324
Views
11
CrossRef citations to date
0
Altmetric
Retina and Choroid

Retinal pH and Acid Regulation During Metabolic Acidosis

, , , ORCID Icon & ORCID Icon
Pages 902-912 | Received 09 Jan 2018, Accepted 22 Mar 2018, Published online: 11 Apr 2018

References

  • Oakley B 2nd, Wen R. Extracellular pH in the isolated retina of the toad in darkness and during illumination. J Physiol. 1989;419:353–78. doi:10.1113/jphysiol.1989.sp017876.
  • Padnick-Silver L, Linsenmeier RA. Quantification of in vivo anaerobic metabolism in the normal cat retina through intraretinal pH measurements. Vis Neurosci. 2002;19(6):793–806. doi:10.1017/S095252380219609X.
  • Yamamoto F, Borgula GA, Steinberg RH. Effects of light and darkness on pH outside rod photoreceptors in the cat retina. Exp Eye Res. 1992;54(5):685–97. doi:10.1016/0014-4835(92)90023-L.
  • Dmitriev AV, Henderson D, Linsenmeier RA. Development of diabetes-induced acidosis in the rat retina. Exp Eye Res. 2016;149:16–25. doi:10.1016/j.exer.2016.05.028.
  • Winkler BS. A quantitative assessment of glucose metabolism in the isolated rat retina. In: Christen Y, Doly M, Droy-Lefaix M. editors. Les Seminaires ophthalmologiques d’IPSEN, Vision et adaptation. 6. Paris: Elsevier; 1995. p. 78–96.
  • Kenyon E, Maminishkis A, Joseph DP, Miller SS. Apical and basolateral membrane mechanisms that regulate pHi in bovine retinal pigment epithelium. Am J Physiol. 1997;273(2 Pt 1):C456–72. doi:10.1152/ajpcell.1997.273.2.C456.
  • Wangsa-Wirawan N, Padnick-Silver L, Budzynski E, Linsenmeier R. pH regulation in the intact cat outer retina. ARVO Abstract. Invest Ophthalmol Vis Sci. 2001;42(4):S367.
  • Yamamoto F, Steinberg RH. Effects of intravenous acetazolamide on retinal pH in the cat. Exp Eye Res. 1992;54(5):711–18. doi:10.1016/0014-4835(92)90025-N.
  • Padnick-Silver L, Linsenmeier RA. Effect of hypoxemia and hyperglycemia on pH in the intact cat retina. Arch Ophthalmol. 2005;123(12):1684–90. doi:10.1001/archopht.123.12.1684.
  • Yamamoto F, Steinberg RH. Effects of systemic hypoxia on pH outside rod photoreceptors in the cat retina. Exp Eye Res. 1992;54(5):699–709. doi:10.1016/0014-4835(92)90024-M.
  • Birol G, Budzynski E, Wangsa-Wirawan ND, Linsenmeier RA. Retinal arterial occlusion leads to acidosis in the cat. Exp Eye Res. 2005;80(4):527–33. doi:10.1016/j.exer.2004.11.002.
  • Budzynski E, Wangsa-Wirawan N, Padnick-Silver L, Hatchell D, Linsenmeier R. Intraretinal pH in diabetic cats. Curr Eye Res. 2005;30(3):229–40. doi:10.1080/02713680590934067.
  • Kern TS, Berkowitz BA. Photoreceptors in diabetic retinopathy. J Diabetes Investig. 2015;6(4):371–80. doi:10.1111/jdi.12312.
  • Purkerson JM, Schwartz GJ. The role of carbonic anhydrases in renal physiology. Kidney Int. 2007;71(2):103–15. doi:10.1038/sj.ki.5002020.
  • Linser P, Moscona AA. Variable CA II compartmentalization in vertebrate retina. Ann Sci. 1984;429:430–46. doi:10.1111/j.1749-6632.1984.tb12369.x.
  • Wistrand PJ, Schenholm M, Lonnerholm G. Carbonic anhydrase isoenzymes CA I and CA II in the human eye. Invest Ophthalmol Vis Sci. 1986;27(3):419–28.
  • Ochrietor JD, Clamp MF, Moroz TP, Grubb JH, Shah GN, Waheed A, Sly WS, Linser PS. Carbonic anhydrase XIV identified as the membrane CA in mouse retina: strong expression in Muller cells and the RPE. Exp Eye Res. 2005;81(4):492–500. doi:10.1016/j.exer.2005.03.010.
  • Kobayashi S, Morgans CW, Casey JR, Kopito RR. AE3 anion exchanger isoforms in the vertebrate retina: developmental regulation and differential expression in neurons and glia. J Neurosci. 1994;14(10):6266–79.
  • Cukiernik M, Hileeto D, Downey D, Evans T, Khan ZA, Karmazyn M, Chakrabarti S. The role of the sodium hydrogen exchanger-1 in mediating diabetes-induced changes in the retina. Diabetes Metab Res Rev. 2004;20(1):61–71. doi:10.1002/dmrr.421.
  • Lupachyk S, Stavniichuk R, Komissarenko JI, Drel VR, Obrosov AA, El-Remessy AB, Pacher P, Obrosova IG. Na+/H+-exchanger-1 inhibition counteracts diabetic cataract formation and retinal oxidative-nitrative stress and apoptosis. Int J Mol Med. 2012;29(6):989–98.
  • Brockway LM, Benos DJ, Keyser KT, Kraft TW. Blockade of amiloride-sensitive sodium channels alters multiple components of the mammalian electroretinogram. Visual Neurosci. 2005;22(2):143–51. doi:10.1017/S0952523805222034.
  • Lilley S, LeTissier P, Robbins J. The discovery and characterization of a proton-gated sodium current in rat retinal ganglion cells. J Neurosci. 2004;24(5):1013–22. doi:10.1523/JNEUROSCI.3191-03.2004.
  • Ettaiche M, Deval E, Pagnotta S, Lazdunski M, Lingueglia E. Acid-sensing ion channel 3 in retinal function and survival. Invest Ophthalmol Vis Sci. 2009;50(5):2417–26. doi:10.1167/iovs.08-3028.
  • Ettaiche M, Guy N, Hofman P, Lazdunski M, Waldmann R. Acid-sensing ion channel 2 is important for retinal function and protects against light-induced retinal degeneration. J Neurosci. 2004;24(5):1005–12. doi:10.1523/JNEUROSCI.4698-03.2004.
  • Tan J, Ye X, Xu Y, Wang H, Sheng M, Wang F. Acid-sensing ion channel 1a is involved in retinal ganglion cell death induced by hypoxia. Mol Vis. 2011;17:3300–08.
  • Nowik M, Kampik NB, Mihailova M, Eladari D, Wagner CA. Induction of metabolic acidosis with ammonium chloride (NH4Cl) in mice and rats–species differences and technical considerations. Cellular Physiol Biochem: Int J Exp Cell Physiol Biochem Pharmacol. 2010;26(6):1059–72. doi:10.1159/000323984.
  • Nowik M, Lecca MR, Velic A, Rehrauer H, Brandli AW, Wagner CA. Genome-wide gene expression profiling reveals renal genes regulated during metabolic acidosis. Physiol Genomics. 2008;32(3):322–34. doi:10.1152/physiolgenomics.00160.2007.
  • Winkler BS, Kapousta-Bruneau N, Arnold MJ, Green DG. Effects of inhibiting glutamine synthetase and blocking glutamate uptake on b-wave generation in the isolated rat retina. Visual Neurosci. 1999;16(2):345–53. doi:10.1017/S095252389916214X.
  • Thomas RC. Experimental displacement of intracellular pH and the mechanism of its subsequent recovery. J Physiol. 1984;354:3P–22P. doi:10.1113/jphysiol.1984.sp015397.
  • Schwartz GJ, Winkler CA, Zavilowitz BJ, Bargiello T. Carbonic anhydrase II mRNA is induced in rabbit kidney cortex during chronic metabolic acidosis. Am J Physiol. 1993;265(6 Pt 2):F764–72.
  • Brion LP, Zavilowitz BJ, Suarez C, Schwartz GJ. Metabolic-acidosis stimulates carbonic-anhydrase activity in rabbit proximal tubule and medullary collecting duct. Am J Physiol. 1994;266(2):F185–F95.
  • Ogilvie JM, Ohlemiller KK, Shah GN, Ulmasov B, Becker TA, Waheed A, Hennig AK, Lukasiewicz PD, Sly WS. Carbonic anhydrase XIV deficiency produces a functional defect in the retinal light response. Proc Natl Acad Sci USA. 2007;104(20):8514–19. doi:10.1073/pnas.0702899104.
  • Nagelhus EA, Mathiisen TM, Bateman AC, Haug FM, Ottersen OP, Grubb JH, Waheed A, Sly WS. Carbonic anhydrase XIV is enriched in specific membrane domains of retinal pigment epithelium, Muller cells, and astrocytes. Proc Natl Acad Sci USA. 2005;102(22):8030–35. PubMed PMID: 15901897. doi:10.1073/pnas.0503021102.
  • Dmitriev AV, Henderson D, Linsenmeier RA. Diabetes compromises pH control in the rat retina. Invest Ophthalmol Visual Sci ARVO Abstract. 2016;57:108.
  • Wolfensberger TJ, Dmitriev AV, Govardovskii VI. Inhibition of membrane-bound carbonic anhydrase decreases subretinal pH and volume. Doc Adv Ophthalmol. 1999;97(3–4):261–71. doi:10.1023/A:1002496223131.
  • Katz BJ, Oakley B 2nd. Evidence for Na+/H+ exchange in vertebrate rod photoreceptors. Exp Eye Res. 1990;51(2):199–207. doi:10.1016/0014-4835(90)90073-4.
  • Hannan KM, Little PJ. Mechanisms regulating the vascular smooth muscle Na H exchanger (NHE-1) in diabetes. Biochem Cell Biol-Biochim Biol Cell. 1998;76(5):751–59. doi:10.1139/o98-093.
  • Alvarez BV, Gilmour GS, Mema SC, Martin BT, Shull GE, Casey JR, Sauve Y. Blindness caused by deficiency in AE3 chloride/bicarbonate exchanger. PLoS One. 2007;2(9). doi:10.1371/journal.pone.0000839.
  • Downs LM, Wallin-Hakansson B, Boursnell M, Marklund S, Hedhammar A, Truve K, Hubinette L, Lindblad-Toh K, Bergstrom T, Mellersh CS. A frameshift mutation in golden retriever dogs with progressive retinal atrophy endorses SLC4A3 as a candidate gene for human retinal degenerations. PLoS One. 2011;6:6. doi:10.1371/journal.pone.0021452.
  • Waldmann R, Champigny G, Bassilana F, Heurteaux C, Lazdunski M. A proton-gated cation channel involved in acid-sensing. Nature. 1997;386(6621):173–77. doi:10.1038/386173a0.
  • Brockway LM, Zhou ZH, Bubien JK, Jovov B, Benos DJ, Keyser KT. Rabbit retinal neurons and glia express a variety of ENaC/DEG subunits. Am J Physiol-Cell Physiol. 2002;283(1):C126–C34. doi:10.1152/ajpcell.00457.2001.
  • Vina E, Parisi V, Sanchez-Ramos C, Cabo R, Guerrera MC, Quiros LM, Germana A, Vega JA, Garcia-Suarez O. Acid-sensing ion channels (ASICs) 2 and 4.2 are expressed in the retina of the adult zebrafish. Cell Tissue Res. 2015;360(2):223–31. doi:10.1007/s00441-014-2084-5.
  • Yermolaieva O, Leonard AS, Schnizler MK, Abboud FM, Welsh MJ. Extracellular acidosis increases neuronal cell calcium by activating acid-sensing ion channel 1a. Proc Natl Acad Sci U S A. 2004;101(17):6752–57. doi:10.1073/pnas.0308636100.
  • Li XY, Fei JC, Lei Z, Liu KJ, Wu JB, Meng T, Yu J, Li J. Chloroquine impairs visual transduction via modulation of acid sensing ion channel 1a. Toxicol Lett. 2014;228(3):200–06. doi:10.1016/j.toxlet.2014.05.008.
  • Miyake T, Nishiwaki A, Yasukawa T, Ugawa S, Shimada S, Ogura Y. Possible implications of acid-sensing ion channels in ischemia-induced retinal injury in rats. Japanese J Ophthalmol. 2013;57(1):120–25. doi:10.1007/s10384-012-0213-9.
  • Linsenmeier RA, Mines AH, Steinberg RH. Effects of hypoxia and hypercapnia on the light peak and electroretinogram of the cat. Invest Ophthalmol Vis Sci. 1983;24(1):37–46.
  • Niemeyer G, Nagahara K, Demant E. Effects of changes in arterial PO2 and PCO2 on the electroretinogram in the cat. Invest Ophthalmol Vis Sci. 1982;23(5):678–83.
  • Niemeyer G, Steinberg RH. Differential effects of PCO2 and pH on the ERG and light peak of the perfused cat eye. Vision Res. 1984;24(3):275–80. doi:10.1016/0042-6989(84)90131-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.