96
Views
14
CrossRef citations to date
0
Altmetric
Original Article

Effect of Acidosis on Isolated Porcine Retinal Vessels

, &
Pages 427-434 | Received 09 Nov 2004, Accepted 07 Mar 2006, Published online: 02 Jul 2009

REFERENCES

  • Wahl M, Deetjen P, Thurau K, et al. Micropuncture evaluation of the importance of perivascular pH for the arteriolar diameter on the brain surface. Pflugers Arch. 1970; 316: 152–163, [INFOTRIEVE], [CSA]
  • Tsacopoulos M, Levy S. Intraretinal acid-base studies using pH glass microelectrodes: Effect of respiratory and metabolic acidosis and alkalosis on inner-retinal pH. Exp Eye Res. 1976; 23: 495–504, [INFOTRIEVE], [CSA], [CROSSREF]
  • Jeppesen P, Aalkjaer C, Bek T. Adenosine relaxation in small retinal arterioles requires functional Na-K pumps and K(ATP) channels. Curr Eye Res. 2002; 25: 23–28, [INFOTRIEVE], [CSA], [CROSSREF]
  • Kim S H, Handa H, Ishikawa M, et al. Brain tissue acidosis and changes of energy metabolism in mild incomplete ischemia-topographical study. J Cereb Blood Flow Metab. 1985; 5: 432–438, [INFOTRIEVE], [CSA]
  • Padnick-Silver L, Linsenmeier R A. Quantification of in vivo anaerobic metabolism in the normal cat retina through intraretinal pH measurements. Vis Neurosci. 2002; 19: 793–806, [INFOTRIEVE], [CSA], [CROSSREF]
  • Tsacopoulos M, David N J. The effect of arterial PCO 2 on relative retinal blood flow in monkeys. Invest Ophthalmol. 1973; 12: 335–347, [INFOTRIEVE], [CSA]
  • Harris A, Arend O, Wolf S, et al. CO2 dependence of retinal arterial and capillary blood velocity. Acta Ophthalmol Scand. 1995; 73: 421–424, [INFOTRIEVE], [CSA]
  • Dorner G T, Garhoefer G, Zawinka C, Kiss B, Schmetterer L. Response of retinal blood flow to CO2-breathing in humans. Eur J Ophthalmol. 2002; 12: 459–466, [INFOTRIEVE], [CSA]
  • Kontos H A, Raper A J, Patterson J L. Analysis of vasoactivity of local pH, PCO2 and bicarbonate on pial vessels. Stroke 1977; 8: 358–360, [INFOTRIEVE], [CSA]
  • Reinstrup P, Uski T, Messeter K. Modulation by carbon dioxide and pH of the contractile responses to potassium and prostaglandin F2 alpha in isolated human pial arteries. Br J Anaesth. 1992; 69: 615–620, [INFOTRIEVE], [CSA]
  • Austin C, Wray S. The effects of extracellular pH and calcium change on force and intracellular calcium in rat vascular smooth muscle. J Physiol. 1995; 488(Pt 2)281–291, [INFOTRIEVE], [CSA]
  • Mrwa U, Achtig I, Ruegg J C. Influences of calcium concentration and pH on the tension development and ATPase activity of the arterial actomyosin contractile system. Blood Vessels 1974; 11: 277–286, [INFOTRIEVE], [CSA]
  • Schmetterer L, Findl O, Strenn K, et al. Role of NO in the O2 and CO2 responsiveness of cerebral and ocular circulation in humans. Am J Physiol. 1997; 273: R2005–R2012, [INFOTRIEVE], [CSA]
  • Goadsby P J, Kaube H, Hoskin K L. Nitric oxide synthesis couples cerebral blood flow and metabolism. Brain Res. 1992; 595: 167–170, [INFOTRIEVE], [CSA], [CROSSREF]
  • Peng H L, Jensen P E, Nilsson H, Aalkjaer C. Effect of acidosis on tension and [Ca2 +]i in rat cerebral arteries: Is there a role for membrane potential?. Am J Physiol. 1998; 274: H655–H662, [INFOTRIEVE], [CSA]
  • Mulvany M J, Halpern W. Contractile properties of small arterial resistance vessels in spontaneously hypertensive and normotensive rats. Circ Res. 1977; 41: 19–26, [INFOTRIEVE], [CSA]
  • Hessellund A, Jeppesen P, Aalkjaer C, Bek T. Characterization of vasomotion in porcine retinal arterioles. Acta Ophthalmol Scand. 2003; 81: 278–282, [INFOTRIEVE], [CSA], [CROSSREF]
  • Jeppesen P, Aalkjaer C, Bek T. Bradykinin relaxation in small porcine retinal arterioles. Invest Ophthalmol Vis Sci. 2002; 43: 1891–1896, [INFOTRIEVE], [CSA]
  • Grynkiewicz G, Poenie M, Tsien R Y. A new generation of Ca2 + indicators with greatly improved fluorescence properties. J Biol Chem. 1985; 260: 3440–3450, [INFOTRIEVE], [CSA]
  • Mulvany M J, Nilsson H, Flatman J A. Role of membrane potential in the response of rat small mesenteric arteries to exogenous noradrenaline stimulation. J Physiol. 1982; 332: 363–373, [INFOTRIEVE], [CSA]
  • Bukoski R D, Bergmann C, Gairard A, Stoclet J C. Intracellular Ca2 + and force determined simultaneously in isolated resistance arteries. Am J Physiol. 1989; 257: H1728–H1735, [INFOTRIEVE], [CSA]
  • Jensen P E, Mulvany M J, Aalkjaer C. Endogenous and exogenous agonist-induced changes in the coupling between [Ca2 +]i and force in rat resistance arteries. Pflugers Arch. 1992; 420: 536–543, [INFOTRIEVE], [CSA], [CROSSREF]
  • Scholfield C N, Curtis T M. Heterogeneity in cytosolic calcium regulation among different microvascular smooth muscle cells of the rat retina. Microvasc Res. 2000; 59: 233–242, [INFOTRIEVE], [CSA], [CROSSREF]
  • Lattanzio F A, Jr., Bartschat D K. The effect of pH on rate constants, ion selectivity and thermodynamic properties of fluorescent calcium and magnesium indicators. Biochem Biophys Res Commun. 1991; 177: 184–191, [INFOTRIEVE], [CSA], [CROSSREF]
  • Eschke D, Richter M, Brylla E, et al. Identification of inwardly rectifying potassium channels in bovine retinal and choroidal endothelial cells. Ophthalmic Res. 2002; 34: 343–348, [INFOTRIEVE], [CSA], [CROSSREF]
  • Helbig H, Kornacker S, Berweck S, et al. Membrane potentials in retinal capillary pericytes: Excitability and effect of vasoactive substances. Invest Ophthalmol Vis Sci. 1992; 33: 2105–2112, [INFOTRIEVE], [CSA]
  • Hogan M J, Feeney L. The ultrastructure of the retinal blood vessels: I. The large vessels. J Ultrastruct Res. 1963; 9: 10–28, [CSA], [CROSSREF]
  • Delaey C, Boussery K, Van de Voorde J. A retinal-derived relaxing factor mediates the hypoxic vasodilation of retinal arteries. Invest Ophthalmol Vis Sci. 2000; 41: 3555–3560, [INFOTRIEVE], [CSA]
  • Kontos H A, Richardson D W, Patterson J L, Jr. Roles of hypercapnia and acidosis in the vasodilator response to hypercapnic acidosis. Am J Physiol. 1968; 215: 1406–1408, [INFOTRIEVE], [CSA]
  • Nielsen H, Aalkjaer C, Mulvany M J. Differential contractile effects of changes in carbon dioxide tension on rat mesenteric resistance arteries precontracted with noradrenaline. Pflugers Arch. 1991; 419: 51–56, [INFOTRIEVE], [CSA], [CROSSREF]
  • You J P, Wang Q, Zhang W, et al. Hypercapnic vasodilatation in isolated rat basilar arteries is exerted via low pH and does not involve nitric oxide synthase stimulation or cyclic GMP production. Acta Physiol Scand. 1994; 152: 391–397, [INFOTRIEVE], [CSA]
  • Yamada T, Fujino T, Yuhki K, et al. Thromboxane A2 regulates vascular tone via its inhibitory effect on the expression of inducible nitric oxide synthase. Circulation 2003; 108: 2381–2386, [INFOTRIEVE], [CSA], [CROSSREF]
  • Toda N, Hatano Y, Mori K. Mechanisms underlying response to hypercapnia and bicarbonate of isolated dog cerebral arteries. Am J Physiol. 1989; 257: H141–H146, [INFOTRIEVE], [CSA]
  • Aoyama Y, Ueda K, Setogawa A, Kawai Y. Effects of pH on contraction and Ca2+ mobilization in vascular smooth muscles of the rabbit basilar artery. Jpn J Physiol. 1999; 49: 55–62, [INFOTRIEVE], [CSA], [CROSSREF]
  • Austin C, Dilly K, Eisner D, Wray S. Simultaneous measurement of intracellular pH, calcium, and tension in rat mesenteric vessels: Effects of extracellular pH. Biochem Biophys Res Commun. 1996; 222: 537–540, [INFOTRIEVE], [CSA], [CROSSREF]
  • Edvinsson L, Sercombe R. Influence of pH and PCO2 on alpha-receptor mediated contraction in brain vessels. Acta Physiol Scand. 1976; 97: 325–331, [INFOTRIEVE], [CSA]
  • Chen Q, Anderson D R. Effect of CO2 on intracellular pH and contraction of retinal capillary pericytes. Invest Ophthalmol Vis Sci. 1997; 38: 643–651, [INFOTRIEVE], [CSA]
  • Harder D R. Effect of H+ and elevated PCO2 on membrane electrical properties of rat cerebral arteries. Pflugers Arch. 1982; 394: 182–185, [INFOTRIEVE], [CSA], [CROSSREF]
  • Delaey C, Van D. Retinal V. arterial tone is controlled by a retinal-derived relaxing factor. Circ Res. 1998; 83: 714–720, [INFOTRIEVE], [CSA]
  • Wang Q, Paulson O B, Lassen N A. Effect of nitric oxide blockade by NG-nitro-L-arginine on cerebral blood flow response to changes in carbon dioxide tension. J Cereb Blood Flow Metab. 1992; 12: 947–953, [INFOTRIEVE], [CSA]
  • Sato E, Sakamoto T, Nagaoka T, et al. Role of nitric oxide in regulation of retinal blood flow during hypercapnia in cats. Invest Ophthalmol Vis Sci. 2003; 44: 4947–4953, [INFOTRIEVE], [CSA], [CROSSREF]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.