5,215
Views
20
CrossRef citations to date
0
Altmetric
Posterior Segment

Understanding the complexity of retina and pluripotent stem cell derived retinal organoids with single cell RNA sequencing: current progress, remaining challenges and future prospective

, , , &
Pages 385-396 | Received 13 Sep 2019, Accepted 22 Oct 2019, Published online: 03 Feb 2020

References

  • Wang YJ, Kaestner KH. Single-cell RNA-seq of the pancreatic islets––a promise not yet fulfilled? Cell Metab. [Internet]. 2019 Mar 5;29(3):539–44. [accessed 2019 Aug 13]. http://www.ncbi.nlm.nih.gov/pubmed/30581120
  • Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, Wang X, Bodeau J, Tuch BB, Siddiqui A, et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods. [Internet]. 2009 May 6;6(5):377–82. accessed 2019 Aug 13. http://www.nature.com/articles/nmeth.1315
  • Clark SJ, Lee HJ, Smallwood SA, Kelsey G, Reik W. Single-cell epigenomics: powerful new methods for understanding gene regulation and cell identity. Genome Biol. 2016 Apr 18;17(1):72.
  • Deng Q, Ramsköld D, Reinius B, Sandberg R. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science (80-). 2014;343:193–96.
  • Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I, Mildner A, Cohen N, Jung S, Tanay A, et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science (80-). 2014;343(6172):776–79.
  • Zeisel A, M͡oz-Manchado AB, Codeluppi S, Lönnerberg P, Manno GL, Juréus A, Marques S, Munguba H, He L, Betsholtz C, et al. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science (80-). 2015 Mar 6;347(6226):1138–42.
  • Yan L, Yang M, Guo H, Yang L, Wu J, Li R, Liu P, Lian Y, Zheng X, Yan J, et al. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol. 2013 Sep;20(9):1131–39.
  • Blakeley P, Fogarty NME, Del Valle I, Wamaitha SE, Hu TX, Elder K, Snell P, Christie L, Robson P, Niakan KK. Defining the three cell lineages of the human blastocyst by single-cell RNA-seq. Dev. 2015 Sep 23;142(18):3151–65.
  • Shalek AK, Satija R, Shuga J, Trombetta JJ, Gennert D, Lu D, Chen P, Gertner RS, Gaublomme JT, Yosef N, et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature. 2014 Jun;510(7505):363–69.
  • Stubbington MJT, Lönnberg T, Proserpio V, Clare S, Speak AO, Dougan G, Teichmann SA. T cell fate and clonality inference from single-cell transcriptomes. Nat Methods. 2016 Apr;13(4):329–32.
  • Treutlein B, Brownfield DG, Wu AR, Neff NF, Mantalas GL, Espinoza FH, Desai TJ, Krasnow MA, Quake SR. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature. 2014 May;509(7500):371–75.
  • Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, Lennon NJ, Livak KJ, Mikkelsen TS, Rinn JL. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014 Apr;32(4):381–86.
  • Petropoulos S, Edsgärd D, Reinius B, Deng Q, Panula SP, Codeluppi S, Plaza Reyes A, Linnarsson S, Sandberg R, Lanner F. Single-cell RNA-seq reveals lineage and x chromosome dynamics in human preimplantation embryos. Cell. 2016 May;165(4):1012–26.
  • Lönnberg T, Svensson V, James KR, Fernandez-Ruiz D, Sebina I, Montandon R, Soon MSF, Fogg LG, Nair AS, Liligeto UN, et al. Single-cell RNA-seq and computational analysis using temporal mixture modeling resolves TH1/TFH fate bifurcation in malaria. Sci Immunol. 2017 Mar;2(9):eaal2192.
  • Venteicher AS, Tirosh I, Hebert C, Yizhak K, Neftel C, Filbin MG, Hovestadt V, Escalante LE, Shaw ML, Rodman C, et al. Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq. Science. [Internet]. 2017;355(6332):eaai8478. accessed 2019 Sep 2. http://www.ncbi.nlm.nih.gov/pubmed/28360267
  • Wagner A, Regev A, Yosef N. Revealing the vectors of cellular identity with single-cell genomics. Nat Biotechnol. 2016 Nov;34(11):1145–60.
  • Liu S, Trapnell C. Single-cell transcriptome sequencing: recent advances and remaining challenges. F1000Res. 2016 Feb 17;5. pii: F1000 Faculty Rev-182. doi:10.12688/f1000research.7223.1eCollection 2016.
  • Young MD, Mitchell TJ, Vieira Braga FA, Tran MGB, Stewart BJ, Ferdinand JR, Collord G, Botting RA, Popescu D-M, Loudon KW, et al. Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors. Science. [Internet]. 2018;361(6402):594–99. [accessed 2019 Sep 2]. http://www.ncbi.nlm.nih.gov/pubmed/30093597
  • Wilson NK, Kent DG, Buettner F, Shehata M, Macaulay IC, Calero-Nieto FJ, Sánchez Castillo M, Oedekoven CA, Diamanti E, Schulte R, et al. Combined single-cell functional and gene expression analysis resolves heterogeneity within stem cell populations. Cell Stem Cell. [Internet]. 2015 Jun 4;16(6):712–24. [accessed 2019 Aug 13]. http://www.ncbi.nlm.nih.gov/pubmed/26004780
  • Islam S, Zeisel A, Joost S, La Manno G, Zajac P, Kasper M, Lönnerberg P, Linnarsson S. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods. [Internet]. 2014 Feb 22;11(2):163–66. [accessed 2019 Aug 13]. http://www.nature.com/articles/nmeth.2772
  • Kolodziejczyk AA, Kim JK, Svensson V, Marioni JC, Teichmann SA. The technology and biology of single-cell RNA sequencing. Mol Cell. [Internet]. 2015 May 21;58(4):610–20. [accessed 2019 Aug 13]. https://linkinghub.elsevier.com/retrieve/pii/S1097276515002610
  • Grün D, van Oudenaarden A. Design and analysis of single-cell sequencing experiments. Cell. [Internet]. 2015 Nov 5;163(4):799–810. [accessed 2019 Aug 13]. https://linkinghub.elsevier.com/retrieve/pii/S0092867415013537
  • Hashimshony T, Wagner F, Sher N, Yanai I. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Rep. [Internet]. 2012 Sep 27;2(3):666–73. [accessed 2019 Aug 13]. https://linkinghub.elsevier.com/retrieve/pii/S2211124712002288
  • Welby E, Lakowski J, Di Foggia V, Budinger D, Gonzalez-Cordero A, Lun ATL, Epstein M, Patel A, Cuevas E, Kruczek K, et al. Isolation and comparative transcriptome analysis of human fetal and iPSC-derived cone photoreceptor cells. Stem Cell Rep. [Internet]. 2017 Dec 12;9(6):1898–915. [accessed 2018 Mar 1]. http://www.ncbi.nlm.nih.gov/pubmed/29153988
  • Hu Y, Wang X, Hu B, Mao Y, Chen Y, Yan L, Yong J, Dong J, Wei Y, Wang W, et al. Dissecting the transcriptome landscape of the human fetal neural retina and retinal pigment epithelium by single-cell RNA-seq analysis. Demb J, editor. PLoS Biol. [Internet]. 2019 Jul 3;17(7):e3000365. [accessed 2019 Aug 14]. http://www.ncbi.nlm.nih.gov/pubmed/31269016
  • Phillips MJ, Jiang P, Howden S, Barney P, Min J, York NW, Chu LF, Capowski EE, Cash A, Jain S, et al. A novel approach to single cell RNA-sequence analysis facilitates in silico gene reporting of human pluripotent stem cell-derived retinal cell types. Stem Cells. 2018 Mar;36(3):313–24.
  • Collin J, Queen R, Zerti D, Dorgau B, Hussain R, Coxhead J, Cockell S, Lako M. Deconstructing retinal organoids: single cell RNA-seq reveals the cellular components of human pluripotent stem cell-derived retina. Stem Cells. [Internet]. 2019 Jan 12. [accessed 2019 Mar 14]. http://www.ncbi.nlm.nih.gov/pubmed/30548510
  • Collin J, Zerti D, Queen R, Santos-Ferreira T, Bauer R, Coxhead J, Hussain R, Steel D, Mellough C, Ader M, et al. CRX expression in pluripotent stem cell-derived photoreceptors marks a transplantable subpopulation of early cones. Stem Cells. [Internet]. 2019 Jan 30; cited 2019 Mar 14. http://www.ncbi.nlm.nih.gov/pubmed/30681766
  • Velten L, Anders S, Pekowska A, Järvelin AI, Huber W, Pelechano V, Steinmetz LM. Single‐cell polyadenylation site mapping reveals 3′ isoform choice variability. Mol Syst Biol. 2015 Jun;11(6):812.
  • Islam S, Kjällquist U, Moliner A, Zajac P, Fan J-B, Lönnerberg P, Linnarsson S. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq.Genome Res. [Internet]. 2011 Jul;21(7):1160–67. [accessed 2019 Sep 2]. http://www.ncbi.nlm.nih.gov/pubmed/21543516
  • Verboom K, Everaert C, Bolduc N, Livak KJ, Yigit N, Rombaut D, Anckaert J, Lee S, Venø MT, Kjems J, et al. SMARTer single cell total RNA sequencing. Nucleic Acids Res. 2019 Sep 19;47(16):e93.
  • Picelli S, Björklund ÅK, Faridani OR, Sagasser S, Winberg G, Sandberg R. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods. 2013 Nov;10(11):1096–98.
  • Picelli S, Faridani OR, Björklund ÅK, Winberg G, Sagasser S, Sandberg R. Full-length RNA-seq from single cells using smart-seq2. Nat Protoc. 2014 Jan;9(1):171–81.
  • Hashimshony T, Senderovich N, Avital G, Klochendler A, de Leeuw Y, Anavy L, Gennert D, Li S, Livak KJ, Rozenblatt-Rosen O, et al. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq. Genome Biol. [Internet]. 2016 Apr 28;17:77. accessed 2019 Sep 2. http://www.ncbi.nlm.nih.gov/pubmed/27121950
  • Islam S, Zeisel A, Joost S, La Manno G, Zajac P, Kasper M, Lönnerberg P, Linnarsson S. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods. 2014 Feb;11(2):163–66.
  • Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, Peshkin L, Weitz DA, Kirschner MW. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 2015 May 30;161(5):1187–201.
  • Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015 May;161(5):1202–14.
  • Soumillon M, Cacchiarelli D, Semrau S, Oudenaarden AV, Mikkelsen TS. Characterization of directed differentiation by high-throughput single-cell RNA-Seq. bioRxiv. 2014 Mar:003236.
  • Haque A, Engel J, Teichmann SA, Lönnberg T. A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications. Genome Med. 2017 Aug 18;9(1):75. doi:10.1186/s13073-017-0467-4
  • Svensson V, Natarajan KN, Ly L-H, Miragaia RJ, Labalette C, Macaulay IC, Cvejic A, Teichmann SA. Power analysis of single-cell RNA-sequencing experiments. Nat Methods. 2017 Apr;14(4):381–87.
  • Brennecke P, Anders S, Kim JK, Kołodziejczyk AA, Zhang X, Proserpio V, Baying B, Benes V, Teichmann SA, Marioni JC, et al. Accounting for technical noise in single-cell RNA-seq experiments. Nat Methods. 2013 Nov;10(11):1093–95.
  • Grün D, Kester L, van Oudenaarden A. Validation of noise models for single-cell transcriptomics. Nat Methods. 2014 Jun;11(6):637–40.
  • Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M, Leonhardt H, Heyn H, Hellmann I, Enard W. Comparative analysis of single-cell RNA sequencing methods. Mol Cell. 2017 Feb 16;65(4):631–643.e4.
  • Kivioja T, Vähärautio A, Karlsson K, Bonke M, Enge M, Linnarsson S, Taipale J. Counting absolute numbers of molecules using unique molecular identifiers. Nat Methods. 2012 Jan;9(1):72–74.
  • Wu AR, Neff NF, Kalisky T, Dalerba P, Treutlein B, Rothenberg ME, Mburu FM, Mantalas GL, Sim S, Clarke MF, et al. Quantitative assessment of single-cell RNA-sequencing methods. Nat Methods. 2014 Jan;11(1):41–46.
  • Bakken TE, Hodge RD, Miller JA, Yao Z, Nguyen TN, Aevermann B, Barkan E, Bertagnolli D, Casper T, Dee N, et al. Single-nucleus and single-cell transcriptomes compared in matched cortical cell types. PLoS One. 2018 Dec 1;13(12):e0209648.
  • Lake BB, Codeluppi S, Yung YC, Gao D, Chun J, Kharchenko PV, Linnarsson S, Zhang K. A comparative strategy for single-nucleus and single-cell transcriptomes confirms accuracy in predicted cell-type expression from nuclear RNA. Sci Rep. 2017 Dec 1;7(1):6031.
  • Grindberg RV, Yee-Greenbaum JL, McConnell MJ, Novotny M, O’Shaughnessy AL, Lambert GM, Araúzo-Bravo MJ, Lee J, Fishman M, Robbins GE, et al. RNA-sequencing from single nuclei. Proc Natl Acad Sci. [Internet]. 2013 Dec 3;110(49):19802–07. accessed 2019 Oct 22. https://www.pnas.org/content/110/49/19802
  • Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. [Internet]. 2012;29(1):15–21. doi:10.1093/bioinformatics/bts635.
  • Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, McDermott GP, Zhu J, et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun. [Internet]. 2017;8:14049. doi:10.1038/ncomms14049.
  • Petukhov V, Guo J, Baryawno N, Severe N, Scadden DT, Samsonova MG, Kharchenko PV. DropEst: pipeline for accurate estimation of molecular counts in droplet-based single-cell RNA-seq experiments. Genome Biol. [Internet]. 2018;19(1):78. doi:10.1186/s13059-018-1449-6.
  • Stegle O, Teichmann SA, Marioni JC. Computational and analytical challenges in single-cell transcriptomics. Nat Rev Genet. [Internet]. 2015;16:133. doi:10.1038/nrg3833.
  • Zappia L, Phipson B, Oshlack A. Exploring the single-cell RNA-seq analysis landscape with the scRNA-tools database. PLoS Comput Biol. [Internet]. 2018;14(6):e1006245. doi:10.1371/journal.pcbi.1006245.
  • Davis S, Kutum R, Zappia L, Sorenson J, Kiselev V, olivier P, Botvinnik O, Korthauer K, Gitter A, Campbell KR, et al. seandavi/awesome-single-cell: 2018-06-20-1. 2018 Jun 20.
  • Amezquita RA, Carey VJ, Carpp LN, Geistlinger L, Lun ATL, Marini F, Rue-Albrecht K, Risso D, Soneson C, Waldron L, et al. Orchestrating single-cell analysis with bioconductor. bioRxiv. [Internet]. 2019. 590562. https://www.biorxiv.org/content/biorxiv/early/2019/03/27/590562.full.pdf
  • Luecken MD, Theis FJ. Current best practices in single-cell RNA-seq analysis: a tutorial. Mol Syst Biol. [Internet]. 2019;15(6):e8746–e8746. https://www.ncbi.nlm.nih.gov/pubmed/31217225
  • McCarthy DJ, Campbell KR, Lun ATL, Wills QF. Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in. R Bioinformatics. [Internet]. 2017;33(8):1179–86. doi:10.1093/bioinformatics/btw777.
  • Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck III WM, Hao Y, Stoeckius M, Smibert P, Satija R. Comprehensive integration of single-cell data. Cell. [Internet]. 2019;177(7):1888–1902.e21. doi:10.1016/j.cell.2019.05.031.
  • Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. [Internet]. 2018;19(1):15. doi:10.1186/s13059-017-1382-0.
  • DePasquale EAK, Schnell DJ, Valiente-Alandí Í, Blaxall BC, Grimes HL, Singh H, Salomonis N. DoubletDecon: cell-state aware removal of single-cell RNA-seq doublets. bioRxiv. [Internet]. 2018:364810. https://www.biorxiv.org/content/biorxiv/early/2018/07/08/364810.full.pdf
  • McGinnis CS, Murrow LM, Gartner ZJ. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. [Internet]. 2019;8(4):329–337.e4. http://www.sciencedirect.com/science/article/pii/S2405471219300730
  • Bais AS, Kostka D. scds: computational annotation of doublets in single cell RNA sequencing data. bioRxiv. [Internet]. 2019:564021. https://www.biorxiv.org/content/biorxiv/early/2019/02/28/564021.full.pdf
  • Wolock SL, Lopez R, Klein AM. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. [Internet]. 2019;8(4):281–291.e9. doi:10.1016/j.cels.2018.11.005.
  • Hafemeister C, Satija R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. bioRxiv. [Internet]. 2019:576827. http://biorxiv.org/content/early/2019/03/18/576827.abstract
  • Cole MB, Risso D, Wagner A, DeTomaso D, Ngai J, Purdom E, Dudoit S, Yosef N. Performance assessment and selection of normalization procedures for single-cell RNA-seq. Cell Syst. 2019 Apr 24;8(4):315–328.e8.
  • Lun ATL, Bach K, Marioni JC. Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol. [Internet]. 2016;17:75. https://www.ncbi.nlm.nih.gov/pubmed/27122128
  • Vallejos CA, Risso D, Scialdone A, Dudoit S, Marioni JC. Normalizing single-cell RNA sequencing data: challenges and opportunities. Nat Methods. [Internet]. 2017 May 15;14(6):565–71. https://www.ncbi.nlm.nih.gov/pubmed/28504683.
  • Finak G, McDavid A, Yajima M, Deng J, Gersuk V, Shalek AK, Slichter CK, Miller HW, McElrath MJ, Prlic M, et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. [Internet]. 2015;16:278. https://www.ncbi.nlm.nih.gov/pubmed/26653891
  • Haghverdi L, Lun ATL, Morgan MD, Marioni JC. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat Biotechnol. [Internet]. 2018 Apr 02;36(5):421–27. https://www.ncbi.nlm.nih.gov/pubmed/29608177.
  • Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. [Internet]. 2018;36:411. doi:10.1038/nbt.4096.
  • Korsunsky I, Fan J, Slowikowski K, Zhang F, Wei K, Baglaenko Y, Brenner M, Loh P-R, Raychaudhuri S. Fast, sensitive, and accurate integration of single cell data with Harmony. bioRxiv. [Internet]. 2018:461954. https://www.biorxiv.org/content/biorxiv/early/2018/11/05/461954.full.pdf
  • Kiselev VY, Andrews TS, Hemberg M. Challenges in unsupervised clustering of single-cell RNA-seq data. Nat Rev Genet. [Internet]. 2019;20(5):273–82. doi:10.1038/s41576-018-0088-9.
  • Zeisel A, Muñoz-Manchado AB, Codeluppi S, Lönnerberg P, La Manno G, Juréus A, Marques S, Munguba H, He L, Betsholtz C, et al. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science (80-) [Internet]. 2015;347:1138–42. https://science.sciencemag.org/content/sci/347/6226/1138.full.pdf
  • Ketchen DJ, Shook CL. The application of cluster analysis in strategic management research: an analysis and critique. Strateg Manag J. 1996;17:441–58.
  • Lovmar L, Ahlford A, Jonsson M, Syvänen AC. Silhouette scores for assessment of SNP genotype clusters. BMC Genomics. 2005 Mar 10;6(1):35.
  • Zappia L, Oshlack A. Clustering trees: a visualization for evaluating clusterings at multiple resolutions. Gigascience. [Internet]. 2018;7(7):giy083. doi:10.1093/gigascience/giy083.
  • van der Maaten L, Hinton G. Visualizing data using t-SNE. J Mach Learn Res. 2008;9:2579–605.
  • McInnes L, Healy J, Melville J UMAP: uniform manifold approximation and projection for dimension reduction. 2018 Feb 9 [accessed 2019 Sep 2]. http://arxiv.org/abs/1802.03426
  • Saelens W, Cannoodt R, Todorov H, Saeys Y. A comparison of single-cell trajectory inference methods. Nat Biotechnol. [Internet]. 2019;37(5):547–54. doi:10.1038/s41587-019-0071-9.
  • Risso D, Perraudeau F, Gribkova S, Dudoit S, Vert J-P. A general and flexible method for signal extraction from single-cell RNA-seq data. Nat Commun. [Internet]. 2018;9(1):284. doi:10.1038/s41467-017-02554-5.
  • Vallejos CA, Marioni JC, Richardson S. BASiCS: bayesian analysis of single-cell sequencing data. PLoS Comput Biol. [Internet]. 2015;11(6):e1004333. doi:10.1371/journal.pcbi.1004333.
  • Kiselev VY, Yiu A, Hemberg M. scmap: projection of single-cell RNA-seq data across data sets. Nat Methods. [Internet]. 2018;15:359. doi:10.1038/nmeth.4644.
  • Pliner HA, Shendure J, Trapnell C. Supervised classification enables rapid annotation of cell atlases. bioRxiv. [Internet]. 2019:538652. https://www.biorxiv.org/content/biorxiv/early/2019/02/04/538652.full.pdf
  • Marquardt T, Gruss P. Generating neuronal diversity in the retina: one for nearly all.Trends Neurosci. [Internet]. 2002 Jan;25(1):32–38. [accessed 2019 Sep 2]. http://www.ncbi.nlm.nih.gov/pubmed/11801336
  • Hoshino A, Ratnapriya R, Brooks MJ, Chaitankar V, Wilken MS, Zhang C, Starostik MR, Gieser L, La Torre A, Nishio M, et al. Molecular anatomy of the developing human retina. Development. 2019 Jan 29;142(2):pii: dev169474. doi:10.1242/dev.169474
  • Mellough CB, Roman B, Joseph C, Dorgau B, Zerti D, Dolan DWP, Jones CM, Izuogu OG, Min Y, Dean H, et al. An integrated transcriptional analysis of the developing human retina. Under Rev. 2018;146(2):dev169474.
  • Macosko EZ, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM, Trombetta JJ, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015;161:1202–14.
  • Rheaume BA, Jereen A, Bolisetty M, Sajid MS, Yang Y, Renna K, Sun L, Robson P, Trakhtenberg EF. Single cell transcriptome profiling of retinal ganglion cells identifies cellular subtypes. Nat Commun. [Internet]. 2018;9(1):2759. [accessed 2019 Sep 2]. http://www.ncbi.nlm.nih.gov/pubmed/30018341
  • Baden T, Berens P, Franke K, Román Rosón M, Bethge M, Euler T. The functional diversity of retinal ganglion cells in the mouse. Nature. 2016 Jan 21;529(7586):345–50.
  • Shekhar K, Lapan SW, Whitney IE, Tran NM, Macosko EZ, Kowalczyk M, Adiconis X, Levin JZ, Nemesh J, Goldman M, et al. Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell. 2016 Aug 25;166(5):1308–1323.e30.
  • Lukowski SW, Lo CY, Sharov AA, Nguyen Q, Fang L, Hung SS, Zhu L, Zhang T, Grünert U, Nguyen T, et al. A single‐cell transcriptome atlas of the adult human retina. Embo J. [Internet]. 2019 Aug 22;38(18). [accessed 2019 Sep 2]. https://doi.org/10.15252/embj.2018100811
  • Voigt AP, Whitmore SS, Flamme-Wiese MJ, Riker MJ, Wiley LA, Tucker BA, Stone EM, Mullins RF, Scheetz TE. Molecular characterization of foveal versus peripheral human retina by single-cell RNA sequencing. Exp Eye Res. 2019 Jul 1;184:234–42.
  • Peng YR, Shekhar K, Yan W, Herrmann D, Sappington A, Bryman GS, van Zyl T, Do MTH, Regev A, Sanes JR. Molecular classification and comparative taxonomics of foveal and peripheral cells in primate retina. Cell. 2019 Feb 21;176(5):1222–1237.e22.
  • Cepko CL, Austin CP, Yang X, Alexiades M, Ezzeddine D. Cell fate determination in the vertebrate retina. Proc Natl Acad Sci. [Internet]. 1996 Jan 23;93(2):589–95. [accessed 2019 Sep 2]. https://doi.org/10.1073/pnas.93.2.589
  • Livesey FJ, Cepko CL. Vertebrate neural cell-fate determination: lessons from the retina. Nat Rev Neurosci. 2001;2:109–18.
  • Turner DL, Cepko CL. A common progenitor for neurons and glia persists in rat retina late in development.Nature. [Internet]. 1987 Jul;328(6126):131–36. accessed 2019 Sep 2. http://www.nature.com/articles/328131a0
  • Cayouette M, Barres BA, Raff M. Importance of intrinsic mechanisms in cell fate decisions in the developing rat retina. Neuron. 2003 Dec 4;40(5):897–904.
  • Rapaport DH, Patheal SL, Harris WA. Cellular competence plays a role in photoreceptor differentiation in the developing Xenopus retina. J Neurobiol. [Internet]. 2001 Nov 5;49(2):129–41. [accessed 2019 Sep 2]. http://www.ncbi.nlm.nih.gov/pubmed/11598920
  • Belliveau MJ, Cepko CL. Extrinsic and intrinsic factors control the genesis of amacrine and cone cells in the rat retina.Development. [Internet]. 1999 Feb;126(3):555–66. accessed 2019 Sep 2. http://www.ncbi.nlm.nih.gov/pubmed/9876184
  • Xiang M. Intrinsic control of mammalian retinogenesis. Cell Mol Life Sci. 2013;70:2519–32.
  • Bassett EA, Wallace VA. Cell fate determination in the vertebrate retina. Trends Neurosci. 2012;35:565–73.
  • Gomes FLAF, Zhang G, Carbonell F, Correa JA, Harris WA, Simons BD, Cayouette M. Reconstruction of rat retinal progenitor cell lineages in vitro reveals a surprising degree of stochasticity in cell fate decisions. Development. 2011 Jan 15;138(2):227–35.
  • Clark BS, Stein-O’Brien GL, Shiau F, Cannon GH, Davis-Marcisak E, Sherman T, Santiago CP, Hoang TV, Rajaii F, James-Esposito RE, et al. Single-cell RNA-seq analysis of retinal development identifies NFI factors as regulating mitotic exit and late-born cell specification. Neuron. 2019 Jun 19;102(6):1111–1126.e5.
  • Kretzschmar K, Clevers H. Organoids: modeling development and the stem cell niche in a dish. Dev Cell. [Internet]. 2016;38(6):590–600. [accessed 2019 Aug 27]. http://www.ncbi.nlm.nih.gov/pubmed/27676432
  • Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ, Ferguson C, Parton RG, Wolvetang EJ, Roost MS, Lopes SMCDS, et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature. [Internet]. 2016;536(7615):238. accessed 2019 Sep 2. http://www.ncbi.nlm.nih.gov/pubmed/27120161
  • Morizane R, Lam AQ, Freedman BS, Kishi S, Valerius MT, Bonventre JV. Nephron organoids derived from human pluripotent stem cells model kidney development and injury.Nat Biotechnol. [Internet]. 2015 Nov;33(11):1193–200. [accessed 2019 Sep 2]. http://www.ncbi.nlm.nih.gov/pubmed/26458176
  • Camp G, Sekine K, Gerber T, Loeffler-Wirth H, Binder H, Gac M, Kanton S, Kageyama J, Damm G, Seehofer D, et al. Multilineage communication regulates human liver bud development from pluripotency. Nat Publ Gr. 2017;546(7659):533.
  • Huch M, Gehart H, van Boxtel R, Hamer K, Blokzijl F, Verstegen MMA, Ellis E, van Wenum M, Fuchs SA, de Ligt J, et al. Long-term culture of genome-stable bipotent stem cells from adult human. Cell. 2015;160(1–2):299–312.
  • McCauley HA, Wells JM. Pluripotent stem cell-derived organoids: using principles of developmental biology to grow human tissues in a dish. Development. 2017 Mar 15;144(6):958–62.
  • Harder JL, Menon R, Otto EA, Zhou J, Eddy S, Wys NL, O’Connor C, Luo J, Nair V, Cebrian C, et al. Organoid single cell profiling identifies a transcriptional signature of glomerular disease. JCI Insight. 2019 Jan 10;4(1):e122697.
  • Camp JG, Badsha F, Florio M, Kanton S, Gerber T, Wilsch-Bräuninger M, Lewitus E, Sykes A, Hevers W, Lancaster M, et al. Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):15672–77.
  • Renner M, Lancaster MA, Bian S, Choi H, Ku T, Peer A, Chung K, Knoblich JA. Self-organized developmental patterning and differentiation in cerebral organoids. Embo J. [Internet]. 2017;36(10):1316–29. [accessed 2019 Aug 27]. http://www.ncbi.nlm.nih.gov/pubmed/28283582
  • Quadrato G, Nguyen T, Macosko EZ, Sherwood JL, Yang SM, Berger DR, Maria N, Scholvin J, Goldman M, Kinney JP, et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature. 2017 May 4;545(7652):48–53.
  • Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, Sekiguchi K, Adachi T, Sasai Y. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature. 2011 Apr 7;472(7341):51–58.
  • Nakano T, Ando S, Takata N, Kawada M, Muguruma K, Sekiguchi K, Saito K, Yonemura S, Eiraku M, Sasai Y. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell. [Internet]. 2012 Jun 14;10(6):771–85. [accessed 2019 Mar 14]. https://linkinghub.elsevier.com/retrieve/pii/S1934590912002421
  • Llonch S, Carido M, Ader M. Organoid technology for retinal repair. Dev Biol. [Internet]. 2018 Jan 15;433(2):132–43. [accessed 2019 Mar 14]. https://linkinghub.elsevier.com/retrieve/pii/S0012160617306620
  • Mellough CB, Collin J, Sernagor E, Wride NK, Steel DHW, Lako M. Lab generated retina: realizing the dream.Vis Neurosci. [Internet]. 2014 Sep;31(4–5):317–32. accessed 2019 Sep 4. http://www.ncbi.nlm.nih.gov/pubmed/24847731
  • Hallam D, Hilgen G, Dorgau B, Zhu L, Yu M, Bojic S, Hewitt P, Schmitt M, Uteng M, Kustermann S, et al. Human-induced pluripotent stem cells generate light responsive retinal organoids with variable and nutrient-dependent efficiency. Stem Cells. [Internet]. 2018 Oct; 36(10):1535–51. [cited 2019 Mar 14]. doi:10.1002/stem.2883.
  • Dorgau B, Felemban M, Hilgen G, Kiening M, Zerti D, Hunt NC, Doherty M, Whitfield P, Hallam D, White K. et al. Decellularised extracellular matrix-derived peptides from neural retina and retinal pigment epithelium enhance the expression of synaptic markers and light responsiveness of human pluripotent stem cell derived retinal organoids. Biomaterials. [Internet]. 2019 Apr;199:63–75. accessed 2019 Aug 13. http://www.ncbi.nlm.nih.gov/pubmed/30738336
  • Collin J, Mellough CB, Dorgau B, Przyborski S, Moreno-Gimeno I, Lako M. Using zinc finger nuclease technology to generate CRX-reporter human embryonic stem cells as a tool to identify and study the emergence of photoreceptors precursors during pluripotent stem cell differentiation. Stem Cells. 2015 Nov 27. 2016;34(2):311–21.
  • Phillips MJ, Capowski EE, Petersen A, Jansen AD, Barlow K, Edwards KL, Gamm DM. Generation of a rod-specific NRL reporter line in human pluripotent stem cells. Sci Rep. 2018;8:2370.
  • Kiselev VY, Kirschner K, Schaub MT, Andrews T, Yiu A, Chandra T, Natarajan KN, Reik W, Barahona M, Green AR, et al. SC3: consensus clustering of single-cell RNA-seq data. Nat Methods. [Internet]. 2017 May 27;14(5):483–86. [accessed 2019 Aug 13]. http://www.nature.com/articles/nmeth.4236
  • Kim S, Lowe A, Dharmat R, Lee S, Owen LA, Wang J, Shakoor A, Li Y, Morgan DJ, Hejazi AA, et al. Generation, transcriptome profiling, and functional validation of cone-rich human retinal organoids. Proc Natl Acad Sci U S A. [Internet]. 2019 May 28;116(22):10824–33. [cited 2019 Aug 13]. doi:10.1073/pnas.1901572116.
  • Daniszewski M, Senabouth A, Nguyen QH, Crombie DE, Lukowski SW, Kulkarni T, Sluch VM, Jabbari JS, Chamling X, Zack DJ, et al. Single cell RNA sequencing of stem cell-derived retinal ganglion cells. Sci Data [Internet]. 2018;5:180013. [accessed 2019 Aug 27]. http://www.ncbi.nlm.nih.gov/pubmed/29437159.
  • Langer KB, Ohlemacher SK, Phillips MJ, Fligor CM, Jiang P, Gamm DM, Meyer JS. Retinal ganglion cell diversity and subtype specification from human pluripotent stem cells. Stem Cell Rep. 2018 Apr 10;10(4):1282–93.
  • Rousso DL, Qiao M, Kagan RD, Yamagata M, Palmiter RD, Sanes JR. Two pairs of ON and OFF retinal ganglion cells are defined by intersectional patterns of transcription factor expression. Cell Rep. [Internet]. 2016;15(9):1930–44. [accessed 2019 Aug 30]. http://www.ncbi.nlm.nih.gov/pubmed/27210758
  • Puelles L. Contributions to neuroembryology of Santiago Ramon y Cajal (1852–1934) and Jorge F. Tello (1880–1958). Vol. 53. Int J Dev Biol. 2009;53:1145–60.
  • Ståhl PL, Salmén F, Vickovic S, Lundmark A, Navarro JF, Magnusson J, Giacomello S, Asp M, Westholm JO, Huss M, et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science. American Association for the Advancement of Science. 2016;353:78–82.
  • Keller PJ, Ahrens MB. Visualizing whole-brain activity and development at the single-cell level using light-sheet microscopy. Neuron. Cell Press. 2015;85:462–83.