181
Views
5
CrossRef citations to date
0
Altmetric
Articles

Relationship between intelligence quotient (IQ) and cerebral metabolic rate of oxygen in patients with neurobehavioural disability after traumatic brain injury

, , , , , , & show all
Pages 1367-1372 | Received 03 Oct 2017, Accepted 01 Jul 2018, Published online: 16 Jul 2018

References

  • Shiga T, Ikoma K, Katoh C, Isoyama H, Matsuyama T, Kuge Y, Kageyama H, Kohno T, Terae S, Tamaki N. Loss of neuronal integrity: a cause of hypometabolism in patients with traumatic brain injury without MRI abnormality in the chronic stage. Eur J Nucl Med Mol Imaging. 2006;33:817–22. doi:10.1007/s00259-005-0033-y.
  • Tanji J, Hoshi E. Role of the lateral prefrontal cortex in executive behavioral control. Physiol Rev. 2008;88:37–57. doi:10.1152/physrev.00014.2007.
  • Duncan J, Seitz RJ, Kolodny J, Bor D, Herzog H, Ahmed A, Newell FN, Emslie H. A neural basis for general intelligence. Science. 2000;289:457–60.
  • Gray JR, Chabris CF, Braver TS. Neural mechanisms of general fluid intelligence. Nat Neurosci. 2003;6:316–22. doi:10.1038/nn1014.
  • van Veluw SJ, Sawyer EK, Clover L, Cousijn H, De Jager C, Esiri MM, Chance SA. Prefrontal cortex cytoarchitecture in normal aging and Alzheimer’s disease: a relationship with IQ. Brain Struct Funct. 2012;217:797–808. doi:10.1007/s00429-012-0381-x.
  • Skranes J, Lohaugen GC, Martinussen M, Haberg A, Brubakk AM, Dale AM. Cortical surface area and IQ in very-low-birth-weight (VLBW) young adults. Cortex. 2013;49:2264–71. doi:10.1016/j.cortex.2013.06.001.
  • Larrabee GJ. Another look at VIQ-PIQ scores and unilateral brain damage. Int J Neurosci. 1986;29:141–48.
  • Iverson GL, Mendrek A, Adams RL. The persistent belief that VIQ-PIQ splits suggest lateralized brain damage. Appl Neuropsychol. 2004;11:85–90. doi:10.1207/s15324826an1102_3.
  • Matarazzo JD, Herman DO. Base rate data for the WAIS-R: test-retest stability and VIQ-PIQ differences. J Clin Neuropsychol. 1984;6:351–66.
  • Kuroda S, Shiga T, Ishikawa T, Houkin K, Narita T, Katoh C, Tamaki N, Iwasaki Y. Reduced blood flow and preserved vasoreactivity characterize oxygen hypometabolism due to incomplete infarction in occlusive carotid artery diseases. J Nucl Med. 2004;45:943–49.
  • Ruff RM, Crouch JA, Troster AI, Marshall LF, Buchsbaum MS, Lottenberg S, Somers LM. Selected cases of poor outcome following a minor brain trauma: comparing neuropsychological and positron emission tomography assessment. Brain Inj. 1994;8:297–308.
  • Umile EM, Sandel ME, Alavi A, Terry CM, Plotkin RC. Dynamic imaging in mild traumatic brain injury: support for the theory of medial temporal vulnerability. Arch Phys Med Rehabil. 2002;83:1506–13.
  • Nakayama N, Okumura A, Shinoda J, Nakashima T, Iwama T. Relationship between regional cerebral metabolism and consciousness disturbance in traumatic diffuse brain injury without large focal lesions: an FDG-PET study with statistical parametric mapping analysis. J Neurol Neurosurg Psychiatry. 2006;77:856–62. doi:10.1136/jnnp.2005.080523.
  • Kato T, Nakayama N, Yasokawa Y, Okumura A, Shinoda J, Iwama T. Statistical image analysis of cerebral glucose metabolism in patients with cognitive impairment following diffuse traumatic brain injury. J Neurotrauma. 2007;24:919–26. doi:10.1089/neu.2006.0203.
  • Provenzano FA, Jordan B, Tikofsky RS, Saxena C, van Heertum RL, Ichise M. F-18 FDG PET imaging of chronic traumatic brain injury in boxers: a statistical parametric analysis. Nucl Med Commun. 2010;31:952–57. doi:10.1097/MNM.0b013e32833e37c4.
  • Peskind ER, Petrie EC, Cross DJ, Pagulayan K, McCraw K, Hoff D, Hart K, Yu CE, Raskind MA. Cook DG and others. Cerebrocerebellar hypometabolism associated with repetitive blast exposure mild traumatic brain injury in 12 Iraq war Veterans with persistent post-concussive symptoms. Neuroimage. 2011;54(Suppl 1):S76–82. doi:10.1016/j.neuroimage.2010.04.008.
  • Humayun MS, Presty SK, Lafrance ND, Holcomb HH, Loats H, Long DM, Wagner HN, Gordon B. Local cerebral glucose abnormalities in mild closed head injured patients with cognitive impairments. Nucl Med Commun. 1989;10:335–44.
  • Gross H, Kling A, Henry G, Herndon C, Lavretsky H. Local cerebral glucose metabolism in patients with long-term behavioral and cognitive deficits following mild traumatic brain injury. J Neuropsychiatry Clin Neurosci. 1996;8:324–34. doi:10.1176/jnp.8.3.324.
  • Zhang J, Mitsis EM, Chu K, Newmark RE, Hazlett EA, Buchsbaum MS. Statistical parametric mapping and cluster counting analysis of [18F] FDG-PET imaging in traumatic brain injury. J Neurotrauma. 2010;27:35–49. doi:10.1089/neu.2009.1049.
  • Munoz-Cespedes JM, Rios-Lago M, Paul N, Maestu F. Functional neuroimaging studies of cognitive recovery after acquired brain damage in adults. Neuropsychol Rev. 2005;15:169–83. doi:10.1007/s11065-005-9178-5.
  • Berlucchi G. Brain plasticity and cognitive neurorehabilitation. Neuropsychol Rehabil. 2011;21:560–78. doi:10.1080/09602011.2011.573255.
  • Li N, Yang Y, Glover DP, Zhang J, Saraswati M, Robertson C, Pelled G. Evidence for impaired plasticity after traumatic brain injury in the developing brain. J Neurotrauma. 2014;31:395–403. doi:10.1089/neu.2013.3059.
  • Hunt RF, Scheff SW, Smith BN. Posttraumatic epilepsy after controlled cortical impact injury in mice. Exp Neurol. 2009;215:243–52. doi:10.1016/j.expneurol.2008.10.005.
  • Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A. 2001;98:676–82. doi:10.1073/pnas.98.2.676.
  • Levine B, Cabeza R, McIntosh AR, Black SE, Grady CL, Stuss DT. Functional reorganisation of memory after traumatic brain injury: a study with H(2)(15)0 positron emission tomography. J Neurol Neurosurg Psychiatry. 2002;73:173–81.
  • McAllister TW, Saykin AJ, Flashman LA, Sparling MB, Johnson SC, Guerin SJ, Mamourian AC, Weaver JB, Yanofsky N. Brain activation during working memory 1 month after mild traumatic brain injury: a functional MRI study. Neurology. 1999;53:1300–08.
  • Perlstein WM, Cole MA, Demery JA, Seignourel PJ, Dixit NK, Larson MJ, Briggs RW. Parametric manipulation of working memory load in traumatic brain injury: behavioral and neural correlates. J Int Neuropsychol Soc. 2004;10:724–41. doi:10.1017/S1355617704105110.
  • Rasmussen IA, Xu J, Antonsen IK, Brunner J, Skandsen T, Axelson DE, Berntsen EM, Lydersen S, Haberg A. Simple dual tasking recruits prefrontal cortices in chronic severe traumatic brain injury patients, but not in controls. J Neurotrauma. 2008;25:1057–70. doi:10.1089/neu.2008.0520.
  • Turner GR, Levine B. Augmented neural activity during executive control processing following diffuse axonal injury. Neurology. 2008;71:812–18. doi:10.1212/01.wnl.0000325640.18235.1c.
  • Kim YH, Yoo WK, Ko MH, Park CH, Kim ST, Na DL. Plasticity of the attentional network after brain injury and cognitive rehabilitation. Neurorehabil Neural Repair. 2009;23:468–77. doi:10.1177/1545968308328728.
  • Kasahara M, Menon DK, Salmond CH, Outtrim JG, Tavares JV, Carpenter TA, Pickard JD, Sahakian BJ, Stamatakis EA. Traumatic brain injury alters the functional brain network mediating working memory. Brain Inj. 2011;25:1170–87. doi:10.3109/02699052.2011.608210.
  • Buckner RL, Vincent JL. Unrest at rest: default activity and spontaneous network correlations. Neuroimage. 2007;37:1091–96. discussion 1097-9. doi:10.1016/j.neuroimage.2007.01.010.
  • Sharp DJ, Beckmann CF, Greenwood R, Kinnunen KM, Bonnelle V, De Boissezon X, Powell JH, Counsell SJ, Patel MC, Leech R. Default mode network functional and structural connectivity after traumatic brain injury. Brain. 2011;134:2233–47. doi:10.1093/brain/awr175.
  • Mayer AR, Mannell MV, Ling J, Gasparovic C, Yeo RA. Functional connectivity in mild traumatic brain injury. Hum Brain Mapp. 2011;32:1825–35. doi:10.1002/hbm.21151.
  • Zhou Y, Milham MP, Lui YW, Miles L, Reaume J, Sodickson DK, Grossman RI, Ge Y. Default-mode network disruption in mild traumatic brain injury. Radiology. 2012;265:882–92. doi:10.1148/radiol.12120748.
  • Sours C, Zhuo J, Janowich J, Aarabi B, Shanmuganathan K, Gullapalli RP. Default mode network interference in mild traumatic brain injury - a pilot resting state study. Brain Res. 2013;1537:201–15. doi:10.1016/j.brainres.2013.08.034.
  • Venkatesan UM, Dennis NA, Hillary FG. Chronology and chronicity of altered resting-state functional connectivity after traumatic brain injury. J Neurotrauma. 2015;32:252–64. doi:10.1089/neu.2013.3318.
  • Grodzinsky Y, Santi A. The battle for Broca’s region. Trends Cogn Sci. 2008;12:474–80. doi:10.1016/j.tics.2008.09.001.
  • Keller SS, Crow T, Foundas A, Amunts K, Roberts N. Broca’s area: nomenclature, anatomy, typology and asymmetry. Brain Lang. 2009;109:29–48. doi:10.1016/j.bandl.2008.11.005.
  • Fink GR, Manjaly ZM, Stephan KE, Gurd JM, Zilles K, Amunts K, Marshall JC. A role for Broca’s area beyond language processing: evidence from neuropsychology and fMRI. New York: Oxford University Press. 2006.
  • Ranganath C, Johnson MK, D’Esposito M. Prefrontal activity associated with working memory and episodic long-term memory. Neuropsychologia. 2003;41:378–89.
  • Fletcher PC, Henson RN. Frontal lobes and human memory: insights from functional neuroimaging. Brain. 2001;124:849–81.
  • Koechlin E, Ody C, Kouneiher F. The architecture of cognitive control in the human prefrontal cortex. Science. 2003;302:1181–85. doi:10.1126/science.1088545.
  • Minamoto T, Yaoi K, Osaka M, Osaka N. The rostral prefrontal cortex underlies individual differences in working memory capacity: an approach from the hierarchical model of the cognitive control. Cortex. 2015;71:277–90. doi:10.1016/j.cortex.2015.07.025.
  • Sugiura L, Ojima S, Matsuba-Kurita H, Dan I, Tsuzuki D, Katura T, Hagiwara H. Sound to language: different cortical processing for first and second languages in elementary school children as revealed by a large-scale study using fNIRS. Cereb Cortex. 2011;21:2374–93. doi:10.1093/cercor/bhr023.
  • Pugh KR, Offywitz BA, Shaywitz SE, Fulbright RK, Byrd D, Skudlarski P, Shankweiler DP, Katz L, Constable RT, Fletcher J; others. Auditory selective attention: an fMRI investigation. Neuroimage. 1996;4:159–73.
  • Celsis P, Boulanouar K, Doyon B, Ranjeva JP, Berry I, Nespoulous JL, Chollet F. Differential fMRI responses in the left posterior superior temporal gyrus and left supramarginal gyrus to habituation and change detection in syllables and tones. Neuroimage. 1999;9:135–44. doi:10.1006/nimg.1998.0389.
  • Sun X, Zhang X, Chen X, Zhang P, Bao M, Zhang D, Chen J, He S, Hu X. Age-dependent brain activation during forward and backward digit recall revealed by fMRI. Neuroimage. 2005;26:36–47. doi:10.1016/j.neuroimage.2005.01.022.
  • Krieger-Redwood K, Teige C, Davey J, Hymers M, Jefferies E. Conceptual control across modalities: graded specialisation for pictures and words in inferior frontal and posterior temporal cortex. Neuropsychologia. 2015;76:92–107. doi:10.1016/j.neuropsychologia.2015.02.030.
  • Falzi G, Perrone P, Vignolo LA. Right-left asymmetry in anterior speech region. Arch Neurol. 1982;39:239–40.
  • Amunts K, Schleicher A, Burgel U, Mohlberg H, Uylings HB, Zilles K. Broca’s region revisited: cytoarchitecture and intersubject variability. J Comp Neurol. 1999;412:319–41.
  • Hori Y, Moriguchi T, Koshino K, Kudomi N, Morita N, Toyoda K, Iihara K, Nakagawara J, Iida H. Validation of an integrated, ultra-rapid 15O-PET system for quantitative assessment of CMRO2, CBF and OEF. J Nucl Med. 2013;54:207.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.