1,182
Views
15
CrossRef citations to date
0
Altmetric
Posterior Segment

Rebuilding the Retina: Prospects for Müller Glial-mediated Self-repair

&
Pages 349-360 | Received 22 Jul 2019, Accepted 11 Sep 2019, Published online: 02 Oct 2019

References

  • Jayakody SA, Gonzalez-Cordero A, Ali RR, Pearson RA. Cellular strategies for retinal repair by photoreceptor replacement. Prog Retin Eye Res. 2015;46:31–66. doi:10.1016/j.preteyeres.2015.01.003.
  • Reh TA. Photoreceptor transplantation in late stage retinal degeneration. Invest Ophthalmol Vis Sci. 2016;57(5):ORSFg1–7. doi:10.1167/iovs.15-17659.
  • Aghaizu ND, Kruczek K, Gonzalez-Cordero A, Ali RR, Pearson RA. Pluripotent stem cells and their utility in treating photoreceptor degenerations. Prog Brain Res. 2017;231.:191–223. doi:10.1016/bs.pbr.2017.01.001.
  • Pearson RA, Barber AC, Rizzi M, Hippert C, Xue T, West EL, Duran Y, Smith AJ, Chuang JZ, Azam SA, et al. Restoration of vision after transplantation of photoreceptors. Nature. 2012;485(7396):99–103. doi:10.1038/nature10997.
  • Barber AC, Hippert C, Duran Y, West EL, Bainbridge JW, Warre-Cornish K, Luhmann UF, Lakowski J, Sowden JC, Ali RR, et al. Repair of the degenerate retina by photoreceptor transplantation. Proc Natl Acad Sci. 2013;110(1):354–59. doi:10.1073/pnas.1212677110.
  • Singh MS, Charbel Issa P, Butler R, Martin C, Lipinski DM, Sekaran S, Barnard AR, MacLaren RE. Reversal of end-stage retinal degeneration and restoration of visual function by photoreceptor transplantation. Proc Natl Acad Sci. 2013;110(3):1101–06. doi:10.1073/pnas.1119416110.
  • Kruczek K, Gonzalez-Cordero A, Goh D, Naeem A, Jonikas M, Blackford SJI, Kloc M, Duran Y, Georgiadis A, Sampson RD, et al. Differentiation and transplantation of embryonic stem cell-derived cone photoreceptors into a mouse model of end-stage retinal degeneration. Stem Cell Rep. 2017;8(6):1659–74. doi:10.1016/j.stemcr.2017.04.030.
  • Gonzalez-Cordero A, Kruczek K, Naeem A, Fernando M, Kloc M, Ribeiro J, Goh D, Duran Y, Blackford SJI, Abelleira-Hervas L, et al. Recapitulation of human retinal development from human pluripotent stem cells generates transplantable populations of cone photoreceptors. Stem Cell Rep. 2017;9(3):820–37. doi:10.1016/j.stemcr.2017.07.022.
  • Shirai H, Mandai M, Matsushita K, Kuwahara A, Yonemura S, Nakano T, Assawachananont J, Kimura T, Saito K, Terasaki H, et al. Transplantation of human embryonic stem cell-derived retinal tissue in two primate models of retinal degeneration. Proc Natl Acad Sci U S A. 2016;113(1):E81–90. doi:10.1073/pnas.1512590113.
  • Pearson RA, Gonzalez-Cordero A, West EL, Ribeiro JR, Aghaizu N, Goh D, Sampson RD, Georgiadis A, Waldron PV, Duran Y, et al. Donor and host photoreceptors engage in material transfer following transplantation of post-mitotic photoreceptor precursors. Nat Commun. 2016;7(1):13029. doi:10.1038/ncomms13029.
  • Santos-Ferreira T, Llonch S, Borsch O, Postel K, Haas J, Ader M. Retinal transplantation of photoreceptors results in donor-host cytoplasmic exchange. Nat Commun. 2016;7(1):13028. doi:10.1038/ncomms13028.
  • Singh MS, Balmer J, Barnard AR, Aslam SA, Moralli D, Green CM, Barnea-Cramer A, Duncan I, MacLaren RE. Transplanted photoreceptor precursors transfer proteins to host photoreceptors by a mechanism of cytoplasmic fusion. Nat Commun. 2016;7(1):13537. doi:10.1038/ncomms13537.
  • Moshiri A, Close J, Reh TA. Retinal stem cells and regeneration. Int J Dev Biol. 2004;48(8–9):1003–14. doi:10.1387/ijdb.041870am.
  • Karl MO, Reh TA. Regenerative medicine for retinal diseases: activating endogenous repair mechanisms. Trends Mol Med. 2010;16(4):193–202. doi:10.1016/j.molmed.2010.02.003.
  • Vergara MN, Del Rio-Tsonis K. Retinal regeneration in the Xenopus laevis tadpole: a new model system. Mol Vis. 2009;15:1000–13. http://www.ncbi.nlm.nih.gov/pubmed/19461929.
  • Hamon A, Roger JE, Yang XJ, Perron M. Müller glial cell-dependent regeneration of the neural retina: an overview across vertebrate model systems. Dev Dyn. 2016;245(7):727–38. doi:10.1002/dvdy.24375.
  • Perron M, Kanekar S, Vetter ML, Harris WA. The genetic sequence of retinal development in the ciliary margin of the Xenopus eye. Dev Biol. 1998;199(2):185–200. doi:10.1006/dbio.1998.8939.
  • Centanin L, Hoeckendorf B, Wittbrodt J. Fate restriction and multipotency in retinal stem cells. Cell Stem Cell. 2011;9(6):553–62. doi:10.1016/j.stem.2011.11.004.
  • Wetts R, Serbedzija GN, Fraser SE. Cell lineage analysis reveals multipotent precursors in the ciliary margin of the frog retina. Dev Biol. 1989; 136(1): 254–63. http://www.ncbi.nlm.nih.gov/pubmed/2478403
  • Fischer AJ, Bosse JL, El-Hodiri HM. The ciliary marginal zone (CMZ) in development and regeneration of the vertebrate eye. Exp Eye Res. 2013;116:199–204. doi:10.1016/j.exer.2013.08.018.
  • Harris WA, Perron M. Molecular recapitulation: the growth of the vertebrate retina. Int J Dev Biol. 1998; 42(3): 299–304. http://www.ncbi.nlm.nih.gov/pubmed/9654012
  • Wan J, Goldman D. Retina regeneration in zebrafish. Curr Opin Genet Dev. 2016;40:41–47. doi:10.1016/j.gde.2016.05.009.
  • Miyake A, Araki M. Retinal stem/progenitor cells in the ciliary marginal zone complete retinal regeneration: A study of retinal regeneration in a novel animal model. Dev Neurobiol. 2014;74(7):739–56. doi:10.1002/dneu.22169.
  • Maier W, Wolburg H. Regeneration of the goldfish retina after exposure to different doses of ouabain. Cell Tissue Res. 1979; 202(1): 99–118. http://www.ncbi.nlm.nih.gov/pubmed/509506.
  • Centanin L, Ander -J-J, Hoeckendorf B, Lust K, Kellner T, Kraemer I, Urbany C, Hasel E, Harris WA, Simons BD, et al. Exclusive multipotency and preferential asymmetric divisions in post-embryonic neural stem cells of the fish retina. Development. 2014;141(18):3472–82. doi:10.1242/dev.109892.
  • Ail D, Perron M. Retinal degeneration and regeneration—lessons from fishes and amphibians. Curr Pathobiol Rep. 2017;5(1):67–78. doi:10.1007/s40139-017-0127-9.
  • Grigoryan EN. Endogenous cell sources for eye retina regeneration in vertebrate animals and humans. Russ J Dev Biol. 2018;49(6):314–26. doi:10.1134/S106236041901003X.
  • Fischer AJ, Reh TA. Identification of a proliferating marginal zone of retinal progenitors in postnatal chickens. Dev Biol. 2000;220(2):197–210. doi:10.1006/dbio.2000.9640.
  • Fischer AJ. Neural regeneration in the chick retina. Prog Retin Eye Res. 2005;24(2):161–82. doi:10.1016/j.preteyeres.2004.07.003.
  • Marcucci F, Murcia-Belmonte V, Wang Q, Coca Y, Ferreiro-Galve S, Kuwajima T, Khalid S, Ross ME, Mason C, Herrera E. The ciliary margin zone of the mammalian retina generates retinal ganglion cells. Cell Rep. 2016;17(12):3153. doi:10.1016/J.CELREP.2016.11.016.
  • Bélanger MC, Robert B, Cayouette M. Msx1-positive progenitors in the retinal ciliary margin give rise to both neural and non-neural progenies in mammals. Dev Cell. 2017;40(2):137–50. doi:10.1016/j.devcel.2016.11.020.
  • Bhatia B, Singhal S, Lawrence JM, Khaw PT, Limb GA. Distribution of Müller stem cells within the neural retina: evidence for the existence of a ciliary margin-like zone in the adult human eye. Exp Eye Res. 2009;89(3):373–82. doi:10.1016/j.exer.2009.04.005.
  • Kuwahara A, Ozone C, Nakano T, Saito K, Eiraku M, Sasai Y. Generation of a ciliary margin-like stem cell niche from self-organizing human retinal tissue. Nat Commun. 2015;6(1):6286. doi:10.1038/ncomms7286.
  • Moshiri A, Reh TA. Persistent progenitors at the retinal margin of ptc± mice. J Neurosci. 2004;24(1):229–37. doi:10.1523/JNEUROSCI.2980-03.2004.
  • Tropepe V, Coles BL, Chiasson BJ, Horsford DJ, Elia AJ, McInnes RR, van der Kooy D. Retinal stem cells in the adult mammalian eye. Science. 2000;287(5460):2032–36. doi:10.1126/science.287.5460.2032.
  • Ahmad I, Tang L, Pham H. Identification of neural progenitors in the adult mammalian eye. Biochem Biophys Res Commun. 2000;270(2):517–21. doi:10.1006/BBRC.2000.2473.
  • Cicero SA, Johnson D, Reyntjens S, Frase S, Connell S, Chow LM, Baker SJ, Sorrentino BP, Dyer MA. Cells previously identified as retinal stem cells are pigmented ciliary epithelial cells. Proc Natl Acad Sci U S A. 2009;106(16):6685–90. doi:10.1073/pnas.0901596106.
  • Gualdoni S, Baron M, Lakowski J, Decembrini S, Smith AJ, Pearson RA, Ali RR, Sowden JC. Adult ciliary epithelial cells, previously identified as retinal stem cells with potential for retinal repair, fail to differentiate into new rod photoreceptors. Stem Cells. 2010;28(6):1048–59. doi:10.1002/stem.423.
  • Fernández-Nogales M, Murcia-Belmonte V, Chen HY, Herrera E. The peripheral eye: A neurogenic area with potential to treat retinal pathologies? Prog Retin Eye Res. 2019;68(September2018):110–23. doi:10.1016/j.preteyeres.2018.09.001.
  • Araki M. Regeneration of the amphibian retina: role of tissue interaction and related signaling molecules on RPE transdifferentiation. Dev Growth Differ. 2007;49(2):109–20. doi:10.1111/j.1440-169X.2007.00911.x.
  • Yoshii C, Ueda Y, Okamoto M, Araki M. Neural retinal regeneration in the anuran amphibian Xenopus laevis post-metamorphosis: transdifferentiation of retinal pigmented epithelium regenerates the neural retina. Dev Biol. 2007;303(1):45–56. doi:10.1016/j.ydbio.2006.11.024.
  • Salero E, Blenkinsop TA, Corneo B, Harris A, Rabin D, Stern JH, Temple S. Adult human RPE can be activated into a multipotent stem cell that produces mesenchymal derivatives. Cell Stem Cell. 2012;10(1):88–95. doi:10.1016/j.stem.2011.11.018.
  • Bringmann A, Pannicke T, Biedermann B, Francke M, Iandiev I, Grosche J, Wiedemann P, Albrecht J, Reichenbach A. Role of retinal glial cells in neurotransmitter uptake and metabolism. Neurochem Int. 2009;54(3–4):143–60. doi:10.1016/j.neuint.2008.10.014.
  • Reichenbach A, Bringmann A. New functions of Müller cells. Glia. 2013;61(5):651–78. doi:10.1002/glia.22477.
  • Blackshaw S, Harpavat S, Trimarchi J, Cai L, Huang H, Kuo WP, Weber G, Lee K, Fraioli RE, Cho SH, et al. Genomic analysis of mouse retinal development. PLoS Biol. 2004;2(9):e247. doi:10.1371/journal.pbio.0020247.
  • Roesch K, Jadhav AP, Trimarchi JM, Stadler MB, Roska B, Sun BB, Cepko CL. The transcriptome of retinal Müller glial cells. J Comp Neurol. 2008;509(2):225–38. doi:10.1002/cne.21730.
  • Jadhav AP, Roesch K, Cepko CL. Development and neurogenic potential of Müller glial cells in the vertebrate retina. Prog Retin Eye Res. 2009;28(4):249–62. doi:10.1016/j.preteyeres.2009.05.002.
  • de Hoz R, Rojas B, Ramírez AI, Salazar JJ, Gallego BI, Triviño A, Ramírez JM. Retinal macroglial responses in health and disease. Biomed Res Int. 2016;2016:2954721. doi:10.1155/2016/2954721.
  • Lewis GP, Fisher SK. Up-regulation of glial fibrillary acidic protein in response to retinal injury: its potential role in glial remodeling and a comparison to vimentin expression. Int Rev Cytol. 2003;230:263–90. doi:10.1016/S0074-7696(03)30005-1.
  • Bringmann A, Iandiev I, Pannicke T, Wurm A, Hollborn M, Wiedemann P, Osborne NN, Reichenbach A. Cellular signaling and factors involved in Müller cell gliosis: neuroprotective and detrimental effects. Prog Retin Eye Res. 2009;28(6):423–51. doi:10.1016/J.PRETEYERES.2009.07.001.
  • Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN, Osborne NN, Reichenbach A. Müller cells in the healthy and diseased retina. Prog Retin Eye Res. 2006;25(4):397–424. doi:10.1016/j.preteyeres.2006.05.003.
  • Hippert C, Graca AB, Barber AC, West EL, Smith AJ, Ali RR, Pearson RA. Müller glia activation in response to inherited retinal degeneration is highly varied and disease-specific. Linden R, ed. PLoS One. 2015;10(3):e0120415. doi:10.1371/journal.pone.0120415.
  • Vihtelic TS, Soverly JE, Kassen SC, Hyde DR. Retinal regional differences in photoreceptor cell death and regeneration in light-lesioned albino zebrafish. Exp Eye Res. 2006;82(4):558–75. doi:10.1016/j.exer.2005.08.015.
  • Thomas JL, Nelson CM, Luo X, Hyde DR, Thummel R. Characterization of multiple light damage paradigms reveals regional differences in photoreceptor loss. Exp Eye Res. 2012;97(1):105–16. doi:10.1016/j.exer.2012.02.004.
  • Nagashima M, Barthel LK, Raymond PA. A self-renewing division of zebrafish Muller glial cells generates neuronal progenitors that require N-cadherin to regenerate retinal neurons. Development. 2013;140(22):4510–21. doi:10.1242/dev.090738.
  • Yurco P, Cameron DA. Cellular correlates of proneural and notch-delta gene expression in the regenerating zebrafish retina. Vis Neurosci. 2007;24(3):437–43. doi:10.1017/S0952523807070496.
  • Langhe R, Chesneau A, Colozza G, Hidalgo M, Ail D, Locker M, Perron M. Müller glial cell reactivation in Xenopus models of retinal degeneration. Glia. 2017;65(8):1333–49. doi:10.1002/glia.23165.
  • Stenkamp DL. The rod photoreceptor lineage of teleost fish. Prog Retin Eye Res. 2011;30(6):395–404. doi:10.1016/j.preteyeres.2011.06.004.
  • Lust K, Wittbrodt J. Activating the regenerative potential of Müller glia cells in a regeneration-deficient retina. Elife. 2018;7:1–23. doi:10.7554/eLife.32319.
  • Nelson CM, Ackerman KM, O’Hayer P, Bailey TJ, Gorsuch RA, Hyde DR. Tumor necrosis factor-alpha is produced by dying retinal neurons and is required for Muller glia proliferation during zebrafish retinal regeneration. J Neurosci. 2013;33(15):6524–39. doi:10.1523/JNEUROSCI.3838-12.2013.
  • Wan J, Zhao XF, Vojtek A, Goldman D. Retinal injury, growth factors, and cytokines converge on β-catenin and pStat3 signaling to stimulate retina regeneration. Cell Rep. 2014;9(1):285–97. doi:10.1016/j.celrep.2014.08.048.
  • Tappeiner C, Maurer E, Sallin P, Bise T, Enzmann V, Tschopp M. Inhibition of the TGFβ pathway enhances retinal regeneration in adult zebrafish. PLoS One. 2016;11(11):e0167073. doi:10.1371/journal.pone.0167073.
  • Ramachandran R, Zhao XF, Goldman D. Ascl1a/Dkk/-catenin signaling pathway is necessary and glycogen synthase kinase-3beta inhibition is sufficient for zebrafish retina regeneration. Proc Natl Acad Sci. 2011;108(38):15858–63. doi:10.1073/pnas.1107220108.
  • Zhao XF, Wan J, Powell C, Ramachandran R, Myers MG, Goldman D. Leptin and IL-6 family cytokines synergize to stimulate Müller glia reprogramming and retina regeneration. Cell Rep. 2014;9(1):272–84. doi:10.1016/j.celrep.2014.08.047.
  • Lenkowski JR, Raymond PA. Müller glia: stem cells for generation and regeneration of retinal neurons in teleost fish. Prog Retin Eye Res. 2014;40:94–123. doi:10.1016/j.preteyeres.2013.12.007.
  • Ramachandran R, Fausett BV, Goldman D. Ascl1a regulates Müller glia dedifferentiation and retinal regeneration through a Lin-28-dependent, let-7 microRNA signalling pathway. Nat Cell Biol. 2010;12(11):1101–07. doi:10.1038/ncb2115.
  • Melton C, Judson RL, Blelloch R. Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature. 2010;463(7281):621–26. doi:10.1038/nature08725.
  • Nelson CM, Gorsuch RA, Bailey TJ, Ackerman KM, Kassen SC, Hyde DR. Stat3 defines three populations of müller glia and is required for initiating maximal müller glia proliferation in the regenerating zebrafish retina. J Comp Neurol. 2012;520(18):4294–311. doi:10.1002/cne.23213.
  • Gorsuch RA, Lahne M, Yarka CE, Petravick ME, Li J, Hyde DR. Sox2 regulates Müller glia reprogramming and proliferation in the regenerating zebrafish retina via Lin28 and Ascl1a. Exp Eye Res. 2017;161:174–92. doi:10.1016/j.exer.2017.05.012.
  • Lust K, Sinn R, Pérez Saturnino A, Centanin L, Wittbrodt J. De novo neurogenesis by targeted expression of atoh7 to Müller glia cells. Development. 2016;143(11):1874–83. doi:10.1242/dev.135905.
  • Mills EA, Goldman D. The regulation of notch signaling in retinal development and regeneration. Curr Pathobiol Rep. 2017;5(4):323–31. doi:10.1007/s40139-017-0153-7.
  • Dorsky RI, Chang WS, Rapaport DH, Harris WA. Regulation of neuronal diversity in the Xenopus retina by Delta signalling. Nature. 1997;385(6611):67–70. doi:10.1038/385067a0.
  • Furukawa T, Mukherjee S, Bao ZZ, Morrow EM, Cepko CL. rax, Hes1, and notch1 promote the formation of Müller glia by postnatal retinal progenitor cells. Neuron. 2000;26(2):383–94. doi:10.1016/S0896-6273(00)81171-X.
  • Conner C, Ackerman KM, Lahne M, Hobgood JS, Hyde DR. Repressing notch signaling and expressing TNFα are sufficient to mimic retinal regeneration by inducing müller glial proliferation to generate committed progenitor cells. J Neurosci. 2014;34(43):14403–19. doi:10.1523/JNEUROSCI.0498-14.2014.
  • Elsaeidi F, Macpherson P, Mills EA, Jui J, Flannery JG, Goldman D. Notch suppression Collaborates with Ascl1 and Lin28 to unleash a regenerative response in fish retina, but not in mice. J Neurosci. 2018;38(9):2246–61. doi:10.1523/JNEUROSCI.2126-17.2018.
  • Sun L, Li P, Carr AL, Gorsuch R, Yarka C, Li J, Bartlett M, Pfister D, Hyde DR, Li L. Transcription of the SCL/TAL1 interrupting locus (Stil) is required for cell proliferation in adult zebrafish retinas. J Biol Chem. 2014;289(10):6934–40. doi:10.1074/jbc.M113.506295.
  • Thomas JL, Morgan GW, Dolinski KM, Thummel R. Characterization of the pleiotropic roles of sonic hedgehog during retinal regeneration in adult zebrafish. Exp Eye Res. 2018;166:106–15. doi:10.1016/j.exer.2017.10.003.
  • Kaur S, Gupta S, Chaudhary M, Khursheed MA, Mitra S, Kurup AJ, Ramachandran R. let-7 MicroRNA-mediated regulation of Shh signaling and the gene regulatory network is essential for retina regeneration. Cell Rep. 2018;23(5):1409–23. doi:10.1016/j.celrep.2018.04.002.
  • Fischer AJ, Reh TA. Müller glia are a potential source of neural regeneration in the postnatal chicken retina. Nat Neurosci. 2001;4(3):247–52. doi:10.1038/85090.
  • Hayes S, Nelson BR, Buckingham B, Reh TA. Notch signaling regulates regeneration in the avian retina. Dev Biol. 2007;312(1):300–11. doi:10.1016/j.ydbio.2007.09.046.
  • Ghai K, Zelinka C, Fischer AJ. Notch signaling influences neuroprotective and proliferative properties of mature Muller glia. J Neurosci. 2010;30(8):3101–12. doi:10.1523/JNEUROSCI.4919-09.2010.
  • Fischer AJ, McGuire CR, Dierks BD, Reh TA. Insulin and fibroblast growth factor 2 activate a neurogenic program in Müller glia of the chicken retina. J Neurosci. 2002;22(21):9387–98. doi:10.1523/JNEUROSCI.22-21-09387.2002.
  • Fischer AJ, Scott MA, Ritchey ER, Sherwood P. Mitogen-activated protein kinase-signaling regulates the ability of Müller glia to proliferate and protect retinal neurons against excitotoxicity. Glia. 2009;57(14):1538–52. doi:10.1002/glia.20868.
  • Todd L, Fischer AJ. Hedgehog signaling stimulates the formation of proliferating Müller glia-derived progenitor cells in the chick retina. Development. 2015;142(15):2610–22. doi:10.1242/dev.121616.
  • Gallina D, Palazzo I, Steffenson L, Todd L, Fischer AJ. Wnt/β-catenin-signaling and the formation of Müller glia-derived progenitors in the chick retina. Dev Neurobiol. 2016;76(9):983–1002. doi:10.1002/dneu.22370.
  • Todd L, Squires N, Suarez L, Fischer AJ. Jak/Stat signaling regulates the proliferation and neurogenic potential of Müller glia-derived progenitor cells in the avian retina. Sci Rep. 2016;6(1):35703. doi:10.1038/srep35703.
  • Zelinka CP, Volkov L, Goodman ZA, Todd L, Palazzo I, Bishop WA, Fischer AJ. mTor signaling is required for the formation of proliferating Müller glia-derived progenitor cells in the chick retina. Development. 2016;143(11):1859–73. doi:10.1242/dev.133215.
  • Palazzo I, Deistler K, Hoang TV, Blackshaw S, Fischer AJ. NF-κB signaling regulates the formation of proliferating Müller glia-derived progenitor cells in the avian retina. bioRxiv. 2019;614:1–19. doi:10.1101/724260.
  • Dyer MA, Cepko CL. Control of Müller glial cell proliferation and activation following retinal injury. Nat Neurosci. 2000;3(9):873–80. doi:10.1038/78774.
  • Karl MO, Hayes S, Nelson BR, Tan K, Buckingham B, Reh TA. Stimulation of neural regeneration in the mouse retina. Proc Natl Acad Sci. 2008;105(49):19508–13. doi:10.1073/pnas.0807453105.
  • Ooto S, Akagi T, Kageyama R, Akita J, Mandai M, Honda Y, Takahashi M. Potential for neural regeneration after neurotoxic injury in the adult mammalian retina. Proc Natl Acad Sci. 2004;101(37):13654–59. doi:10.1073/pnas.0402129101.
  • Wan J, Zheng H, Chen ZL, Xiao HL, Shen ZJ, Zhou GM. Preferential regeneration of photoreceptor from Müller glia after retinal degeneration in adult rat. Vision Res. 2008;48(2):223–34. doi:10.1016/j.visres.2007.11.002.
  • Joly S, Pernet V, Samardzija M, Grimm C. Pax6-positive müller glia cells express cell cycle markers but do not proliferate after photoreceptor injury in the mouse retina. Glia. 2011;59(7):1033–46. doi:10.1002/glia.21174.
  • Kugler M, Schlecht A, Fuchshofer R, Kleiter I, Aigner L, Tamm ER, Braunger BM. Heterozygous modulation of TGF-β signaling does not influence Müller glia cell reactivity or proliferation following NMDA-induced damage. Histochem Cell Biol. 2015;144(5):443–55. doi:10.1007/s00418-015-1354-y.
  • Osakada F, Ooto S, Akagi T, Mandai M, Akaike A, Takahashi M. Wnt signaling promotes regeneration in the retina of adult mammals. J Neurosci. 2007;27(15):4210–19. doi:10.1523/JNEUROSCI.4193-06.2007.
  • Liu B, Hunter DJ, Rooker S, Chan A, Paulus YM, Leucht P, Nusse Y, Nomoto H, Helms JA. Wnt signaling promotes Müller cell proliferation and survival after injury. Investig Ophthalmol Vis Sci. 2013;54(1):444–53. doi:10.1167/iovs.12-10774.
  • Yao K, Qiu S, Tian L, Snider WD, Flannery JG, Schaffer DV, Chen B. Wnt regulates proliferation and neurogenic potential of Müller glial cells via a Lin28/let-7 miRNA-dependent pathway in adult mammalian retinas. Cell Rep. 2016;17(1):165–78. doi:10.1016/j.celrep.2016.08.078.
  • Ueki Y, Wilken MS, Cox KE, Chipman L, Jorstad N, Sternhagen K, Simic M, Ullom K, Nakafuku M, Reh TA. Transgenic expression of the proneural transcription factor Ascl1 in Müller glia stimulates retinal regeneration in young mice. Proc Natl Acad Sci. 2015;112(44):13717–22. doi:10.1073/pnas.1510595112.
  • Jorstad NL, Wilken MS, Grimes WN, Wohl SG, VandenBosch LS, Yoshimatsu T, Wong RO, Rieke F, Reh TA. Stimulation of functional neuronal regeneration from Müller glia in adult mice. Nature. 2017;548(7665):103–07. doi:10.1038/nature23283.
  • Wan J, Zheng H, Xiao HL, She ZJ, Zhou GM. Sonic hedgehog promotes stem-cell potential of Müller glia in the mammalian retina. Biochem Biophys Res Commun. 2007;363(2):347–54. doi:10.1016/J.BBRC.2007.08.178.
  • Harada C, Guo X, Namekata K, Kimura A, Nakamura K, Tanaka K, Parada LF, Harada T. Glia- and neuron-specific functions of TrkB signalling during retinal degeneration and regeneration. Nat Commun. 2011;2(1):189. doi:10.1038/ncomms1190.
  • Wohl SG, Hooper MJ, Reh TA. MicroRNAs miR-25, let-7 and miR-124 regulate the neurogenic potential of Müller glia in mice. Development. 2019;(August)dev.179556. doi:10.1242/dev.179556.
  • Yao K, Qiu S, Wang YV, Park SJH, Mohns EJ, Mehta B, Liu X, Chang B, Zenisek D, Crair MC, et al. Restoration of vision after de novo genesis of rod photoreceptors in mammalian retinas. Nature. 2018;560(7719):484–88. doi:10.1038/s41586-018-0425-3.
  • Hamon A, García-García D, Ail D, Bitard J, Chesneau A, Dalkara D, Locker M, Roger JE, Perron M. Linking YAP to Müller glia quiescence exit in the degenerative retina. Cell Rep. 2019;27(6):1712–1725.e6. doi:10.1016/j.celrep.2019.04.045.
  • Rueda EM, Hall BM, Hill MC, Swinton PG, Tong X, Martin JF, Poché RA. The hippo pathway blocks mammalian retinal Müller glial cell reprogramming. Cell Rep. 2019;27(6):1637–1649.e6. doi:10.1016/j.celrep.2019.04.047.
  • Azzolin L, Zanconato F, Bresolin S, Forcato M, Basso G, Bicciato S, Cordenonsi M, Piccolo S. Role of TAZ as mediator of wnt signaling. Cell. 2012;151(7):1443–56. doi:10.1016/j.cell.2012.11.027.
  • Azzolin L, Panciera T, Soligo S, Enzo E, Bicciato S, Dupont S, Bresolin S, Frasson C, Basso G, Guzzardo V, et al. YAP/TAZ incorporation in the β-catenin destruction complex orchestrates the Wnt response. Cell. 2014;158(1):157–70. doi:10.1016/j.cell.2014.06.013.
  • Varelas X, Miller BW, Sopko R, Song S, Gregorieff A, Fellouse FA, Sakuma R, Pawson T, Hunziker W, McNeill H, et al. The hippo pathway regulates Wnt/β-catenin signaling. Dev Cell. 2010;18(4):579–91. doi:10.1016/j.devcel.2010.03.007.
  • Peng Y, Baulier E, Ke Y, Young A, Ahmedli NB, Schwartz SD, Farber DB. Human embryonic stem cells extracellular vesicles and their effects on immortalized human retinal Müller cells. Ljubimov A V., ed. PLoS One. 2018;13(3):e0194004. doi:10.1371/journal.pone.0194004.
  • Gallina D, Todd L, Fischer AJ. A comparative analysis of Müller glia-mediated regeneration in the vertebrate retina. Exp Eye Res. 2014;123:121. doi:10.1016/J.EXER.2013.06.019.
  • Löffler K, Schäfer P, Völkner M, Holdt T, Karl MO. Age-dependent Müller glia neurogenic competence in the mouse retina. Glia. 2015;63(10):1809–24. doi:10.1002/glia.22846.
  • Pearson RA, Ali RR. Unlocking the potential for endogenous repair to restore sight. Neuron. 2018;100(3):524–26. doi:10.1016/j.neuron.2018.10.035.
  • Boudreau-Pinsonneault C, Cayouette M. Cell lineage tracing in the retina: could material transfer distort conclusions? Dev Dyn. 2018;247(1):10–17. doi:10.1002/dvdy.24535.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.