1,043
Views
19
CrossRef citations to date
0
Altmetric
Posterior Segment

Vascular Regeneration for Ischemic Retinopathies: Hope from Cell Therapies

, , , , , & show all
Pages 372-384 | Received 02 Jul 2019, Accepted 11 Oct 2019, Published online: 31 Oct 2019

References

  • Antonetti DA, Klein R, Gardner TW. Diabetic retinopathy. N Engl J Med. 2012;366:1227–39. doi:10.1056/NEJMra1005073.
  • Leasher JL, Bourne RRA, Flaxman SR, Jonas JB, Keeffe J, Naidoo K, Pesudovs K, Price H, White RA, Wong TY, et al. Global estimates on the number of people blind or visually impaired by diabetic retinopathy: a meta-analysis from 1990 to 2010. Diabetes Care. 2016;39(9):1643–49. doi:10.2337/dc15-2171.
  • Rajasekar P, O’Neill CL, Eeles L, Stitt AW, Medina RJ. Epigenetic changes in endothelial progenitors as a possible cellular basis for glycemic memory in diabetic vascular complications. J Diabetes Res. 2015;2015:436879. doi:10.1155/2015/436879.
  • Cai J, Boulton M. The pathogenesis of diabetic retinopathy: old concepts and new questions. Eye (Lond). 2002;16(3):242–60. doi:10.1038/sj.eye.6700133.
  • Stitt AW, Curtis TM, Chen M, Medina RJ, McKay GJ, Jenkins A, Gardiner TA, Lyons TJ, Hammes HP, Simó R, et al. The progress in understanding and treatment of diabetic retinopathy. Prog Retin Eye Res. 2016;51:156–86. doi:10.1016/j.preteyeres.2015.08.001.
  • Fong DS, Girach A, Boney A. Visual side effects of successful scatter laser photocoagulation surgery for proliferative diabetic retinopathy: a literature review. Retina. 2007;27(7):816–24. doi:10.1097/IAE.0b013e318042d32c.
  • Sarao V, Veritti D, Boscia F, Lanzetta P. Intravitreal steroids for the treatment of retinal diseases. Sci World J. 2014;2014:989501. doi:10.1155/2014/989501.
  • Park YG, Roh Y-J. New diagnostic and therapeutic approaches for preventing the progression of diabetic retinopathy. J Diabetes Res. 2016;2016:1753584. doi:10.1155/2016/1753584.
  • Arevalo JF, Garcia-Amaris RA. Intravitreal bevacizumab for diabetic retinopathy. Curr Diabetes Rev. 2009;5(1):39–46. doi:10.2174/157339909787314121.
  • Elman MJ, Qin H, Aiello LP, Beck RW, Bressler NM, Ferris FL 3rd, Glassman AR, Maturi RK, Melia M. Intravitreal ranibizumab for diabetic macular edema with prompt versus deferred laser treatment: three-year randomized trial results. Ophthalmology. 2012;119(11):2312–18. doi:10.1016/j.ophtha.2012.08.022.
  • Medina RJ, O’Neill CL, Humphreys MW, Gardiner TA, Stitt AW. Outgrowth endothelial cells: characterization and their potential for reversing ischemic retinopathy. Investig Ophthalmol Vis Sci. 2010;51(11):5906–13. doi:10.1167/iovs.09-4951.
  • Reid E, Guduric-Fuchs J, O’Neill CL, Allen LD, Chambers SEJ, Stitt AW, Medina RJ. Preclinical evaluation and optimization of a cell therapy using human cord blood-derived endothelial colony-forming cells for ischemic retinopathies. Stem Cells Transl Med. 2018;7(1):59–67. doi:10.1002/sctm.17-0187.
  • Bashinsky AL. Retinopathy of Prematurity. N C Med J. 2017;78(2):124–28. doi:10.18043/ncm.78.2.124.
  • Liegl R, Hellström A, Smith L. Retinopathy of prematurity: the need for prevention. Eye Brain. 2016:91. doi:10.2147/eb.s99038.
  • Rivera JC, Sapieha P, Joyal JS, Duhamel F, Shao Z, Sitaras N, Picard E, Zhou E, Lachapelle P, Chemtob S. Understanding retinopathy of prematurity: update on pathogenesis. Neonatology. 2011;100(4):343–53. doi:10.1159/000330174.
  • Vanhaesebrouck S, Daniels H, Moons L, Vanhole C, Carmeliet P, De Zegher F. Oxygen-induced retinopathy in mice: amplification by neonatal IGF-I deficit and attenuation by IGF-I administration. Pediatr Res. 2009;65(3):307–10. doi:10.1203/PDR.0b013e3181973dc8.
  • Pérez-Muñuzuri A, Fernández-Lorenzo J, Couce-Pico M, Blanco-Teijeiro M, Fraga-Bermúdez J. Serum levels of IGF1 are a useful predictor of retinopathy of prematurity. Acta Paediatr Int J Paediatr. 2010;99(4):519–25. doi:10.1111/j.1651-2227.2009.01677.x.
  • Rivera JC, Holm M, Austeng D, Morken TS, Zhou TE, Beaudry-Richard A, Sierra EM, Dammann O, Chemtob S. Retinopathy of prematurity: inflammation, choroidal degeneration, and novel promising therapeutic strategies. J Neuroinflammation. 2017;14(1):1–14. doi:10.1186/s12974-017-0943-1.
  • Rivera JC, Dabouz R, Noueihed B, Omri S, Tahiri H, Chemtob S. Ischemic retinopathies: oxidative stress and inflammation. Oxid Med Cell Longev. 2017;2017:1–16. doi:10.1155/2017/3940241.
  • Smith LEH. Pathogenesis of retinopathy of prematurity. Semin Neonatol. 2003;8(6):469–73. doi:10.1016/S1084-2756(03)00119-2.
  • Mintz-Hittner HA, Kennedy KA, Chuang AZ. Efficacy of intravitreal bevacizumab for stage 3+ retinopathy of prematurity. N Engl J Med. 2011;364(7):603–15. doi:10.1056/NEJMoa1007374.
  • Hansen-Pupp I, Engström E, Niklasson A, Berg AC, Fellman V, Löfqvist C, Hellström A, Ley D. Fresh-frozen plasma as a source of exogenous insulin-like growth factor-I in the extremely preterm infant. J Clin Endocrinol Metab. 2009;94(2):477–82. doi:10.1210/jc.2008-1293.
  • Ehlers JP, Fekrat S. Retinal vein occlusion: beyond the acute event. Surv Ophthalmol. 2011;56(4):281–99. doi:10.1016/j.survophthal.2010.11.006.
  • Khayat M, Williams M, Lois N. Ischemic retinal vein occlusion: characterizing the more severe spectrum of retinal vein occlusion. Surv Ophthalmol. 2018;63(6):816–50. doi:10.1016/j.survophthal.2018.04.005.
  • Querques G, Griolo G, Casalino G, Garcia-Arumi J, Badal J, Zapata M, Boixadera A, Castillo VM, Bandello F. Retinal venous occlusions: diagnosis and choice of treatments. Ophthalmic Res. 2013;49:215–22. doi:10.1159/000336703.
  • Ip M, Hendrick A. Retinal vein occlusion review. Asia-Pacific J Ophthalmol. 2017;7(1):40–45. doi:10.22608/apo.2017163442.
  • Prisco D, Marcucci R. Retinal vein thrombosis: risk factors, pathogenesis and therapeutic approach. Pathophysiol Haemost Thromb. 2002;32(5–6):308–11. doi:10.1159/000073587.
  • Lim HB, Kim MS, Jo YJ, Kim JY. Prediction of retinal ischemia in branch retinal vein occlusion: spectral-domain optical coherence tomography study. Investig Ophthalmol Vis Sci. 2015;56(11):6622–29. doi:10.1167/iovs.15-17678.
  • Rehak M, Wiedemann P. Retinal vein thrombosis: pathogenesis and management. J Thromb Haemost. 2010;8(9):1886–94. doi:10.1111/j.1538-7836.2010.03909.x.
  • Brown DM, Campochiaro PA, Singh RP, Li Z, Gray S, Saroj N, Rundle AC, Rubio RG, Murahashi WY. Ranibizumab for macular edema following central retinal vein occlusion. Six-month primary end point results of a phase III study. Ophthalmology. 2010;117(6):1124–1133.e1. doi:10.1016/j.ophtha.2010.02.022.
  • Sun C, Li XX, He XJ, Zhang Q, Tao Y. Neuroprotective effect of minocycline in a rat model of branch retinal vein occlusion. Exp Eye Res. 2013;113:105–16. doi:10.1016/j.exer.2013.05.018.
  • Mendrinos E, Machinis TG, Pournaras CJ. Ocular ischemic syndrome. Surv Ophthalmol. 2010;55(1):2–34. http://dx.doi.org/10.1016/j.survophthal.2009.02.024
  • Terelak-Borys B, Skonieczna K, Grabska-Liberek I. Ocular ischemic syndrome - a systematic review. Med Sci Monit. 2012;18(8):RA138–RA144. http://www.ncbi.nlm.nih.gov/pubmed/22847215%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3560693
  • Malhotra R, Gregory-Evans K. Management of ocular ischaemic syndrome. Br J Ophthalmol. 2000;84(12):1428–31. doi:10.1136/bjo.84.12.1428.
  • Hayreh SS. Ischemic optic neuropathy. Prog Retin Eye Res. 2009;28(1):34–62. doi:10.1016/j.preteyeres.2008.11.002.
  • Valérie Biousse MD, Newman NJ. Ischemic optic neuropathies. N Engl J Med. 2015;372:2428–36. doi:10.1056/NEJMra1413352.
  • Hayreh SS. Ischemic optic neuropathies - Where are we now? Graefe’s arch. Clin Exp Ophthalmol. 2013;251(8):1873–84. doi:10.1007/s00417-013-2399-z.
  • Hayreh SS. Posterior ischaemic optic neuropathy: clinical features, pathogenesis, and management. Eye. 2004;18(11):1188–206. doi:10.1038/sj.eye.6701562.
  • Hayreh SS, Zimmerman MB. Non-arteritic anterior ischemic optic neuropathy: role of systemic corticosteroid therapy. Graefe’s Arch Clin Exp Ophthalmol. 2008;246(7):1029–46. doi:10.1007/s00417-008-0805-8.
  • Atkins EJ, Bruce BB, Newman NJ, Biousse V. Treatment of nonarteritic anterior ischemic optic neuropathy. Surv Ophthalmol. 2010;55(1):47–63. doi:10.1016/j.survophthal.2009.06.008.
  • Kador KE, Goldberg JL. Scaffolds and stem cells: delivery of cell transplants for retinal degenerations. Expert Rev Ophthalmol. 2012;7(5):459–70. doi:10.1586/eop.12.56.
  • Stitt AW, O’Neill CL, O’Doherty MT, Archer DB, Gardiner TA, Medina RJ. Vascular stem cells and ischaemic retinopathies. Prog Retin Eye Res. 2011;30(3):149–66. doi:10.1016/j.preteyeres.2011.02.001.
  • Mohan R, Kohner EM. Retinal revascularisation in diabetic retinopathy. Br J Ophthalmol. 1986;70(2):114–17. doi:10.1136/bjo.70.2.114.
  • Medina RJ, Barber CL, Sabatier F, Dignat-George F, Melero-Martin JM, Khosrotehrani K, Ohneda O, Randi AM, Chan JKY, Yamaguchi T, et al. Endothelial progenitors: A consensus statement on nomenclature. Stem Cells Transl Med. 2017;6(5):1316–20. doi:10.1002/sctm.16-0360.
  • Medina RJ, O’Neill CL, Sweeney M, Guduric-Fuchs J, Gardiner TA, Simpson DA, Stitt AW. Molecular analysis of endothelial progenitor cell (EPC) subtypes reveals two distinct cell populations with different identities. BMC Med Genomics. 2010;3:18. doi:10.1186/1755-8794-3-18.
  • Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, Oz MC, Hicklin DJ, Witte L, Moore MA, et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood. 2000;95(3):952–58. http://www.ncbi.nlm.nih.gov/pubmed/10648408
  • Bhattacharya V, McSweeney PA, Shi Q, Bruno B, Ishida A, Nash R, Storb RF, Sauvage LR, Hammond WP, Wu MH. Enhanced endothelialization and microvessel formation in polyester grafts seeded with CD34(+) bone marrow cells. Blood. 2000;95(2):581–85. doi:10.1182/blood.V95.2.581.
  • Solder E, Bockle BC, Nguyen VA, Furhapter C, Obexer P, Erdel M, Stossel H, Romani N, Sepp NT. Isolation and characterization of CD133+CD34+VEGFR-2+CD45- fetal endothelial cells from human term placenta. Microvasc Res. 2012;84(1):65–73. doi:10.1016/j.mvr.2012.03.005.
  • Alphonse RS, Vadivel A, Zhong S, McConaghy S, Ohls R, Yoder MC, Thebaud B. The isolation and culture of endothelial colony-forming cells from human and rat lungs. Nat Protoc. 2015;10(11):1697–708. doi:10.1038/nprot.2015.107.
  • Pham P, Vu N, Nguyen H, Phan N. Isolation of endothelial progenitor cells from human adipose tissue. Biomed Res Ther. 2016;3(05):645–52. doi:10.15419/bmrat.v3i05.98.
  • Yoder MC. Defining human endothelial progenitor cells. J Thromb Haemost. 2009;7(1):49–52. doi:10.1111/j.1538-7836.2009.03407.x.
  • Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM. Isolation of putative progenitor endothelial cells for angiogenesis. Science (80-.). 1997;275(5302):964–66. doi:10.1126/science.275.5302.964.
  • Raz O, Lev DL, Battler A, Lev EI. Pathways mediating the interaction between endothelial progenitor cells (EPCs) and platelets. PLoS One. 2014;9(6):e95156. doi:10.1371/journal.pone.0095156.
  • Friedlander M, Dorrell MI, Ritter MR, Marchetti V, Moreno SK, El-Kalay M, Bird AC, Banin E, Aguilar E. Progenitor cells and retinal angiogenesis. Angiogenesis. 2007;10(2):89–101. doi:10.1007/s10456-007-9070-4.
  • Engelhardt M, Lübbert M, Guo Y. CD34+ or CD34−: which is the more primitive? Leukemia. 2002;16(9):1603–08. doi:10.1038/sj.leu.2402620.
  • Park SS. Cell therapy applications for retinal vascular diseases: diabetic retinopathy and retinal vein occlusion. Investig Ophthalmol Vis Sci. 2016;57(5):ORSFj1–ORSFj10. doi:10.1167/iovs.15-17594.
  • Schatteman GC, Hanlon HD, Jiao C, Dodds SG, Christy BA. Blood-derived angioblasts accelerate blood-flow restoration in diabetic mice. J Clin Invest. 2000;106(4):571–78. doi:10.1172/JCI9087.
  • Mackie AR, Losordo DW. CD34-positive stem cells: in the treatment of heart and vascular disease in human beings. Hear Inst J. 2011;38(5):474–85. http://www.ncbi.nlm.nih.gov/pubmed/22163120%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC3231531
  • Schachinger V, Erbs S, Elsasser A, Haberbosch W, Hambrecht R, Holschermann H, Yu J, Corti R, Mathey DG, Hamm CW, et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med. 2006;355(12):1210–21. doi:10.1056/NEJMoa060186.
  • Losordo DW, Henry TD, Davidson C, Sup Lee J, Costa MA, Bass T, Mendelsohn F, Fortuin FD, Pepine CJ, Traverse JH, et al. Intramyocardial, autologous CD34+ cell therapy for refractory angina. Circ Res. 2011;109(4):428–36. doi:10.1161/CIRCRESAHA.111.245993.
  • Caballero S, Hazra S, Bhatwadekar A, Li Calzi S, Paradiso LJ, Miller LP, Chang LJ, Kern TS, Grant MB. Circulating mononuclear progenitor cells: differential roles for subpopulations in repair of retinal vascular injury. Investig Ophthalmol Vis Sci. 2013;54(4):3000–09. doi:10.1167/iovs.12-10280.
  • Caballero S, Sengupta N, Afzal A, Chang KH, Li Calzi S, Guberski DL, Kern TS, Grant MB. Ischemic vascular damage can be repaired by healthy, but not diabetic, endothelial progenitor cells. Diabetes. 2007;56(4):960–67. doi:10.2337/db06-1254.
  • Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F, Krasich R, Temm CJ, Prchal JT, Ingram DA. Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood. 2007;109(5):1801–09. doi:10.1182/blood-2006-08-043471.
  • Park SS, Caballero S, Bauer G, Shibata B, Roth A, Fitzgerald PG, Forward KI, Zhou P, McGee J, Telander DG, et al. Long-term effects of intravitreal injection of GMP-grade bone-marrow-derived CD34 + cells in NOD-SCID mice with acute ischemia-reperfusion injury. Investig Ophthalmol Vis Sci. 2012;53(2):986–94. doi:10.1167/iovs.11-8833.
  • Park SS, Bauer G, Abedi M, Pontow S, Panorgias A, Jonnal R, Zawadzki RJ, Werner JS, Nolta J. Intravitreal autologous bone marrow cd34+ cell therapy for ischemic and degenerative retinal disorders: preliminary phase 1 clinical trial findings. Investig Ophthalmol Vis Sci. 2015;56(1):81–89. doi:10.1167/iovs.14-15415.
  • O’Neill CL, McLoughlin KJ, Chambers SEJ, Guduric-Fuchs J, Stitt AW, Medina RJ. The vasoreparative potential of endothelial colony forming cells: a journey through pre-clinical studies. Front Med. 2018;5(October):1–9. doi:10.3389/fmed.2018.00273.
  • Sakimoto S, Marchetti V, Aguilar E, Lee K, Usui Y, Murinello S, Bucher F, Trombley JK, Fallon R, Wagey R, et al. CD44 expression in endothelial colony-forming cells regulates neurovascular trophic effect. JCI Insight. 2017;2(2):e89906. doi:10.1172/jci.insight.89906.
  • Prasain N, Lee MR, Vemula S, Meador JL, Yoshimoto M, Ferkowicz MJ, Fett A, Gupta M, Rapp BM, Saadatzadeh MR, et al. Differentiation of human pluripotent stem cells to cells similar to cord-blood endothelial colony-forming cells. Nat Biotechnol. 2014;32(11):1151–57. doi:10.1038/nbt.3048.
  • Cahoon JM, Rai RR, Carroll LS, Uehara H, Zhang X, O’Neil CL, Medina RJ, Das SK, Muddana SK, Olson PR, et al. Intravitreal AAV2.COMP-Ang1 prevents neurovascular degeneration in a murine model of diabetic retinopathy. Diabetes. 2015;64(12):4247–59. doi:10.2337/db14-1030.
  • O’Neill CL, Guduric-Fuchs J, Chambers SEJ, O’Doherty M, Bottazzi B, Stitt AW, Medina RJ. Endothelial cell-derived pentraxin 3 limits the vasoreparative therapeutic potential of circulating angiogenic cells. Cardiovasc Res. 2016;112(3):677–88. doi:10.1093/cvr/cvw209.
  • Medina RJ, O’Neill CL, O’Doherty TM, Knott H, Guduric-Fuchs J, Gardiner TA, Stitt AW. Myeloid angiogenic cells act as alternative M2 macrophages and modulate angiogenesis through interleukin-8. Mol Med. 2011;17(9–10):1045–55. doi:10.2119/molmed.2011.00129.
  • Urbich C, Heeschen C, Aicher A, Dernbach E, Zeiher AM, Dimmeler S. Relevance of monocytic features for neovascularization capacity of circulating endothelial progenitor cells. Circulation. 2003;108(20):2511–16. doi:10.1161/01.CIR.0000096483.29777.50.
  • Mutirangura P, Ruangsetakit C, Wongwanit C, Chinsakchai K, Porat Y, Belleli A, Czeiger D. Enhancing limb salvage by non-mobilized peripheral blood angiogenic cell precursors therapy in patients with critical limb ischemia. J Med Assoc Thai. 2009;92:320–27.
  • Taljaard M, Ward MR, Kutryk MJB, Courtman DW, Camack NJ, Goodman SG, Parker TG, Dick AJ, Galipeau J, Stewart DJ. Rationale and design of Enhanced Angiogenic Cell Therapy in Acute Myocardial Infarction (ENACT-AMI): the first randomized placebo-controlled trial of enhanced progenitor cell therapy for acute myocardial infarction. Am Heart J. 2010;159(3):354–60. doi:10.1016/j.ahj.2009.12.021.
  • Granton J, Langleben D, Kutryk MB, Camack N, Galipeau J, Courtman DW, Stewart DJ. Endothelial NO-synthase gene-enhanced progenitor cell therapy for pulmonary arterial hypertension: the PHACeT trial. Circ Res. 2015;117(7):645–54. doi:10.1161/CIRCRESAHA.114.305951.
  • Loomans CJM, de Koning EJP, Staal FJT, Rookmaaker MB, Verseyden C, de Boer HC, Verhaar MC, Braam B, Rabelink TJ, van Zonneveld A-J. Endothelial progenitor cell dysfunction: a novel concept in the pathogenesis of vascular complications of type 1 diabetes. Diabetes. 2004;53(1):195–99. doi:10.2337/diabetes.53.1.195.
  • Tepper OM, Galiano RD, Capla JM, Kalka C, Gagne PJ, Jacobowitz GR, Levine JP, Gurtner GC. Human endothelial progenitor cells from type II diabetics exhibit impaired proliferation, adhesion, and incorporation into vascular structures. Circulation. 2002;106(22):2781–86. doi:10.1161/01.CIR.0000039526.42991.93.
  • Awad O, Jiao C, Ma N, Dunnwald M, Schatteman GC. Obese diabetic mouse environment differentially affects primitive and monocytic endothelial cell progenitors. Stem Cells. 2005;23(4):575–83. doi:10.1634/stemcells.2004-0185.
  • Chambers SEJ, O’Neill CL, Guduric-Fuchs J, McLoughlin KJ, Liew A, Egan AM, O’Brien T, Stitt AW, Medina RJ. The vasoreparative function of myeloid angiogenic cells is impaired in diabetes through the induction of IL1beta. Stem Cells. 2018;36(6):834–43. doi:10.1002/stem.2810.
  • Barry FP, Murphy JM. Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol. 2004;36(4):568–84. doi:10.1016/j.biocel.2003.11.001.
  • Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells. 2007;25(11):2739–49. doi:10.1634/stemcells.2007-0197.
  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy. 2006;8(4):315–17. doi:10.1080/14653240600855905.
  • Liew A, O’Brien T. Therapeutic potential for mesenchymal stem cell transplantation in critical limb ischemia. Stem Cell Res Ther. 2012;3(4):28. doi:10.1186/scrt119.
  • Mendel TA, Clabough EBD, Kao DS, Demidova-Rice TN, Durham JT, Zotter BC, Seaman SA, Cronk SM, Rakoczy EP, Katz AJ, et al. Pericytes derived from adipose-derived stem cells protect against retinal vasculopathy. PLoS One. 2013;8(5):1–11. doi:10.1371/journal.pone.0065691.
  • Hajmousa G, Przybyt E, Pfister F, Paredes-Juarez GA, Moganti K, Busch S, Kuipers J, Klaassen I, van Luyn MJA, Krenning G, et al. Human adipose tissue-derived stromal cells act as functional pericytes in mice and suppress high-glucose-induced proinflammatory activation of bovine retinal endothelial cells. Diabetologia. 2018;61(11):2371–85. doi:10.1007/s00125-018-4713-0.
  • Yang Z, Li K, Yan X, Dong F, Zhao C. Amelioration of diabetic retinopathy by engrafted human adipose-derived mesenchymal stem cells in streptozotocin diabetic rats. Graefe’s Arch Clin Exp Ophthalmol. 2010;248(10):1415–22. doi:10.1007/s00417-010-1384-z.
  • Rajashekhar G. Mesenchymal stem cells: new players in retinopathy therapy. Front Endocrinol (Lausanne). 2014;5:59. doi:10.3389/fendo.2014.00059.
  • Ezquer M, Urzua CA, Montecino S, Leal K, Conget P, Ezquer F. Intravitreal administration of multipotent mesenchymal stromal cells triggers a cytoprotective microenvironment in the retina of diabetic mice. Stem Cell Res Ther. 2016;7(1):42. doi:10.1186/s13287-016-0299-y.
  • Terlizzi V, Kolibabka M, Burgess JK, Hammes HP, Harmsen MC. The pericytic phenotype of adipose tissue-derived stromal cells is promoted by NOTCH2. Stem Cells. 2018;36(2):240–51. doi:10.1002/stem.2726.
  • Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C, Daimon T, Fujihara M, Akimaru H, Sakai N, Shibata Y, et al. Autologous induced stem-cell-derived retinal cells for macular degeneration. N Engl J Med. 2017;376(11):1038–46. doi:10.1056/NEJMoa1608368.
  • Fang I-M, Yang C-M, Yang C-H, Chiou S-H, Chen M-S. Transplantation of induced pluripotent stem cells without C-Myc attenuates retinal ischemia and reperfusion injury in rats. Exp Eye Res. 2013;113:49–59. doi:10.1016/j.exer.2013.05.007.
  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76. doi:10.1016/j.cell.2006.07.024.
  • Park TS, Bhutto I, Zimmerlin L, Huo JS, Nagaria P, Miller D, Rufaihah AJ, Talbot C, Aguilar J, Grebe R, et al. Vascular progenitors from cord blood-derived induced pluripotent stem cells possess augmented capacity for regenerating ischemic retinal vasculature. Circulation. 2014;129(3):359–72. doi:10.1161/CIRCULATIONAHA.113.003000.
  • Trinh TLP, Calzi S, Shaw L, Li Yoder M, Grant MB. Promoting vascular repair in the retina: can stem/progenitor cells help? Eye Brain. 2016:113. doi:10.2147/EB.S94451.
  • Kang K, Lin R, Kupp D, Melero-martin JM. Endothelial colony forming cells and mesenchymal progenitor cells form blood vessels and increase blood flow in ischemic muscle. Sci Rep. 2017;7:770. doi:10.1038/s41598-017-00809-1.
  • Yoon C, Hur J, Park K, Kim J, Lee C, Oh I, Kim T, Cho H, Kang H, Chae I, et al. Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowth endothelial cells the role of angiogenic cytokines and matrix metalloproteinases. Circulation. 2005;112:1618–27. doi:10.1161/CIRCULATIONAHA.104.503433.
  • Leung EH, Flynn HWJ, Albini TA, Medina CA. Retinal detachment after subretinal stem cell transplantation. Ophthalmic Surg Lasers Imaging Retina. 2016;47(6):600–01. doi:10.3928/23258160-20160601-16.
  • Kuriyan AE, Albini TA, Townsend JH, Rodriguez M, Pandya HK, Leonard RE 2nd, Parrott MB, Rosenfeld PJ, Flynn HWJ, Goldberg JL. Vision loss after intravitreal injection of autologous “stem cells” for AMD. N Engl J Med. 2017;376(11):1047–53. doi:10.1056/NEJMoa1609583.
  • Saraf SS, Cunningham MA, Kuriyan AE, Read SP, Rosenfeld PJ, Flynn HWJ, Albini TA. Bilateral retinal detachments after intravitreal injection of adipose-derived “stem cells” in a patient with exudative macular degeneration. Ophthalmic Surg Lasers Imaging Retina. 2017;48(9):772–75. doi:10.3928/23258160-20170829-16.
  • Zampetaki A, Kirton JP, Xu Q. Vascular repair by endothelial progenitor cells. Cardiovasc Res. 2008;78(3):413–21. doi:10.1093/cvr/cvn081.
  • Lapidot T, Petit I. Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp Hematol. 2002;30(9):973–81. doi:10.1016/S0301-472X(02)00883-4.
  • Navarro-Sobrino M, Rosell A, Hernandez-Guillamon M, Penalba A, Ribó M, Alvarez-Sabín J, Montaner J. Mobilization, endothelial differentiation and functional capacity of endothelial progenitor cells after ischemic stroke. Microvasc Res. 2010;80(3):317–23. doi:10.1016/J.MVR.2010.05.008.
  • Yip H-K, Chang L-T, Chang W-N, Lu C-H, Liou C-W, Lan M-Y, Liu JS, Youssef AA, Chang H-W. Level and value of circulating endothelial progenitor cells in patients after acute ischemic stroke. Stroke. 2008;39(1):69–74. doi: 10.1161/STROKEAHA.107.489401.
  • Kong D, Melo LG, Gnecchi M, Zhang L, Mostoslavsky G, Liew CC, Pratt RE, Dzau VJ. Cytokine-induced mobilization of circulating endothelial progenitor cells enhances repair of injured arteries. Circulation. 2004;110(14):2039–46. doi:10.1161/01.CIR.0000143161.01901.BD.
  • Hu Q, Ke X, Zhang T, Chen Y, Huang Q, Deng B, Xie S, Wang J, Nie R. Hydrogen sulfide improves vascular repair by promoting endothelial nitric oxide synthase-dependent mobilization of endothelial progenitor cells. J Hypertens. 2019;37(5):972–84. doi:10.1097/HJH.0000000000001983.
  • Mani S, Li H, Untereiner A, Wu L, Yang G, Austin RC, Dickhout JG, Lhoták Š, Meng QH, Wang R. Decreased endogenous production of hydrogen sulfide accelerates atherosclerosis. Circulation. 2013;127(25):2523–34. doi:10.1161/CIRCULATIONAHA.113.002208.
  • Kong D, Melo LG, Mangi AA, Zhang L, Lopez-Ilasaca M, Perrella MA, Liew CC, Pratt RE, Dzau VJ. Enhanced inhibition of neointimal hyperplasia by genetically engineered endothelial progenitor cells. Circulation. 2004;109(14):1769–75. doi:10.1161/01.CIR.0000121732.85572.6F.
  • Spiel AO, Mayr FB, Leitner JM, Firbas C, Sieghart W, Jilma B. Simvastatin and rosuvastatin mobilize endothelial progenitor cells but do not prevent their acute decrease during systemic inflammation. Thromb Res. 2008;123(1):108–13. doi:10.1016/j.thromres.2008.03.007.
  • Shao H, Tan Y, Eton D, Yang Z, Uberti MG, Li S, Schulick A, Yu H. Statin and stromal cell-derived factor-1 additively promote angiogenesis by enhancement of progenitor cells incorporation into new vessels. Stem Cells. 2008;26(5):1376–84. doi:10.1634/stemcells.2007-0785.
  • Dai T, Hu Y, Zheng H. Hypoxia increases expression of CXC chemokine receptor 4 via activation of PI3K/Akt leading to enhanced migration of endothelial progenitor cells. Eur Rev Med Pharmacol Sci. 2017;21:1820–27.
  • Lutz AH, Blumenthal JB, Landers-Ramos RQ, Prior SJ. Exercise-induced endothelial progenitor cell mobilization is attenuated in impaired glucose tolerance and type 2 diabetes. J Appl Physiol. 2016;121(1):36–41. doi:10.1152/japplphysiol.00349.2016.
  • Zemani F, Silvestre J-S, Fauvel-Lafeve F, Bruel A, Vilar J, Bieche I, Laurendeau I, Galy-Fauroux I, Fischer AM, Boisson-Vidal C. Ex vivo priming of endothelial progenitor cells with SDF-1 before transplantation could increase their proangiogenic potential. Arterioscler Thromb Vasc Biol. 2008;28(4):644–50. doi:10.1161/ATVBAHA.107.160044.
  • Brunner S, Schernthaner G-H, Satler M, Elhenicky M, Hoellerl F, Schmid-Kubista KE, Zeiler F, Binder S, Schernthaner G. Correlation of different circulating endothelial progenitor cells to stages of diabetic retinopathy: first in vivo data. Invest Ophthalmol Vis Sci. 2009;50(1):392–98. doi:10.1167/iovs.08-1748.
  • Tian B, Li X, Shen L, Zhao M, Yu W. Auto-mobilized adult hematopoietic stem cells advance neovasculature in diabetic retinopathy of mice. Chin Med J (Engl). 2010;123:2265–68.
  • Zhang W, Yan H. Simvastatin increases circulating endothelial progenitor cells and reduces the formation and progression of diabetic retinopathy in rats. Exp Eye Res. 2012;105:1–8. doi:10.1016/j.exer.2012.09.014.
  • Burger D, Vinas JL, Akbari S, Dehak H, Knoll W, Gutsol A, Carter A, Touyz RM, Allan DS, Burns KD. Human endothelial colony-forming cells protect against acute kidney injury: role of exosomes. Am J Pathol. 2015;185(8):2309–23. doi:10.1016/j.ajpath.2015.04.010.
  • Martins M, Ribeiro D, Martins A, Reis RL, Neves NM. Extracellular vesicles derived from osteogenically induced human bone marrow mesenchymal stem cells can modulate lineage commitment. Stem Cell Reports. 2016;6(3):284–91. doi:10.1016/j.stemcr.2016.01.001.
  • Dellett M, Brown ED, Guduric-Fuchs J, O’Connor A, Stitt AW, Medina RJ, Simpson DA. MicroRNA-containing extracellular vesicles released from endothelial colony-forming cells modulate angiogenesis during ischaemic retinopathy. J Cell Mol Med. 2017;21(12):3405–19. doi:10.1111/jcmm.13251.
  • Mathew B, Ravindran S, Liu X, Torres L, Chennakesavalu M, Huang -C-C, Feng L, Zelka R, Lopez J, Sharma M, et al. Mesenchymal stem cell-derived extracellular vesicles and retinal ischemia-reperfusion. Biomaterials. 2019;197:146–60. doi:10.1016/j.biomaterials.2019.01.016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.