695
Views
8
CrossRef citations to date
0
Altmetric
Posterior Segment

Neuroinflammation and Optic Nerve Regeneration: Where Do We Stand in Elucidating Underlying Cellular and Molecular Players?

, &
Pages 397-409 | Received 08 Jul 2019, Accepted 09 Sep 2019, Published online: 07 Oct 2019

References

  • Goldberg JL, Espinosa JS, Xu Y, Davidson N, Kovacs GTA, Barres BA. Retinal ganglion cells do not extend axons by default: promotion by neurotrophic signaling and electrical activity. Neuron. 2002 Feb 28;33(5):689–702. doi:10.1016/S0896-6273(02)00602-5.
  • Bollaerts I, Veys L, Geeraerts E, Andries L, De Groef L, Buyens T, Salinas-Navarro M, Moons L, Van Hove I. Complementary research models and methods to study axonal regeneration in the vertebrate retinofugal system. Brain Struct Funct. 2018 Mar 30;223(2):545–67. doi:10.1007/s00429-017-1571-3.
  • Benowitz L, Yin Y. Rewiring the injured CNS: lessons from the optic nerve. Exp Neurol. 2008 Feb;209(2):389–98. doi:10.1016/j.expneurol.2007.05.025.
  • Berry M, Ahmed Z, Lorber B, Douglas M, Logan A. Regeneration of axons in the visual system. Restor Neurol Neurosci. 2008;26:147–74.
  • Li H-Y, Ruan Y-W, Ren C-R, Cui Q, So K-F. Mechanisms of secondary degeneration after partial optic nerve transection. Neural Regen Res. 2014 Mar 15;9(6):565–74. doi:10.4103/1673-5374.130093.
  • Fitzgerald M, Bartlett CA, Harvey AR, Dunlop SA. Early events of secondary degeneration after partial optic nerve transection: an immunohistochemical study. J Neurotrauma. 2010 Feb;27(2):439–52. doi:10.1089/neu.2009.1112.
  • Berkelaar M, Clarke DB, Wang YC, Bray GM, Aguayo AJ. Axotomy results in delayed death and apoptosis of retinal ganglion cells in adult rats. J Neurosci. 1994 Jul 1;14(7):4368–74.
  • Dekeyster E, Geeraerts E, Buyens T, Van Den Haute C, Baekelandt V, De Groef L, Salinas-Navarro M, Moons L. Tackling glaucoma from within the brain: an unfortunate interplay of BDNF and TrkB. PLoS One. 2015;10(11):e0142067. doi:10.1371/journal.pone.0142067.
  • De Groef L, Dekeyster E, Geeraerts E, Lefevere E, Stalmans I, Salinas Navarro M, Moons L. Differential visual system organization and susceptibility to experimental models of optic neuropathies in three commonly used mouse strains. Exp Eye Res. 2016;145:235–47. doi:10.1016/j.exer.2016.01.006.
  • Zou S, Tian C, Ge S, Hu B. Neurogenesis of retinal ganglion cells is not essential to visual functional recovery after optic nerve injury in adult zebrafish. PLoS One. 2013;8(2):e57280. doi:10.1371/journal.pone.0057280.
  • Becker CG, Becker T. Growth and pathfinding of regenerating axons in the optic projection of adult fish. J Neurosci Res. 2007 Sep 1;85(12):2793–99. doi:10.1002/(ISSN)1097-4547.
  • Becker T, Becker CG. Axonal regeneration in zebrafish. Curr Opin Neurobiol. 2014 Aug;1(27):186–91. doi:10.1016/j.conb.2014.03.019.
  • Van Houcke J, Geeraerts E, Vanhunsel S, Beckers A, Noterdaeme L, Christiaens M, Bollaerts I, De GL, Moons L. Extensive growth is followed by neurodegenerative pathology in the continuously expanding adult zebrafish retina. Biogerontology. 2019 Feb;20(1):109–25. doi:10.1007/s10522-018-9780-6.
  • Filbin MT. Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat Rev Neurosci. 2003 Sep;4(9):703–13. doi:10.1038/nrn1195.
  • Benowitz L, Yin Y. Combinatorial treatments for promoting axon regeneration in the cns: strategies for overcoming inhibitory signals and activating neurons’ intrinsic growth state. Dev Neurobiol. 2007 May 30; 1148–65. doi:10.1002/dneu.20515
  • Kopper TJ, Gensel JC. Myelin as an inflammatory mediator: myelin interactions with complement, macrophages, and microglia in spinal cord injury. J Neurosci Res. 2018 Jun;96(6):969–77. doi:10.1002/jnr.24114.
  • Goldberg JL, Klassen MP, Hua Y, Barres B A . Amacrine-signaled Loss of Intrinsic Axon Growth Ability by Retinal Ganglion Cells. Science. 2002 Jun 7;296(5574):1860–64.
  • Benowitz L, Yin Y. Optic Nerve Regeneration. Arch Ophtalmol. 2010;128(8):1059–64. doi:10.1001/archophthalmol.2010.152.
  • McKeon RJ, Schreiber RC, Rudge JS, Silver J. Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J Neurosci. 1991 Nov 1;11(11):3398–411. doi:10.1523/JNEUROSCI.11-11-03398.1991.
  • Niederöst BP, Zimmermann DR, Schwab ME, Bandtlow CE. Bovine CNS myelin contains neurite growth-inhibitory activity associated with chondroitin sulfate proteoglycans. J Neurosci. 1999 Oct 15;19(20):8979–89. doi:10.1523/JNEUROSCI.19-20-08979.1999.
  • Hagino S, Iseki K, Mori T, Zhang Y, Hikake T, Yokoya S, Takeuchi M, Hasimoto H, Kikuchi S, Wanaka A. Slit and glypican-1 mRNAs are coexpressed in the reactive astrocytes of the injured adult brain. Glia. 2003 Apr 15;42(2):130–38. doi:10.1002/(ISSN)1098-1136.
  • Tang X, Davies JE, Davies SJA. Changes in distribution, cell associations, and protein expression levels of NG2, neurocan, phosphacan, brevican, versican V2, and tenascin-C during acute to chronic maturation of spinal cord scar tissue. J Neurosci Res. 2003 Feb 1;71(3):427–44. doi:10.1002/jnr.10494.
  • Kaneko S, Iwanami A, Nakamura M, Kishino A, Kikuchi K, Shibata S, Okano HJ, Ikegami T, Moriya A, Konishi O, et al. A selective Sema3A inhibitor enhances regenerative responses and functional recovery of the injured spinal cord. Nat Med. 2006 12;12;Dec(12):1380–89. doi:10.1038/nm1505.
  • Lagord C, Berry M, Logan A. Expression of TGFβ2 but Not TGFβ1 Correlates with the Deposition of Scar Tissue in the Lesioned Spinal Cord. Mol Cell Neurosci. 2002 May 1;20(1):69–92. doi:10.1006/mcne.2002.1121.
  • Van de Velde S, De Groef L, Stalmans I, Moons L, Van Hove I. Towards axonal regeneration and neuroprotection in glaucoma: rho kinase inhibitors as promising therapeutics. Prog Neurobiol. 2015 Aug;131:105–19. doi:10.1016/j.pneurobio.2015.06.002.
  • Zhang C-W, Lu Q, You S-W, Zhi Y, Yip HK, Wu W, So K-F, Cui Q. CNTF and BDNF have similar effects on retinal ganglion cell survival but differential effects on nitric oxide synthase expression soon after optic nerve injury. Investig Opthalmology Vis Sci. 2005 Apr 1;46(4):1497. doi:10.1167/iovs.04-0664.
  • Dalkara D, Kolstad KD, Guerin KI, Hoffmann NV, Visel M, Klimczak RR, Schaffer DV, Flannery JG. AAV mediated GDNF secretion from retinal glia slows down retinal degeneration in a rat model of retinitis pigmentosa. Mol Ther. 2011 Sep;19(9):1602–08. doi:10.1038/mt.2011.62.
  • Pernet V, Joly S, Dalkara D, Jordi N, Schwarz O, Christ F, Schaffer DV, Flannery JG, Schwab ME. Long-distance axonal regeneration induced by CNTF gene transfer is impaired by axonal misguidance in the injured adult optic nerve. Neurobiol Dis. 2013 Mar;51:202–13. doi:10.1016/j.nbd.2012.11.011.
  • Leaver SG, Cui Q, Plant GW, Arulpragasam A, Hisheh S, Verhaagen J, Harvey AR. AAV-mediated expression of CNTF promotes long-term survival and regeneration of adult rat retinal ganglion cells. Gene Ther. 2006 Oct;13(18):1328–41. doi:10.1038/sj.gt.3302802.
  • Cai D, Qiu J, Cao Z, McAtee M, Bregman BS, Filbin MT. Neuronal cyclic AMP controls the developmental loss in ability of axons to regenerate. J Neurosci. 2001 Jul 1;21(13):4731–39. doi:10.1523/JNEUROSCI.21-13-04731.2001.
  • Weise J, Isenmann S, Klöcker N, Kügler S, Hirsch S, Gravel C, Bähr M. Adenovirus-mediated expression of ciliary neurotrophic factor (CNTF) rescues axotomized rat retinal ganglion cells but does not support axonal regeneration in vivo. Neurobiol Dis. 2000 Jun 1;7(3):212–23. doi:10.1006/nbdi.2000.0285.
  • Fischer D, He Z, Benowitz LI. Counteracting the Nogo receptor enhances optic nerve regeneration if retinal ganglion cells are in an active growth state. J Neurosci. 2004 Feb 18;24(7):1646–51. doi:10.1523/JNEUROSCI.0553-04.2004.
  • Lehmann M, Fournier A, Selles-Navarro I, Dergham P, Sebok A, Leclerc N, Tigyi G, McKerracher L. Inactivation of Rho signaling pathway promotes CNS axon regeneration. J Neurosci. 1999 Sep 1;19(17):7537–47. doi:10.1523/JNEUROSCI.19-17-07537.1999.
  • Benowitz LI, Carmichael ST. Promoting axonal rewiring to improve outcome after stroke. Neurobiol Dis. 2010 Feb;37(2):259–66. doi:10.1016/j.nbd.2009.11.009.
  • Yin Y, Cui Q, Gilbert H, Yang Y, Yang Z, Berlinicke C, Li Z. Oncomodulin links inflammation to optic. Proc Natl Acad Sci U S A. 2009;106(46):19587–92. doi:10.1073/pnas.0907085106.
  • Berry M, Carlile J, Hunter A. Peripheral nerve explants grafted into the vitreous body of the eye promote the regeneration of retinal ganglion cell axons severed in the optic nerve. J Neurocytol. 1996;29:753–64.
  • de Lima S, Habboub G, Benowitz LI. Combinatorial therapy stimulates long-distance regeneration, target reinnervation, and partial recovery of vision after optic nerve injury in mice. Int Rev Neurobiol. 2012 1;Jan(106):153–72.
  • Lorber B, Guidi A, Fawcett JW, Martin KR. Activated retinal glia mediated axon regeneration in experimental glaucoma. Neurobiol Dis. 2012 Jan;45(1):243–52. doi:10.1016/j.nbd.2011.08.008.
  • Yin Y, Henzl MT, Lorber B, Nakazawa T, Thomas TT, Jiang F, Langer R, Benowitz LI. Oncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells. Nat Neurosci. 2006 Jun;9(6):843–52. doi:10.1038/nn1701.
  • Ahmed Z, Aslam M, Lorber B, Suggate EL, Berry M, Logan A. Optic nerve and vitreal inflammation are both RGC neuroprotective but only the latter is RGC axogenic. Neurobiol Dis. 2010 Feb;37(2):441–54. doi:10.1016/j.nbd.2009.10.024.
  • Cui Q, Yin Y, Benowitz LI. The role of macrophages in optic nerve regeneration. Neuroscience. 2009 Feb 6;158(3):1039–48. doi:10.1016/j.neuroscience.2008.07.036.
  • Leibinger M, Müller A, Andreadaki A, Hauk TG, Kirsch M, Fischer D. Neuroprotective and axon growth-promoting effects following inflammatory stimulation on mature retinal ganglion cells in mice depend on ciliary neurotrophic factor and leukemia inhibitory factor. J Neurosci. 2009 Nov 11;29(45):14334–41. doi:10.1523/JNEUROSCI.2770-09.2009.
  • Lorber B, Berry M, Douglas MR, Nakazawa T, Logan A. Activated retinal glia promote neurite outgrowth of retinal ganglion cells via apolipoprotein E. J Neurosci Res. 2009 Sep;87(12):2645–52. doi:10.1002/jnr.v87:12.
  • Kurimoto T, Yin Y, Omura K, Gilbert H, Kim D, Cen L-P, Moko L, Kügler S, Benowitz LI. Long-distance axon regeneration in the mature optic nerve: contributions of oncomodulin, cAMP, and pten gene deletion. J Neurosci. 2010 Nov 17;30(46):15654–63. doi:10.1523/JNEUROSCI.4340-10.2010.
  • Leon S, Yin Y, Nguyen J, Irwin N, Benowitz LI. Lens injury stimulates axon regeneration in the mature rat optic nerve. J Neurosci. 2000 Jun 15;20(12):4615–26. doi:10.1523/JNEUROSCI.20-12-04615.2000.
  • Fischer D, Heiduschka P, Thanos S. Lens-injury-stimulated axonal regeneration throughout the optic pathway of adult rats. Exp Neurol. 2001 Dec;172(2):257–72. doi:10.1006/exnr.2001.7822.
  • Lorber B, Berry M, Logan A. Lens injury stimulates adult mouse retinal ganglion cell axon regeneration via both macrophage- and lens-derived factors. Eur J Neurosci. 2005 Apr;21(7):2029–34. doi:10.1111/j.1460-9568.2005.04034.x.
  • Hauk TG, Müller A, Lee J, Schwendener R, Fischer D. Neuroprotective and axon growth promoting effects of intraocular inflammation do not depend on oncomodulin or the presence of large numbers of activated macrophages. Exp Neurol. 2008;209(2):469–82. doi:10.1016/j.expneurol.2007.09.020.
  • Leibinger M, Andreadaki A, Fischer D. Role of mTOR in neuroprotection and axon regeneration after inflammatory stimulation. Neurobiol Dis. 2012;46(2):314–24. doi:10.1016/j.nbd.2012.01.004.
  • Fischer D, Leibinger M. Promoting optic nerve regeneration. Prog Retin Eye Res. 2012;31:(July):1–15. doi:10.1016/j.preteyeres.2012.06.005.
  • Apara A, Goldberg JL. Molecular mechanisms of the suppression of axon regeneration by KLF transcription factors. Neural Regen Res. 2014;9(15):1418–21. doi:10.4103/1673-5374.139454.
  • Duan X, Qiao M, Bei F, Kim I-J, He Z, Sanes JR. Subtype-specific regeneration of retinal ganglion cells following axotomy: effects of osteopontin and mTOR signaling. Neuron. 2015;85(6):1244–56. doi:10.1016/j.neuron.2014.11.026.
  • Sun F, Park KK, Belin S, Wang D, Lu T, Chen G, Zhang K, Yeung C, Feng G, Yankner BA, et al. Sustained axon regeneration induced by co-deletion of PTEN and SOCS3. Nature. 2011 Dec 15;480(7377):372–75. doi:10.1038/nature10611.
  • Li S, He Q, Wang H, Tang X, Ho KW, Gao X, Zhang Q, Shen Y, Cheung A, Wong F, et al. Injured adult retinal axons with Pten and Socs3 co-deletion reform active synapses with suprachiasmatic neurons. Neurobiol Dis. 2015;73:366–76. doi:10.1016/j.nbd.2014.09.019.
  • Diekmann H, Kalbhen P, Fischer D. Active mechanistic target of rapamycin plays an ancillary rather than essential role in zebrafish CNS axon regeneration. Front Cell Neurosci. 2015;9:(July):1–11. doi:10.3389/fncel.2015.00251.
  • Pernet V, Joly S, Jordi N, Dalkara D, Guzik-Kornacka A, Flannery JG, Schwab ME. Misguidance and modulation of axonal regeneration by Stat3 and Rho/ROCK signaling in the transparent optic nerve. Cell Death Dis. 2013 Jan;4(7):e734. doi:10.1038/cddis.2013.266.
  • Gobrecht P, Leibinger M, Andreadaki A, Fischer D. Sustained GSK3 activity markedly facilitates nerve regeneration. Nat Commun. 2014 Jan 31;5:4561. doi:10.1038/ncomms5972.
  • Belin S, Nawabi H, Wang C, Tang S, Latremoliere A, Warren P, Schorle H, Uncu C, Woolf CJ, He Z, et al. Injury-induced decline of intrinsic regenerative ability revealed by quantitative proteomics. Neuron. 2015 May;86(4):1000–14. doi:10.1016/j.neuron.2015.03.060.
  • Sharma TP, Liu Y, Wordinger RJ, Pang I-H, Clark AF. Neuritin 1 promotes retinal ganglion cell survival and axonal regeneration following optic nerve crush. Cell Death Dis. 2015 Jan 26;6:e1661. doi:10.1038/cddis.2015.22.
  • Bray ER, Yungher BJ, Levay K, Ribeiro M, Dvoryanchikov G, Ayupe AC, Thakor K, Marks V, Randolph M, Danzi MC, et al. Thrombospondin-1 mediates axon regeneration in retinal ganglion cells. Neuron. 2019 Jun;103(4):642–57.
  • Kurimoto T, Yin Y, Habboub G, Gilbert H-Y, Li Y, Nakao S, Hafezi-Moghadam A, Benowitz LI. Neutrophils express oncomodulin and promote optic nerve regeneration. J Neurosci. 2013 Sep 11;33(37):14816–24. doi:10.1523/JNEUROSCI.3846-13.2013.
  • Benowitz LI, Popovich PG. Inflammation and axon regeneration. Curr Opin Neurol. 2011 Dec;24(6):577–83. doi:10.1097/WCO.0b013e32834c208d.
  • Leibinger M, Andreadaki A, Gobrecht P, Levin E, Diekmann H, Fischer D. Boosting central nervous system axon regeneration by circumventing limitations of natural cytokine signaling. Mol Ther. 2016 Oct 16;24(10):1712–25. doi:10.1038/mt.2016.102.
  • Hung SSC, Chrysostomou V, Li F, Lim JKH, Wang J-H, Powell JE, Tu L, Daniszewski M, Lo C, Wong RC, et al. AAV-mediated CRISPR/Cas Gene Editing of Retinal Cells In Vivo. Investig Opthalmology Vis Sci. 2016 Jun 29;57(7):3470. doi:10.1167/iovs.16-19316.
  • Pernet V, Schwab ME. Lost in the jungle: new hurdles for optic nerve axon regeneration. Trends Neurosci. 2014 Jul 1;37(7):381–87. doi:10.1016/j.tins.2014.05.002.
  • Luo X, Salgueiro Y, Beckerman SR, Lemmon VP, Tsoulfas P, Park KK. Three-dimensional evaluation of retinal ganglion cell axon regeneration and pathfinding in whole mouse tissue after injury. Exp Neurol. 2013 Sep;247:653–62. doi:10.1016/j.expneurol.2013.01.001.
  • Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci. 2009;29(43):13435–44. doi:10.1523/JNEUROSCI.3257-09.2009.
  • Kyritsis N, Kizil C, Brand M. Neuroinflammation and central nervous system regeneration in vertebrates. Trends Cell Biol. 2014 Feb;24(2):128–35. doi:10.1016/j.tcb.2013.08.004.
  • Miron VE, Boyd A, Zhao J-W, Yuen TJ, Ruckh JM, Shadrach JL, van Wijngaarden P, Wagers AJ, Williams A, Franklin RJM, et al. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci. 2013;16(9):1211–18. doi:10.1038/nn.3469.
  • Sierra A, Abiega O, Shahraz A, Neumann H. Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis. Front Cell Neurosci. 2013 Jan;7:6. doi:10.3389/fncel.2013.00006.
  • Okada T, Ichikawa M, Tokita Y, Horie H, Saito K, Yoshida J, Watanabe M. Intravitreal macrophage activation enables cat retinal ganglion cells to regenerate injured axons into the mature optic nerve. Exp Neurol. 2005 Nov;196(1):153–63. doi:10.1016/j.expneurol.2005.07.015.
  • Pernet V, Di PA. Synergistic action of brain-derived neurotrophic factor and lens injury promotes retinal ganglion cell survival, but leads to optic nerve dystrophy in vivo. Brain. 2006;129:1014–26. doi:10.1093/brain/awl063.
  • Barrette B, Hébert M-A, Filali M, Lafortune K, Vallières N, Gowing G, Julien J-P, Lacroix S. Requirement of myeloid cells for axon regeneration. J Neurosci. 2008;28(38):9363–76. doi:10.1523/JNEUROSCI.2709-08.2008.
  • Lalancette-Hébert M, Gowing G, Simard A, Weng YC, Kriz J. Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci. 2007;27(10):2596–605. doi:10.1523/JNEUROSCI.3105-06.2007.
  • Hauk TG, Leibinger M, Müller A, Andreadaki A, Knippschild U, Fischer D. Stimulation of axon regeneration in the mature optic nerve by intravitreal application of the toll-like receptor 2 agonist Pam3Cys. Invest Ophthalmol Vis Sci. 2010;51(1):459–64. doi:10.1167/iovs.09-4203.
  • Bollaerts I, Van Houcke J, Beckers A, Lemmens K, Vanhunsel S, De Groef L, Moons L. Prior exposure to immunosuppressors sensitizes retinal microglia and accelerates optic nerve regeneration in Zebrafish. Mediators Inflamm. 2019 Feb;10(2019):1–16. doi:10.1155/2019/6135795.
  • Bollaerts I, Van Houcke J, Andries L, De Groef L, Moons L. Neuroinflammation as fuel for axonal regeneration in the injured vertebrate central nervous system. Mediators Inflamm. 2017;2017:9478542. doi:10.1155/2017/9478542.
  • Singh B, Plemel JR. Neutrophil contribution in facilitating optic nerve regeneration. J Neurosci. 2014 Jan 22;34(4):1081–82. doi:10.1523/JNEUROSCI.0284-14.2014.
  • Hilla AM, Diekmann H, Fischer D. Microglia are irrelevant for neuronal degeneration and axon regeneration after acute injury. J Neurosci. 2017 Jun 21;37(25):6113–24. doi:10.1523/JNEUROSCI.0584-17.2017.
  • Taoka Y, Okajima K, Uchiba M, Murakami K, Kushimoto S, Johno M, Naruo M, Okabe H, Takatsuki K. Role of neutrophils in spinal cord injury in the rat. Neuroscience. 1997 Jun 6;79(4):1177–82. doi:10.1016/s0306-4522(97)00014-6.
  • Boato F, Rosenberger K, Nelissen S, Geboes L, Peters EM, Nitsch R, Hendrix S. Absence of IL-1β positively affects neurological outcome, lesion development and axonal plasticity after spinal cord injury. J Neuroinflammation. 2013 Dec 14;10(1):792. doi:10.1186/1742-2094-10-151.
  • Sato A, Ohtaki H, Tsumuraya T, Song D, Ohara K, Asano M, Iwakura Y, Atsumi T, Shioda S. Interleukin-1 participates in the classical and alternative activation of microglia/macrophages after spinal cord injury. J Neuroinflammation. 2012 Dec 7;9(1):553. doi:10.1186/1742-2094-9-65.
  • Schwartz M, Solomon A, Lavie V, Ben-Bassat S, Belkin M, Cohen A. Tumor necrosis factor facilitates regeneration of injured central nervous system axons. Brain Res. 1991 Apr 5;545(1–2):334–38. doi:10.1016/0006-8993(91)91281-5.
  • Saleh A, Smith DR, Balakrishnan S, Dunn L, Martens C, Tweed CW, Fernyhough P. Tumor necrosis factor-α elevates neurite outgrowth through an NF-κB-dependent pathway in cultured adult sensory neurons: diminished expression in diabetes may contribute to sensory neuropathy. Brain Res. 2011 Nov;14(1423):87–95. doi:10.1016/j.brainres.2011.09.029.
  • Kato K, Liu H, Kikuchi S, Myers RR, Shubayev VI. Immediate anti-tumor necrosis factor-α (etanercept) therapy enhances axonal regeneration after sciatic nerve crush. J Neurosci Res. 2010 Feb 1;88(2):360–68. doi:10.1002/(ISSN)1097-4547.
  • White RE, Yin FQ, Jakeman LB. TGF-α increases astrocyte invasion and promotes axonal growth into the lesion following spinal cord injury in mice. Exp Neurol. 2008 Nov 1;214(1):10–24. doi:10.1016/j.expneurol.2008.06.012.
  • Schwob JE. Neural regeneration and the peripheral olfactory system. Anat Rec. 2002 Feb 15;269(1):33–49. doi:10.1002/(ISSN)1097-0185.
  • Tsarouchas TM, Wehner D, Cavone L, Munir T, Keatinge M, Lambertus M, Underhill A, Barrett T, Kassapis E, Ogryzko N, et al. Dynamic control of proinflammatory cytokines Il-1β and Tnf-α by macrophages in zebrafish spinal cord regeneration. Nat Commun. 2018 Dec 7;9(1):4670. doi:10.1038/s41467-018-07036-w.
  • Hasegawa T, Hall CJ, Crosier PS, Abe G, Kawakami K, Kudo A, Kawakami A. Transient inflammatory response mediated by interleukin-1β is required for proper regeneration in zebrafish fin fold. Elife. 2017;6:e22716.
  • Kurihara T, Warr G, Loy J, Bravo R. Defects in macrophage recruitment and host defense in mice lacking the CCR2 chemokine receptor. J Exp Med. 1997 Nov 17;186(10):1757–62. doi:10.1084/jem.186.10.1757.
  • Ordoñez-Rueda D, Jönsson F, Mancardi DA, Zhao W, Malzac A, Liang Y, Bertosio E, Grenot P, Blanquet V, Sabrautzki S, et al. A hypomorphic mutation in the Gfi1 transcriptional repressor results in a novel form of neutropenia. Eur J Immunol. 2012 Sep 1;42(9):2395–408. doi:10.1002/eji.201142011.
  • Ginhoux F, Lim S, Hoeffel G, Low D, Huber T. Origin and differentiation of microglia. Front Cell Neurosci. 2013 Apr;17(7):45.
  • Rathnasamy G, Foulds WS, Ling E-A, Kaur C. Retinal microglia – A key player in healthy and diseased retina. Prog Neurobiol. 2019 Feb;1(173):18–40. doi:10.1016/j.pneurobio.2018.05.006.
  • Colton CA, Wilcock DM. Assessing Activation States in Microglia. CNS Neurol Disord - Drug Targets. 2010 Apr 1;9(2):174–91. doi:10.2174/187152710791012053.
  • Harry GJ, Kraft AD. Neuroinflammation and microglia: considerations and approaches for neurotoxicity assessment. Expert Opin Drug Metab Toxicol. 2008 Oct;4(10):1265–77. doi:10.1517/17425255.4.10.1265.
  • Rice RA, Spangenberg EE, Yamate-Morgan H, Lee RJ, Arora RPS, Hernandez MX, Tenner AJ, West BL, Green KN. Elimination of microglia improves functional outcomes following extensive neuronal loss in the hippocampus. J Neurosci. 2015;35(27):9977–89. doi:10.1523/JNEUROSCI.5272-14.2015.
  • Cen LP, Han M, Zhou L, Tan L, Liang JJ, Pang CP, Zhang M. Bilateral retinal microglial response to unilateral optic nerve transection in rats. Neuroscience. 2015 Dec;17(311):56–66. doi:10.1016/j.neuroscience.2015.09.067.
  • Sobrado-Calvo P, Vidal-Sanz M, Villegas-Pérez MP. Rat retinal microglial cells under normal conditions, after optic nerve section, and after optic nerve section and intravitreal injection of trophic factors or macrophage inhibitory factor. J Comp Neurol. 2007 Apr 20;501(6):866–78. doi:10.1002/cne.21222.
  • Shechter R, London A, Varol C, Raposo C, Cusimano M, Yovel G, Rolls A, Mack M, Pluchino S, Martino G, et al. Infiltrating Blood-Derived Macrophages Are Vital Cells Playing an Anti-inflammatory Role in Recovery from Spinal Cord Injury in Mice. Graeber MB, Editor. PLoS Med. 2009 Jul 28;6(7):e1000113. doi:10.1371/journal.pmed.1000113.
  • Rong F, Feng X, Mary Lou P, Judianne D, Grande AM, Robinson JK, William E, Nostrand V. Minocycline reduces microglial activation and improves behavioral deficits in a transgenic model of cerebral microvascular amyloid. J Neurosci. 2007 Mar 21;27(12):2057–63. doi:10.1523/JNEUROSCI.3105-06.2007.
  • Levkovitch-Verbin H. Animal models of optic nerve diseases. Eye (Lond). 2004 Nov;18(11):1066–74. doi:10.1038/sj.eye.6701320.
  • Bosco A, Inman DM, Steele MR, Wu G, Soto I, Marsh-Armstrong N, Hubbard WC, Calkins DJ, Horner PJ, Vetter ML. Reduced retina microglial activation and improved optic nerve integrity with minocycline treatment in the DBA/2J mouse model of glaucoma. Investig Opthalmology Vis Sci. 2008 Apr 1;49(4):1437. doi:10.1167/iovs.07-1337.
  • Hanisch U-K, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci. 2007 Nov 26;10(11):1387–94. doi:10.1038/nn1997.
  • Streit WJ. Microglia and the Response to Brain Injury. In: Kettenmann H, Burton G.A, Moenning U.J editors. Neuroinflammation — from Bench to Bedside. Berlin, Heidelberg: Ernst Schering Research Foundation Workshop, Springer; 2002. vol 39. p. 11—24.
  • Baldwin KT, Carbajal KS, Segal BM, Giger RJ. Neuroinflammation triggered by β-glucan/dectin-1 signaling enables CNS axon regeneration. Proc Natl Acad Sci U S A. 2015 Feb 24;112(8):2581–86. doi:10.1073/pnas.1423221112.
  • Olson JK, Miller SD, Hickey WF, Sedgwick JD. Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J Immunol. 2004 Sep 15;173(6):3916–24. doi:10.4049/jimmunol.173.6.3916.
  • Kitayama M, Ueno M, Itakura T, Yamashita T. Activated Microglia Inhibit Axonal Growth through RGMa. Minami M, Editor. PLoS One. 2011 Sep 21;6(9):e25234. doi:10.1371/journal.pone.0025234.
  • Brennan FH, Hall JCE, Guan Z, Popovich PG. Microglia limit lesion expansion and promote functional recovery after spinal cord injury in mice. bioRxiv. 2018 Sep 6; 410258. doi:10.1016/0006-291x(75)90518-5
  • Bellver-Landete V, Bretheau F, Mailhot B, Vallières N, Lessard M, Janelle M-E, Vernoux N, Tremblay M-È, Fuehrmann T, Shoichet MS, et al. Microglia are an essential component of the neuroprotective scar that forms after spinal cord injury. Nat Commun. 2019 Dec 31;10(1):518. doi:10.1038/s41467-019-08446-0.
  • O’Koren EG, Mathew R, Saban DR. Fate mapping reveals that microglia and recruited monocyte-derived macrophages are definitively distinguishable by phenotype in the retina. Sci Rep. 2016 Feb;9(6):20636. doi:10.1038/srep20636.
  • Goldman D. Müller glial cell reprogramming and retina regeneration. Nat Rev Neurosci. 2014 Jul 4;15(7):431–42. doi:10.1038/nrn3723.
  • Müller A, Hauk TG, Fischer D. Astrocyte-derived CNTF switches mature RGCs to a regenerative state following inflammatory stimulation. Brain. 2007;130:12. doi:10.1093/brain/awm257.
  • Fawcett JW, Asher RA. The glial scar and central nervous system repair. Brain Res. 1999;49:1–15.
  • Esen N, Tanga FY, DeLeo JA, Kielian T. Toll-like receptor 2 (TLR2) mediates astrocyte activation in response to the Gram-positive bacterium Staphylococcus aureus. J Neurochem. 2003 Dec 23;88(3):746–58. doi:10.1046/j.1471-4159.2003.02202.x.
  • Gorina R, Font-Nieves M, Márquez-Kisinousky L, Santalucia T, Planas AM. Astrocyte TLR4 activation induces a proinflammatory environment through the interplay between MyD88-dependent NFκB signaling, MAPK, and Jak1/Stat1 pathways. Glia. 2011 Feb 1;59(2):242–55. doi:10.1002/glia.v59.2.
  • Harada T, Harada C, Kohsaka S, Wada E, Yoshida K, Ohno S, Mamada H, Tanaka K, Parada LF, Wada K. Microglia–müller glia cell interactions control neurotrophic factor production during light-induced retinal degeneration. J Neurosci. 2002 Nov 1;22(21):9228–36. doi:10.1523/JNEUROSCI.22-21-09228.2002.
  • Seki M, Tanaka T, Sakai Y, Fukuchi T, Abe H, Nawa H, Takei N. Müller cells as a source of brain-derived neurotrophic factor in the retina: noradrenaline upregulates brain-derived neurotrophic factor levels in cultured rat müller cells. Neurochem Res. 2005 Sep;30(9):1163–70. doi:10.1007/s11064-004-2439-5.
  • Gómez-Pinilla F, Vu L, Cotman CW. Regulation of astrocyte proliferation by FGF-2 and heparan sulfate in vivo. J Neurosci. 1995 Mar 1;15(3 Pt 1):2021–29. doi:10.1523/JNEUROSCI.15-03-02021.1995.
  • Chang M-Y, Son H, Lee Y-S, Lee S-H. Neurons and astrocytes secrete factors that cause stem cells to differentiate into neurons and astrocytes, respectively. Mol Cell Neurosci. 2003 Jul 1;23(3):414–26. doi:10.1016/S1044-7431(03)00068-X.
  • Faijerson J, Tinsley RB, Apricó K, Thorsell A, Nodin C, Nilsson M, Blomstrand F, Eriksson PS. Reactive astrogliosis induces astrocytic differentiation of adult neural stem/progenitor cells in vitro. J Neurosci Res. 2006 Nov 15;84(7):1415–24. doi:10.1002/(ISSN)1097-4547.
  • Leibinger M, Andreadaki A, Diekmann H, Fischer D. Neuronal STAT3 activation is essential for CNTF- and inflammatory stimulation-induced CNS axon regeneration. Cell Death Dis. 2013 Sep 19;4(9):e805–e805. doi:10.1038/cddis.2013.310.
  • Leibinger M, Müller A, Gobrecht P, Diekmann H, Andreadaki A, Fischer D. Interleukin-6 contributes to CNS axon regeneration upon inflammatory stimulation. Cell Death Dis. 2013 Apr 25;4(4):e609. doi:10.1038/cddis.2013.126.
  • Cohen A, Bray GM, Aguayo AJ. Neurotrophin-4/5 (NT-4/5) increases adult rat retinal ganglion cell survival and neurite outgrowthin vitro. J Neurobiol. 1994 Aug 1;25(8):953–59. doi:10.1002/(ISSN)1097-4695.
  • Lingor P, Tönges L, Pieper N, Bermel C, Barski E, Planchamp V, Bähr M. ROCK inhibition and CNTF interact on intrinsic signalling pathways and differentially regulate survival and regeneration in retinal ganglion cells. Brain. 2008 Jan 1;131(1):250–63. doi:10.1093/brain/awm284.
  • Smith PD, Sun F, Park KK, Cai B, Wang C, Kuwako K, Martinez-Carrasco I, Connolly L, He Z. SOCS3 deletion promotes optic nerve regeneration in vivo. Neuron. 2009 Dec 10;64(5):617–23. doi:10.1016/j.neuron.2009.11.021.
  • Müller A, Hauk TG, Leibinger M, Marienfeld R, Fischer D. Exogenous CNTF stimulates axon regeneration of retinal ganglion cells partially via endogenous CNTF. Mol Cell Neurosci. 2009 Jun 1;41(2):233–46. doi:10.1016/j.mcn.2009.03.002.
  • Fischer D. Hyper-IL-6: a potent and efficacious stimulator of RGC regeneration. Eye. 2016 Nov 25;31(2):173–8.
  • Morgan-Warren PJ, Berry M, Ahmed Z, Scott RAH, Logan A, N. S, BL. T, JL. G, O M, KH. W, et al. Exploiting mTOR signaling: a novel translatable treatment strategy for traumatic optic neuropathy? Investig Opthalmology Vis Sci. 2013 Oct 23;54(10):6903. doi:10.1167/iovs.13-12803.
  • Gorsuch RA, Hyde DR. Regulation of Müller glial dependent neuronal regeneration in the damaged adult zebrafish retina. Exp Eye Res. 2014 Jun;123:131–40. doi:10.1016/j.exer.2013.07.012.
  • Wohl SG, Reh TA. The microRNA expression profile of mouse Müller glia in vivo and in vitro. Sci Rep. 2016 Dec 14;6(1):35423. doi:10.1038/srep35423.
  • Va´zquez-Chona FR, Clark AM, Levine EM. Rlbp1 promoter drives robust müller glial GFP expression in transgenic mice. Investig Opthalmology Vis Sci. 2009 Aug 1;50(8):3996. doi:10.1167/iovs.08-3189.
  • Wang M, Wong WT. Microglia-Müller cell interactions in the retina. Adv Exp Med Biol. 2014;801:333–38. doi:10.1007/978-1-4614-3209-8_8.
  • Gao Z, Zhu Q, Zhang Y, Zhao Y, Cai L, Shields CB, Cai J. Reciprocal modulation between microglia and astrocyte in reactive gliosis following the CNS injury. Mol Neurobiol. 2013 Dec;48(3):690–701. doi:10.1007/s12035-013-8460-4.
  • Karve IP, Taylor JM, Crack PJ. The contribution of astrocytes and microglia to traumatic brain injury. Br J Pharmacol. 2016 Feb;173(4):692–702. doi:10.1111/bph.13125.
  • Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Münch AE, Chung W-S, Peterson TC, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017 Jan 18;541(7638):481–87. doi:10.1038/nature21029.
  • Mitchell DM, Sun C, Hunter SS, New DD, Stenkamp DL. Regeneration associated transcriptional signature of retinal microglia and macrophages. Sci Rep. 2019 Dec 18;9(1):4768. doi:10.1038/s41598-019-41298-8.
  • Batlle M, Ferri L, Andrade C, Ortega F-J, Vidal-Taboada JM, Pugliese M, Mahy N, Rodríguez MJ. Astroglia-microglia cross talk during neurodegeneration in the rat hippocampus. Biomed Res Int. 2015 Apr;21(2015):102419.
  • Kirkley KS, Popichak KA, Afzali MF, Legare ME, Tjalkens RB. Microglia amplify inflammatory activation of astrocytes in manganese neurotoxicity. J Neuroinflammation. 2017;14(1):99. doi:10.1186/s12974-017-0871-0.
  • Chen S-H, Oyarzabal EA, Sung Y-F, Chu C-H, Wang Q, Chen S-L, Lu R-B, Hong J-S. Microglial regulation of immunological and neuroprotective functions of astroglia. Glia. 2015 Jan 1;63(1):118–31. doi:10.1002/glia.v63.1.
  • Roche SL, Ruiz-Lopez AM, Moloney JN, Byrne AM, Cotter TG. Microglial-induced Müller cell gliosis is attenuated by progesterone in a mouse model of retinitis pigmentosa. Glia. 2018 Feb 1;66(2):295–310. doi:10.1002/glia.v66.2.
  • Zhang S, Zhang S, Gong W, Zhu G, Wang S, Wang Y, Halim M, Wang K, Zhou G, Liu Q. Müller cell regulated microglial activation and migration in rats with n-methyl-n-nitrosourea-induced retinal degeneration. Front Neurosci. 2018 Dec;3(12):890. doi:10.3389/fnins.2018.00890.
  • Wang M, Ma W, Zhao L, Fariss RN, Wong WT. Adaptive Müller cell responses to microglial activation mediate neuroprotection and coordinate inflammation in the retina. J Neuroinflammation. 2011 Dec 7;8(1):173. doi:10.1186/1742-2094-8-72.
  • Joly S, Lange C, Thiersch M, Samardzija M, Grimm C. Leukemia inhibitory factor extends the lifespan of injured photoreceptors in vivo. J Neurosci. 2008 Dec 17;28(51):13765–74. doi:10.1523/JNEUROSCI.2709-08.2008.
  • Carwile ME, Culbert RB, Sturdivant RL, Kraft TW. Rod outer segment maintenance is enhanced in the presence of bFGF, CNTF and GDNF. Exp Eye Res. 1998 Jun;66(6):791–805. doi:10.1006/exer.1997.0463.
  • Harada C, Harada T, Quah H-MA, Maekawa F, Yoshida K, Ohno S, Wada K, Parada LF, Tanaka K. Potential role of glial cell line-derived neurotrophic factor receptors in Müller glial cells during light-induced retinal degeneration. Neuroscience. 2003;122(1):229–35. doi:10.1016/S0306-4522(03)00599-2.
  • Arroba AI, Álvarez-Lindo N, van Rooijen N, de la Rosa EJ. Microglia-mediated IGF-I Neuroprotection in the rd10 mouse model of retinitis pigmentosa. Investig Opthalmology Vis Sci. 2011 Nov 24;52(12):9124. doi:10.1167/iovs.11-7736.
  • Jha MK, Jo M, Kim JH, Microglia-Astrocyte Crosstalk: SK an intimate molecular conversation. Neuroscientist. 2019;25(3):227–40. doi:10.1177/1073858418783959.
  • Stout RD, Suttles J. Functional plasticity of macrophages: reversible adaptation to changing microenvironments. J Leukoc Biol. 2004 Sep;76(3):509–13. doi:10.1189/jlb.0504272.
  • Van Hove H, Martens L, Scheyltjens I, De Vlaminck K, Pombo Antunes AR, De Prijck S, Vandamme N, De Schepper S, Van Isterdael G, Scott CL, et al. A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat Neurosci. 2019 Jun 6;22(6):1021–35. doi:10.1038/s41593-019-0393-4.
  • Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008 Dec 1;8(12):958–69. doi:10.1038/nri2448.
  • David S, Greenhalgh AD, Kroner A. Macrophage and microglial plasticity in the injured spinal cord. Neuroscience. 2015 Oct;29(307):311–18. doi:10.1016/j.neuroscience.2015.08.064.
  • Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, et al. Macrophage Activation and Polarization: nomenclature and Experimental Guidelines. Immunity. 2014 Jul 17;41(1):14–20. doi:10.1016/j.immuni.2014.06.008.
  • Gensel JC, Zhang B. Macrophage activation and its role in repair and pathology after spinal cord injury. Brain Res. 2015 Sep;4(1619):1–11. doi:10.1016/j.brainres.2014.12.045.
  • Lee-Liu D, Edwards-Faret G, Tapia VS, Larraín J. Spinal cord regeneration: lessons for mammals from non-mammalian vertebrates. genesis. 2013 Aug 1;51(8):529–44. doi:10.1002/dvg.22406.
  • David S, Kroner A. Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci. 2011 Jul 15;12(7):388–99. doi:10.1038/nrn3053.
  • Davis MJ, Tsang TM, Qiu Y, Dayrit JK, Freij JB, Huffnagle GB, Olszewski MA. Macrophage M1/M2 polarization dynamically adapts to changes in cytokine microenvironments in Cryptococcus neoformans infection. MBio. 2013 Jun 18;4(3):e00264–13. doi:10.1128/mBio.00264-13.
  • Ma S-F, Chen Y-J, Zhang J-X, Shen L, Wang R, Zhou J-S, Hu J-G, Lü H-Z. Adoptive transfer of M2 macrophages promotes locomotor recovery in adult rats after spinal cord injury. Brain Behav Immun. 2015 Mar 1;45:157–70. doi:10.1016/j.bbi.2014.11.007.
  • Klimczak RR, Koerber JT, Dalkara D, Flannery JG, Schaffer DV. A novel adeno-associated viral variant for efficient and selective intravitreal transduction of rat Müller cells. PLoS One. 2009 Jan 14;4(10):e7467. doi:10.1371/journal.pone.0007467.
  • Guerrero AR, Uchida K, Nakajima H, Watanabe S, Nakamura M, Johnson WE, Baba H. Blockade of interleukin-6 signaling inhibits the classic pathway and promotes an alternative pathway of macrophage activation after spinal cord injury in mice. J Neuroinflammation. 2012 Dec 27;9(1):533. doi:10.1186/1742-2094-9-40.
  • Nguyen-Chi M, Laplace-Builhe B, Travnickova J, Luz-Crawford P, Tejedor G, Phan QT, Duroux-Richard I, Levraud J-P, Kissa K, Lutfalla G, et al. Identification of polarized macrophage subsets in zebrafish. Elife. 2015 Jul;8(4):e07288. doi:10.7554/eLife.07288.
  • Miller SJ. Astrocyte heterogeneity in the adult central nervous system. Front Cell Neurosci. 2018;12:401. doi:10.3389/fncel.2018.00401.
  • Beyrau M, Bodkin JV, Nourshargh S. Neutrophil heterogeneity in health and disease: a revitalized avenue in inflammation and immunity. Open Biol. 2012 Nov;2(11):120134. doi:10.1098/rsob.120134.
  • Rheaume BA, Jereen A, Bolisetty M, Sajid MS, Yang Y, Renna K, Sun L, Robson P, Trakhtenberg EF. Single cell transcriptome profiling of retinal ganglion cells identifies cellular subtypes. Nat Commun. 2018 Dec 17;9(1):2759. doi:10.1038/s41467-018-05134-3.
  • Watanabe M, Sawai H, Fukuda Y. Number, distribution, and morphology of retinal ganglion cells with axons regenerated into peripheral nerve graft in adult cats. J Neurosci. 1993 May 1;13(5):2105–17. doi:10.1523/JNEUROSCI.13-05-02105.1993.
  • Berry M, Ahmed Z, Logan A. Return of function after CNS axon regeneration: lessons from injury-responsive intrinsically photosensitive and alpha retinal ganglion cells. Prog Retin Eye Res. July 2019;71:57–67.
  • Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, Koeglsperger T, Dake B, Wu PM, Doykan CE, et al. Identification of a unique TGF-β–dependent molecular and functional signature in microglia. Nat Neurosci. 2014 Jan 8;17(1):131–43. doi:10.1038/nn.3599.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.