Wang KKW. Novel differential neuroproteomics analysis of traumatic brain injury in rats. Mol Cell Proteomics. 2006;5(10):1887–98. doi:10.1074/mcp.M600157-MCP200.
  • Liu MC, Akinyi L, Scharf D, Mo J, Larner SF, Muller U, Oli MW, Zheng W, Kobeissy F, Papa L, et al. Ubiquitin C-terminal hydrolase-L1 as a biomarker for ischemic and traumatic brain injury in rats. Eur J Neurosci. 2010;31(4):722–32. doi:10.1111/j.1460-9568.2010.07097.x.
  • Mondello S, Shear DA, Bramlett HM, Dixon CE, Schmid KE, Dietrich WD, Wang KKW, Hayes RL, Glushakova O, Catania M. Insight into pre-clinical models of traumatic brain injury using circulating brain damage biomarkers: operation brain trauma therapy. J Neurotrauma. 2016;33(6):595–605. doi:10.1089/neu.2015.4132.
  • Day INM, Thompson RJ. UCHL1 (PGP 9.5): neuronal biomarker and ubiquitin system protein. Prog Neurobiol. 2010;90(3):327–62. doi:10.1016/j.pneurobio.2009.10.020.
  • Larsen CN, Krantz BA, Wilkinson KD. Substrate specificity of deubiquitinating enzymes: ubiquitin C-terminal hydrolases. Biochemistry. 1998;37(10):3358–68. doi:10.1021/bi972274d.
  • Coulombe J, Gamage P, Gray MT, Zhang M, Tang MY, Woulfe J, Saffrey MJ, Gray DA. Loss of UCHL1 promotes age-related degenerative changes in the enteric nervous system. Front Aging Neurosci. 2014;6:129. doi:10.3389/fnagi.2014.00129.
  • Gong B, Cao Z, Zheng P, O V V, Liu S, Staniszewski A, Moolman D, Zhang H, Shelanski M, Arancio O. Ubiquitin hydrolase Uch-L1 rescues beta-amyloid-induced decreases in synaptic function and contextual memory. Cell. 2006;126(4):775–88. doi:10.1016/j.cell.2006.06.046.
  • Gong B, Radulovic M, Figueiredo-Pereira ME, Cardozo C. The ubiquitin-proteasome system: potential therapeutic targets for alzheimer’s disease and spinal cord injury. Front Mol Neurosci. 2016;9:4. doi:10.3389/fnmol.2016.00004.
  • Lombardino AJ, Li XC, Hertel M, Nottebohm F. Replaceable neurons and neurodegenerative disease share depressed UCHL1 levels. Proc Natl Acad Sci U S A. 2005;102(22):8036–41. doi:10.1073/pnas.0503239102.
  • Poon WW, Carlos AJ, Aguilar BL, Berchtold NC, Kawano CK, Zograbyan V, Yaopruke T, Shelanski M, Cotman CW. β-Amyloid (Aβ) oligomers impair brain-derived neurotrophic factor retrograde trafficking by down-regulating ubiquitin C-terminal Hydrolase, UCH-L1. J Biol Chem. 2013;288(23):16937–48. doi:10.1074/jbc.M113.463711.
  • Setsuie R, Wada K. The functions of UCH-L1 and its relation to neurodegenerative diseases. Neurochem Int. 2007;51(2–4):105–11. doi:10.1016/j.neuint.2007.05.007.
  • Shen H, Sikorska M, Leblanc J, Walker PR, Liu QY. Oxidative stress regulated expression of ubiquitin Carboxyl-terminal Hydrolase-L1: role in cell survival. Apoptosis. 2006;11(6):1049–59. doi:10.1007/s10495-006-6303-8.
  • Zhang M, Deng Y, Luo Y, Zhang S, Zou H, Cai F, Wada K, Song W. Control of BACE1 degradation and APP processing by ubiquitin carboxyl-terminal hydrolase L1. J Neurochem. 2012;120(6):1129–38. doi:10.1111/j.1471-4159.2011.07644.x.
  • Todi SV, Paulson HL. Balancing act: deubiquitinating enzymes in the nervous system. Trends Neurosci. 2011;34(7):370–82. doi:10.1016/j.tins.2011.05.004.
  • Brophy GM, Mondello S, Papa L, Robicsek SA, Gabrielli A, Tepas III J, Buki A, Robertson C, Tortella FC, Hayes RL. Biokinetic analysis of ubiquitin C-terminal hydrolase-L1 (UCH-L1) in severe traumatic brain injury patient biofluids. J Neurotrauma. 2011;28(6):861–70. doi:10.1089/neu.2010.1564.
  • Papa L, Akinyi L, Liu MC, Pineda JA, Iii JJT, Oli MW, Zheng W, Robinson G, Robicsek SA, Gabrielli A, et al. Ubiquitin C-terminal hydrolase is a novel biomarker in humans for severe traumatic brain injury. Crit Care Med. 2010;38(1):138–44. doi:10.1097/CCM.0b013e3181b788ab.Ubiquitin.
  • Papa L, Brophy GM, Welch RD, Lewis LM, Braga CF, Tan CN, Ameli NJ, Lopez MA, Haeussler CA, Mendez Giordano DI, et al. Time course and diagnostic accuracy of glial and neuronal blood biomarkers GFAP and UCH-L1 in a large cohort of trauma patients with and without mild traumatic brain injury. JAMA Neurol. 2016;73(5):551–60. doi:10.1001/jamaneurol.2016.0039.
  • Rhine T, Babcock L, Zhang N, Leach J, Wade SL. Are UCH-L1 and GFAP promising biomarkers for children with mild traumatic brain injury? Brain Inj. 2016;1–8. doi:10.1080/02699052.2016.1178396.
  • Kiiski H, Tenhunen J, Ala-Peijari M, Huhtala H, Hamalainen M, Langsjo J, Moilanen E, Narkilahti S, Ohman J, Peltola J. Increased plasma UCH-L1 after aneurysmal subarachnoid hemorrhage is associated with unfavorable neurological outcome. J Neurol Sci. 2016;361:144–49. doi:10.1016/j.jns.2015.12.046.
  • Zhang YP, Zhu YB, Duan DD, Fan X-M, He Y, Su JW, Liu YL. Serum UCH-L1 as a novel biomarker to predict neuronal apoptosis following deep hypothermic circulatory arrest. Int J Med Sci. 2015;12(7):576–82. doi:10.7150/ijms.12111.
  • Huang XJ, Glushakova O, Mondello S, Van K, Hayes RL, Lyeth BG. Acute temporal profiles of serum levels of UCH-L1 and GFAP and relationships to neuronal and astroglial pathology following traumatic brain injury in rats. J Neurotrauma. 2015;32(16):1179–89. doi:10.1089/neu.2015.3873.
  • Douglas-Escobar MV, Heaton SC, Bennett J, Young LJ, Glushakova O, Xu X, Barbeau DY, Rossignol C, Miller C, Old Crow AM, et al. UCH-L1 and GFAP serum levels in neonates with hypoxic-ischemic encephalopathy: a single center pilot study. Front Neurol. 2014;5:273. doi:10.3389/fneur.2014.00273.
  • Jiang SH, Wang JX, Zhang YM, Jiang HF. Effect of hypothermia therapy on serum GFAP and UCH-L1 levels in neonates with hypoxic-ischemic encephalopathy. Zhongguo Dang Dai Er Ke Za Zhi. 2014;16(12):1193–96.
  • Mondello S, Palmio J, Streeter J, Hayes RL, Peltola J, Jeromin A. Ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) is increased in cerebrospinal fluid and plasma of patients after epileptic seizure. BMC Neurol. 2012;12:85. doi:10.1186/1471-2377-12-85.
  • Lewis SB, Wolper R, Chi YY, Miralia L, Wang Y, Yang C, Shaw G. Identification and preliminary characterization of ubiquitin C terminal hydrolase 1 (UCHL1) as a biomarker of neuronal loss in aneurysmal subarachnoid hemorrhage. J Neurosci Res. 2010;88(7):1475–84. doi:10.1002/jnr.22323.
  • Douglas-Escobar M, Yang C, Bennett J, Shuster J, Theriaque D, Leibovici A, Kays D, Zheng T, Rossignol C, Shaw G, et al. A pilot study of novel biomarkers in neonates with hypoxic-ischemic encephalopathy. Pediatr Res. 2010;68(6):531–36. doi:10.1203/PDR.0b013e3181f85a03.
  • Mondello S, Linnet A, Buki A, Robicsek S, Gabrielli A, Tepas J, Papa L, Brophy GM, Tortella F, Hayes RL, et al. Clinical utility of serum levels of ubiquitin C-terminal hydrolase as a biomarker for severe traumatic brain injury. Neurosurgery. 2012;70(3):666–75. doi:10.1227/NEU.0b013e318236a809.CLINICAL.
  • Blyth BJ, Farahvar A, He H, Nayak A, Yang C, Shaw G, Bazarian JJ. Elevated serum ubiquitin carboxy-terminal hydrolase L1 is associated with abnormal blood-brain barrier function after traumatic brain injury. J Neurotrauma. 2011;28(12):2453–62. doi:10.1089/neu.2010.1653.
  • Berger RP, Hayes RL, Richichi R, Beers SR, Wang KK. Serum concentrations of ubiquitin C-terminal hydrolase-L1 and αII-spectrin breakdown product 145 kDa correlate with outcome after pediatric TBI. J Neurotrauma. 2012;29(1):162–67. doi:10.1089/neu.2011.1989.
  • Posti JP, Takala RSK, Runtti H, Newcombe VF, Outtrim J, Katila AJ, Frantzén J, Ala-Seppälä H, Coles JP, Hossain MI, et al. The levels of glial fibrillary acidic protein and ubiquitin C-Terminal Hydrolase-L1 during the first week after a traumatic brain injury: correlations with clinical and imaging findings. Neurosurgery. 2016;0(0):1–8. doi:10.1227/NEU.0000000000001226.
  • Diaz-Arrastia R, Wang KKW, Papa L, Sorani MD, Yue JK, Puccio AM, McMahon PJ, Inoue T, Yuh EL, Lingsma HF, et al. Acute biomarkers of traumatic brain injury: relationship between plasma levels of ubiquitin C-terminal Hydrolase-L1 and glial fibrillary acidic protein. J Neurotrauma. 2014;31(1):19–25. doi:10.1089/neu.2013.3040.
  • Welch R, Ayaz S, Lewis L, Unden J, Chen J, Mika V, Saville B, Tyndall J, Nash M, Buki A, et al. Ability of serum glial fibrillary acidic protein, ubiquitin C-Terminal Hydrolase-L 1, and S100B to differentiate normal and abnormal head computed tomography findings in patients with suspected mild or moderate traumatic brain injury. J Neuraotruma. 2016 Jan 15;33(2):203–14. doi: 10.1089/neu.2015.4149.
  • Papa L, Lewis LM, Silvestri S, Falk JL, Giordano P, Brophy GM, Demery JA, Liu MC, Mo J, Akinyi L, et al. Serum levels of ubiquitin C-terminal hydrolase distinguish mild traumatic brain injury from trauma controls and are elevated in mild and moderate traumatic brain injury patients with intracranial lesions and neurosurgical intervention. J Trauma. 2012;72(5):1335–44. doi:10.1097/TA.0b013e3182491e3d.
  • Papa L, Robertson CS, Wang KKW, Brophy GM, Hannay HJ, Heaton S, Schmalfuss I, Gabrielli A, Hayes RL, Robicsek SA. Biomarkers improve clinical outcome predictors of mortality following non-penetrating severe traumatic brain injury. Neurocrit Care. 2015;22(1):52–64. doi:10.1007/s12028-014-0028-2.
  • Bossuyt P, Davenport C, Deeks J, Hyde C, Leeflang M, Scholten R. Chapter 11 interpreting results and drawing conclusions. In: Deeks JJ, Bossuyt PM, Gatsonis C (editors), Cochrane handbook for systematic reviews of diagnostic test accuracy version 0.9. The cochrane collaboration, 2013. p. 1–31. Available from: http://srdta.cochrane.org/.
  • Reitsma H, Rutjes A, Whiting P, Vlassov V, Deeks J. Chapter 9 assessing methodological quality. In: Deeks JJ, Bossuyt PM, Gatsonis C (editors), Cochrane handbook for systematic reviews of diagnostic test accuracyversion 1.0.0. The cochrane collaboration, 2009. p. 0–27. Available from: http://srdta.cochrane.org/.
  • Macaskill P, Gatsonis C, Deeks J, Harbord R, Takwoingi Y. Diagnostic test accuracy. Chapter 10 analysing and presenting results. In: Deeks JJ, Bossuyt PM, Gatsonis C (editors), Cochrane handbook for systematic reviews of diagnostic test accuracy version 1.0. The cochrane collaboration, 2010. p. 1–61. Available from: http://srdta.cochrane.org/.
  • Whiting PF, Rutjes AWS, Westwood ME, Mallet S, Deeks JJ, Reitsma JB, Leeflang MMG, Sterne JAC, Bossuyt PMM, Group and the Q-2. Research and reporting methods accuracy studies. Ann Intern Med. 2011;155(4):529–36. doi:10.7326/0003-4819-155-8-201110180-00009.
  • Reitsma JB, Glas AS, Rutjes AWS, Scholten RJPM, Bossuyt PM, Zwinderman AH. Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. J Clin Epidemiol. 2005;28(10):982–90. doi:10.1016/j.jclinepi.2005.02.022.
  • Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res Synthesis Methods. 2010;1(2):97–111. doi:10.1002/jrsm.12.
  • MedCalc Statistical Software version 15.8.
  • Higgins JPT, Thompson SG, Deeks JJ, Altman DG, Egger M, Smith GD, Liberati A, Buzzetti R, Grilli R, Magrini N, et al. Measuring inconsistency in meta-analyses. BMJ (Clinical Research Ed.). 2003;327(7414):557–60. doi:10.1136/bmj.327.7414.557.
  • Deeks JJ, Higgins JPT and Altman DG on behalf of the Cochrane Statistical Methods Group. Chapter 9 Analysing data and undertaking meta-analyses In: Higgins J, Green S (editors), Cochrane handbook for systematic reviews of interventions. Chichester, England: Wiley-Blackwell. 2011. Section 9.5.2. p. 276–82.
  • Mondello S, Jeromin A, Buki A, Bullock R, Czeiter E, Kovacs N, Barzo P, Schmid K, Tortella F, Wang KK, et al. Glial neuronal ratio: a novel index for differentiating injury type in patients with severe traumatic brain injury. J Neurotrauma. 2011;29:1096–104. doi:10.1089/neu.2011.2092.
  • Lee JY, Lee CY, Ph D, Kim HR, Lee C, Kim HW, Ph DA. Role of Serum-Based Neuronal and Glial Markers as Potential Predictors for Distinguishing Severity and Related Outcomes in Traumatic Brain Injury. J Korean Neurosurg Soc. 2015;58(2):93–100. doi:10.3340/jkns.2015.58.2.93.
  • Zhang Z, Zhang L, Dong X, Yu W, Du Q, Yang D, Shen Y, Wang H, Zhu Q, Che Z, et al. Comparison of the performances of copeptin and multiple biomarkers in long-term prognosis of severe traumatic brain injury. Peptides. 2014;60:13–17. doi:10.1016/j.peptides.2014.07.016.
  • Puvenna V, Brennan C, Shaw G, Yang C, Marchi N, Bazarian JJ, Merchant-Borna K, Janigro D. Significance of ubiquitin carboxy-terminal hydrolase L1 elevations in athletes after sub-concussive head hits. PLoS ONE. 2014;9(5):1–9. doi:10.1371/journal.pone.0096296.
  • Li J, Yu C, Sun Y, Li Y. Serum ubiquitin C-terminal hydrolase L1 as a biomarker for traumatic brain injury: a systematic review and meta-analysis. Am J Emerg Med. 2015;33(9):1–6. doi:10.1016/j.ajem.2015.05.023.
  • Czeiter E, Mondello S, Kovacs N, Sandor J, Gabrielli A, Schmid K, Tortella F, Wang KKW, Hayes RL, Barzo P, et al. Brain injury biomarkers may improve the predictive power of the IMPACT outcome calculator. J Neurotrauma. 2012;29(9):1770–78. doi:10.1089/neu.2011.2127.
  • Yokobori S, Hosein K, Burks S, Sharma I, Gajavelli S, Bullock R. Biomarkers for the clinical differential diagnosis in traumatic brain injury: A systematic review. CNS Neurosci Ther. 2013;19(8):556–65. doi:10.1111/cns.12127.
  • Strathmann FG, Schulte S, Goerl K, Petron DJ. Blood-based biomarkers for traumatic brain injury: evaluation of research approaches, available methods and potential utility from the clinician and clinical laboratory perspectives. Clin Biochem. 2014;47(10–11):876–88. doi:10.1016/j.clinbiochem.2014.01.028.
  • Wilkinson KD, Lee KM, Deshpande S, Duerksen-Hughes P, Boss JM, Pohl J. The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase. Science. 1989;246(4930):670–73. doi:10.1126/science.2530630.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.