600
Views
5
CrossRef citations to date
0
Altmetric
Review

Neurobiology of traumatic brain injury

, &
Pages 1113-1120 | Received 08 Feb 2021, Accepted 24 May 2021, Published online: 06 Sep 2021

References

  • Gorman KM, Dumire RD. Knowledge retention of the traumatic brain injury guidelines at a level 1 trauma center. J Emerg Crit Care Med. 2019;3:17. doi:10.21037/jeccm.2019.02.06.
  • Young JT, Hughes N. Traumatic brain injury and homelessness: from prevalence to prevention. Lancet Public Heal. 2020;5(1):e4–e5. doi:10.1016/S2468-2667(19)30225-7.
  • Hyder AA, Wunderlich CA, Puvanachandra P. The impact of traumatic brain injuries: a global perspective. NeuroRehabilitation. 2007;22(5):341–53. doi:10.3233/NRE-2007-22502.
  • Zetterberg H, Winblad B, Bernick C. Head trauma in sports–clinical characteristics, epidemiology and biomarkers. J Intern Med. 2019;285(6):624–34. doi:10.1111/joim.12863.
  • Dewan MC, Rattani A, Gupta S. Estimating the global incidence of traumatic brain injury. J Neurosurg. 2018;130(4):1080–97. doi:10.3171/2017.10.JNS17352.
  • Prasetyo E. The primary, secondary, and tertiary brain injury. Crit Care Shock. 2020;23:4–13.
  • Kochanek P, Clark R, Jenkins L. TBI: pathobiology. Brain Inj Med. 2006;81–96.
  • Albert-Weissenberger C, Sirén A-L. Experimental traumatic brain injury. Exp Transl Stroke Med. 2010;2(1):16. doi:10.1186/2040-7378-2-16.
  • Chelly H, Chaari A, Daoud E. Diffuse axonal injury in patients with head injuries: an epidemiologic and prognosis study of 124 cases. J Trauma Acute Care Surg. 2011;71(4):838–46. doi:10.1097/TA.0b013e3182127baa.
  • Jain KK. Neuroprotection in traumatic brain injury. In: Handb Neuroprotection. Cham (Switzerland): Springer, 2019:281–336.
  • Dikranian K. Modeling traumatic brain injury: Dikranian, K. (2019) ‘Modeling traumatic brain injury: mechanisms of early neuronal and axon degeneration in the infant rodent brain,’ biomedical reviews, 30, pp. 25–36.mechanisms of early neuronal and axon degeneration in. Biomed Rev. 2019;30:25–36. doi:10.14748/bmr.v30.6385.
  • Bullock R, Zauner A, Woodward JJ. Factors affecting excitatory amino acid release following severe human head injury. J Neurosurg. 1998;89(4):507–18. doi:10.3171/jns.1998.89.4.0507.
  • Yi J-H, Hazell AS. Excitotoxic mechanisms and the role of astrocytic glutamate transporters in traumatic brain injury. Neurochem Int. 2006;48(5):394–403. doi:10.1016/j.neuint.2005.12.001.
  • Yi J, Pow DV, Hazell AS. Early loss of the glutamate transporter splice‐variant GLT‐1v in rat cerebral cortex following lateral fluid‐percussion injury. Glia. 2005;49(1):121–33. doi:10.1002/glia.20099.
  • Rao VLR, Dogan A, Bowen KK. Antisense knockdown of the glial glutamate transporter GLT‐1 exacerbates hippocampal neuronal damage following traumatic injury to rat brain. Eur J Neurosci. 2001;13:119–28.
  • Raghavendra Rao VL, Başkaya MK, Doğan A. Traumatic brain injury down‐regulates glial glutamate transporter (GLT‐1 and GLAST) proteins in rat brain. J Neurochem. 1998;70(5):2020–27. doi:10.1046/j.1471-4159.1998.70052020.x.
  • Reinert M, Khaldi A, Zauner A. High level of extracellular potassium and its correlates after severe human head injury: relationship to high intracranial pressure. J Neurosurg. 2000;93(5):800–07. doi:10.3171/jns.2000.93.5.0800.
  • Cheng G, Kong R, Zhang L. Mitochondria in traumatic brain injury and mitochondrial‐targeted multipotential therapeutic strategies. Br J Pharmacol. 2012;167:699–719.
  • Kaur D, Pahwa P, Goel RK. Protective effect of nerolidol against pentylenetetrazol-induced kindling, oxidative stress and associated behavioral comorbidities in mice. Neurochem Res. 2016;41(11):2859–67. doi:10.1007/s11064-016-2001-2.
  • Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood-brain barrier. Nat Med. 2013;19(12):1584. doi:10.1038/nm.3407.
  • Xu H, Wang Z, Li J. The polarization states of microglia in TBI: a new paradigm for pharmacological intervention. Zuccarello M, editor. Neural Plast [Internet]. 2017;2017:5405104. Available from. doi:10.1155/2017/5405104.
  • Kaur D, Sharma V, Deshmukh R. Activation of microglia and astrocytes: a roadway to neuroinflammation and Alzheimer’s disease. Inflammopharmacology. 2019;4:1–15.
  • Engelhardt B, Sorokin L. The blood–brain and the blood–cerebrospinal fluid barriers: function and dysfunction. Semin immunopathol. 2009;31(4):497–511.
  • Shetty AK, Mishra V, Kodali M. Corrigendum: blood brain barrier dysfunction and delayed neurological deficits in mild traumatic brain injury induced by blast shock waves. Front Cell Neurosci. 2014;8:404.
  • Loane DJ, Stoica BA, Tchantchou F. Novel mGluR5 positive allosteric modulator improves functional recovery, attenuates neurodegeneration, and alters microglial polarization after experimental traumatic brain injury. Neurotherapeutics. 2014;11(4):857–69. doi:10.1007/s13311-014-0298-6.
  • Loane DJ, Kumar A. Microglia in the TBI brain: the good, the bad, and the dysregulated. Exp Neurol. 2016;275:316–27. doi:10.1016/j.expneurol.2015.08.018.
  • Cherry JD, Olschowka JA, O’Banion MK. Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation [Internet]. 2014;11(1):98. Available from:. doi:10.1186/1742-2094-11-98.
  • Colton CA, Mott RT, Sharpe H. Expression profiles for macrophage alternative activation genes in AD and in mouse models of AD. J Neuroinflammation. 2006;3(1):27. doi:10.1186/1742-2094-3-27.
  • Ponomarev ED, Maresz K, Tan Y. CNS-derived interleukin-4 is essential for the regulation of autoimmune inflammation and induces a state of alternative activation in microglial cells. J Neurosci. 2007;27(40):10714–21. doi:10.1523/JNEUROSCI.1922-07.2007.
  • Kumar A, Loane DJ. Neuroinflammation after traumatic brain injury: opportunities for therapeutic intervention. Brain Behav Immun. 2012;26(8):1191–201. doi:10.1016/j.bbi.2012.06.008.
  • Yuan Y, Zhu F, Pu Y. Neuroprotective effects of nitidine against traumatic CNS injury via inhibiting microglia activation. Brain Behav Immun. 2015;48:287–300.
  • Gyoneva S, Ransohoff RM. Inflammatory reaction after traumatic brain injury: therapeutic potential of targeting cell–cell communication by chemokines. Trends Pharmacol Sci. 2015;36(7):471–80. doi:10.1016/j.tips.2015.04.003.
  • Wetherington J, Serrano G, Dingledine R. Astrocytes in the epileptic brain. Neuron. 2008;58(2):168–78. doi:10.1016/j.neuron.2008.04.002.
  • Shlosberg D, Benifla M, Kaufer D. Blood–brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurol. 2010;6(7):393. doi:10.1038/nrneurol.2010.74.
  • Sharp DJ. The association of traumatic brain injury with rate of progression of cognitive and functional impairment in a population-based cohort of Alzheimer’s disease: the Cache County dementia progression study by Gilbert et al. Late effects of traumatic brain injury on dementia progression. Int Psychogeriatrics. 2014;26(10):1591–92. doi:10.1017/S1041610214001689.
  • DeWitt DS, Prough DS. Traumatic cerebral vascular injury: the effects of concussive brain injury on the cerebral vasculature. J Neurotrauma. 2003;20(9):795–825. doi:10.1089/089771503322385755.
  • Unterberg AW, Stover J, Kress B. Edema and brain trauma. Neuroscience. 2004;129(4):1019–27. doi:10.1016/j.neuroscience.2004.06.046.
  • Donkin JJ, Vink R. Mechanisms of cerebral edema in traumatic brain injury: therapeutic developments. Curr Opin Neurol. 2010;23(3):293–99. doi:10.1097/WCO.0b013e328337f451.
  • Konar SK, Shukla D, Agrawal A. Posttraumatic brain edema: pathophysiology, management, and current concept. Apollo Med. 2019;16:2.
  • Winkler EA, Minter D, Yue JK. Cerebral edema in traumatic brain injury: pathophysiology and prospective therapeutic targets. Neurosurg Clin. 2016;27(4):473–88. doi:10.1016/j.nec.2016.05.008.
  • Prins M, Greco T, Alexander D. The pathophysiology of traumatic brain injury at a glance. Dis Model Mech. 2013;6:1307–15.
  • Islam MT. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol Res. 2017;39(1):73–82. doi:10.1080/01616412.2016.1251711.
  • Huang Y, Long X, Tang J. The attenuation of traumatic brain injury via inhibition of oxidative stress and apoptosis by tanshinone IIA. Oxid Med Cell Longev. 2020;2020:1–12.
  • de Lores Arnaiz G R, G Bersier M. Relationship between Na+, K+-ATPase and NMDA receptor at central synapses</sup>. Curr Protein Pept Sci. 2014;15(8):761–77. doi:10.2174/1389203715666140903145608.
  • Hiebert JB, Shen Q, Thimmesch AR. Traumatic brain injury and mitochondrial dysfunction. Am J Med Sci. 2015;350(2):132–38. doi:10.1097/MAJ.0000000000000506.
  • Kasahara A, Scorrano L. Mitochondria: from cell death executioners to regulators of cell differentiation. Trends Cell Biol. 2014;24(12):761–70. doi:10.1016/j.tcb.2014.08.005.
  • McGuire JL, Ngwenya LB, McCullumsmith RE. Neurotransmitter changes after traumatic brain injury: an update for new treatment strategies. Mol Psychiatry. 2019;24(7):995–1012. doi:10.1038/s41380-018-0239-6.
  • Kawa L, Arborelius UP, Yoshitake T. Neurotransmitter systems in a mild blast traumatic brain injury model: catecholamines and serotonin. J Neurotrauma. 2015;32(16):1190–99. doi:10.1089/neu.2014.3669.
  • Hameed MQ, Hsieh T-H, Morales-Quezada L. Ceftriaxone treatment preserves cortical inhibitory interneuron function via transient salvage of GLT-1 in a rat traumatic brain injury model. Cereb Cortex. 2019;29(11):4506–18. doi:10.1093/cercor/bhy328.
  • Jenkins PO, Mehta MA, Sharp DJ. Catecholamines and cognition after traumatic brain injury. Brain. 2016;139(9):2345–71. doi:10.1093/brain/aww128.
  • Kgosidialwa O, Hakami O, Zia-Ul-Hussnain HM. Growth hormone deficiency following traumatic brain injury. Int J Mol Sci. 2019;20(13):3323. doi:10.3390/ijms20133323.
  • Starkstein SE, Mayberg HS, Berthier ML. Mania after brain injury: neuroradiological and metabolic findings. Ann Neurol. 1990;27(6):652–59. doi:10.1002/ana.410270612.
  • Starkstein SE, Boston JD, Robinson RG. Mechanisms of mania after brain injury: 12 case reports and review of the literature. J Nerv Ment Dis. 1988;176(2):87–100. doi:10.1097/00005053-198802000-00004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.