1,068
Views
10
CrossRef citations to date
0
Altmetric
Anterior Segment

Eye Socket Regeneration and Reconstruction

, , &
Pages 253-264 | Received 15 Oct 2019, Accepted 30 Dec 2019, Published online: 10 Jan 2020

References

  • Jung SK, Cho WK, Paik JS, Yang SW. Long-term surgical outcomes of porous polyethylene orbital implants: a review of 314 cases. Br. J. Ophthalmol. 2012;96(4):494–98. doi:10.1136/bjophthalmol-2011-300132.
  • Yoon JS, Lew H, Kim SJ, Lee SY. Exposure rate of hydroxyapatite orbital implants: a 15-year experience of 802 cases. Ophthalmology. 2008;115(3):566–572. e562. doi:10.1016/j.ophtha.2007.06.014.
  • Ralph R. Conjunctival goblet cell density in normal subjects and in dry eye syndromes. Invest. Ophthalmol. Visual Sci. 1975;14:299–302.
  • Tawfik HA, Raslan AO, Talib N. Surgical management of acquired socket contracture. Curr. Opin. Ophthalmol. 2009;20(5):406–11. doi:10.1097/ICU.0b013e32832ed85b.
  • Kheirkhah A, Blanco G, Casas V, Hayashida Y, Raju VK, Tseng SC. Surgical strategies for fornix reconstruction based on symblepharon severity. Am. J. Ophthalmol. 2008;146(2):266–275. e264. doi:10.1016/j.ajo.2008.03.028.
  • Henderson HW, Collin JR. Mucous membrane grafting. Dev. Ophthalmol. 2008;41:230–42.
  • Lubin MF, Dodson TF, Winawer NH. Medical management of the surgical patient: a textbook of perioperative medicine. Cambridge, UK: Cambridge University Press; 2013.
  • Clearfield E, Muthappan V, Wang X, Kuo IC. Conjunctival autograft for pterygium. Cochrane Database Syst. Rev. 2016. doi:10.1002/14651858.CD011349.pub2.
  • Nuzzi R, Tridico F. How to minimize pterygium recurrence rates: clinical perspectives. Clin. Ophthalmol. (Auckland, NZ). 2018;12:2347. doi:10.2147/OPTH.S186543.
  • Ghoz N, Elalfy M, Said D, Dua H. Healing of autologous conjunctival grafts in pterygium surgery. Acta Ophthalmol. (Copenh). 2018;96(8):e979–e988. doi:10.1111/aos.13794.
  • Hwang HS, Cho KJ, Rand G, Chuck RS, Kwon JW. Optimal size of pterygium excision for limbal conjunctival autograft using fibrin glue in primary pterygia. BMC Ophthalmol. 2018;18(1):135. doi:10.1186/s12886-018-0790-6.
  • Tan DT, Chee SP, Dear KB, Lim AS. Effect of pterygium morphology on pterygium recurrence in a controlled trial comparing conjunctival autografting with bare sclera excision. Arch .Ophthalmol. 1997;115(10):1235–40. doi:10.1001/archopht.1997.01100160405001.
  • Lu Q, Al-Sheikh O, Elisseeff JH, Grant MP. Biomaterials and tissue engineering strategies for conjunctival reconstruction and dry eye treatment. Middle East Afr. J. Ophthalmol. 2015;22(4):428. doi:10.4103/0974-9233.167818.
  • Kohanim S, Palioura S, Saeed HN, Akpek EK, Amescua G, Basu S, Blomquist PH, Bouchard CS, Dart JK, Gai X. Acute and chronic ophthalmic involvement in Stevens-Johnson syndrome/toxic epidermal necrolysis–a comprehensive review and guide to therapy. Ocul. Surf. 2016;14(2):168–88. doi:10.1016/j.jtos.2016.02.001.
  • Schrader S, Notara M, Beaconsfield M, Tuft SJ, Daniels JT, Geerling G. Tissue engineering for conjunctival reconstruction: established methods and future outlooks. Curr. Eye Res. 2009;34(11):913–24. doi:10.3109/02713680903198045.
  • Wakamatsu TH, Sant AEBPP, Cristovam PC, Alves VAF, Wakamatsu A, Gomes JAP. Minor salivary gland transplantation for severe dry eyes. Cornea. 2017;36:S26–S33. doi:10.1097/ICO.0000000000001358.
  • Mai C, Bertelmann E. Oral mucosal grafts: old technique in new light. Ophthalmic Res. 2013;50(2):91–98. doi:10.1159/000351631.
  • Kim JH, Chun YS, Lee SH, Mun SK, Jung HS, Lee SH, Son Y, Kim JC. Ocular surface reconstruction with autologous nasal mucosa in cicatricial ocular surface disease. Am. J. Ophthalmol. 2010;149(1):45–53. e42. doi:10.1016/j.ajo.2009.07.030.
  • Wenkel H, Rummelt V, Naumann GO. Long term results after autologous nasal mucosal transplantation in severe mucus deficiency syndromes. Br. J. Ophthalmol. 2000;84(3):279–84. doi:10.1136/bjo.84.3.279.
  • Kheirkhah A, Ghaffari R, Kaghazkanani R, Hashemi H, Behrouz MJ, Raju VK. A combined approach of amniotic membrane and oral mucosa transplantation for fornix reconstruction in severe symblepharon. Cornea. 2013;32(2):155–60. doi:10.1097/ICO.0b013e318247983d.
  • Arora R, Mehta D, Jain V. Amniotic membrane transplantation in acute chemical burns. Eye. 2005;19(3):273. doi:10.1038/sj.eye.6701490.
  • Barabino S, Rolando M, Bentivoglio G, Mingari C, Zanardi S, Bellomo R, Calabria G. Role of amniotic membrane transplantation for conjunctival reconstruction in ocular-cicatricial pemphigoid. Ophthalmology. 2003;110(3):474–80. doi:10.1016/S0161-6420(02)01892-4.
  • Solomon A, Espana EM, Tseng SC. Amniotic membrane transplantation for reconstruction of the conjunctival fornices. Ophthalmology. 2003;110(1):93–100. doi:10.1016/S0161-6420(02)01441-0.
  • Sharma N, Thenarasun S, Kaur M, Pushker N, Khanna N, Agarwal T, Vajpayee RB. Adjuvant role of amniotic membrane transplantation in acute ocular Stevens–Johnson syndrome: a randomized control trial. Ophthalmology. 2016;123(3):484–91. doi:10.1016/j.ophtha.2015.10.027.
  • Beutel J, Sommer K, Gottschalk S, Neppert B, Geerling G. Plattenepithelkarzinom der bindehaut mit orbitainvasion. Der Ophthalmol. 2006;103(8):693–97. doi:10.1007/s00347-006-1372-1.
  • Keelan JA, Sato T, Mitchell MD. Interleukin (il)-6 and il-8 production by human amnion: regulation by cytokines, growth factors, glucocorticoids, phorbol esters, and bacterial lipopolysaccharide. Biol. Reprod. 1997;57(6):1438–44. doi:10.1095/biolreprod57.6.1438.
  • Solomon A, Rosenblatt M, Monroy D, Ji Z, Pflugfelder SC, Tseng SC. Suppression of interleukin 1α and interleukin 1β in human limbal epithelial cells cultured on the amniotic membrane stromal matrix. Br. J. Ophthalmol. 2001;85(4):444–49. doi:10.1136/bjo.85.4.444.
  • Koizumi N, Inatomi T, Sotozono C, Fullwood NJ, Quantock AJ, Kinoshita S. Growth factor mrna and protein in preserved human amniotic membrane. Curr. Eye Res. 2000;20(3):173–77. doi:10.1076/0271-3683(200003)2031-9FT173.
  • Bajaj MS, Pushker N, Singh KK, Chandra M, Ghose S. Evaluation of amniotic membrane grafting in the reconstruction of contracted socket. Ophthal. Plast. Reconstr. Surg. 2006;22(2):116–20. doi:10.1097/01.iop.0000200887.26015.d4.
  • Mandour SS, Elmazar HM, Marey HM, Rahman AKA, Sakr RA. Mucous membrane grafting augmented with topical mitomycin c application in contracted socket repair surgeries. J. Ocul. Pharmacol. Ther. 2016;32(10):691–94. doi:10.1089/jop.2016.0041.
  • Dua HS, Maharajan VS, Hopkinson A. Controversies and limitations of amniotic membrane in ophthalmic surgery. In: Controversies and limitations of amniotic membrane in ophthalmic surgery. Cornea and external eye disease. Reinhard, T., Larkin, D., Eds.; Berlin: Springer; 2006; pp. 21–33.
  • Dua H, Rahman I, Miri A, Said D. Variations in amniotic membrane: relevance for clinical applications. In: Variations in amniotic membrane: relevance for clinical applications. Br. J. Ophthalmol. 2010;94:963–64. doi:10.1016/j.actbio.2017.11.054
  • Tamhane A, Vajpayee RB, Biswas NR, Pandey RM, Sharma N, Titiyal JS, Tandon R. Evaluation of amniotic membrane transplantation as an adjunct to medical therapy as compared with medical therapy alone in acute ocular burns. Ophthalmology. 2005;112(11):1963–69. doi:10.1016/j.ophtha.2005.05.022.
  • Spaniol K, Holtmann C, Geerling G, Schrader S. New approaches to ocular surface reconstruction beyond the cornea. Ophthalmologe. 2017;114(4):307–17. doi:10.1007/s00347-016-0419-1.
  • Lee SY, Oh JH, Kim JC, Kim YH, Kim SH, Choi JW. In vivo conjunctival reconstruction using modified plga grafts for decreased scar formation and contraction. Biomaterials. 2003;24(27):5049–59. doi:10.1016/S0142-9612(03)00411-3.
  • He M, Storr-Paulsen T, Wang AL, Ghezzi CE, Wang S, Fullana M, Karamichos D, Utheim TP, Islam R, Griffith M. Artificial polymeric scaffolds as extracellular matrix substitutes for autologous conjunctival goblet cell expansion. Invest. Ophthalmol. Visual Sci. 2016;57(14):6134–46. doi:10.1167/iovs.16-20081.
  • Ang LP, Cheng ZY, Beuerman RW, Teoh SH, Zhu X, Tan DT. The development of a serum-free derived bioengineered conjunctival epithelial equivalent using an ultrathin poly (ε-caprolactone) membrane substrate. Invest. Ophthalmol. Visual Sci. 2006;47(1):105–12. doi:10.1167/iovs.05-0512.
  • Sharma S, Mohanty S, Gupta D, Jassal M, Agrawal AK, Tandon R. Cellular response of limbal epithelial cells on electrospun poly-ε-caprolactone nanofibrous scaffolds for ocular surface bioengineering: a preliminary in vitro study. Mol. Visual. 2011;17:2898.
  • Yao Q, Zhang W, Hu Y, Chen J, Shao C, Fan X, Fu Y. Electrospun collagen/poly (l-lactic acid‑co‑ε‑caprolactone) scaffolds for conjunctival tissue engineering. Exp. Ther. Med. 2017;14(5):4141–47. doi:10.3892/etm.2017.5073.
  • Hsu W-C, Spilker MH, Yannas IV, Rubin PA. Inhibition of conjunctival scarring and contraction by a porous collagen-glycosaminoglycan implant. Invest. Ophthalmol. Visual Sci. 2000;41:2404–11.
  • Merrett K, Fagerholm P, McLaughlin CR, Dravida S, Lagali N, Shinozaki N, Watsky MA, Munger R, Kato Y, Li F. Tissue-engineered recombinant human collagen-based corneal substitutes for implantation: performance of type i versus type iii collagen. Invest. Ophthalmol. Visual Sci. 2008;49(9):3887–94. doi:10.1167/iovs.07-1348.
  • Zhou H, Lu Q, Guo Q, Chae J, Fan X, Elisseeff JH, Grant MP. Vitrified collagen-based conjunctival equivalent for ocular surface reconstruction. Biomaterials. 2014;35(26):7398–406. doi:10.1016/j.biomaterials.2014.05.024.
  • Calderón-Colón X, Xia Z, Breidenich JL, Mulreany DG, Guo Q, Uy OM, Tiffany JE, Freund DE, McCally RL, Schein OD. Structure and properties of collagen vitrigel membranes for ocular repair and regeneration applications. Biomaterials. 2012;33(33):8286–95. doi:10.1016/j.biomaterials.2012.07.062.
  • Drechsler C, Kunze A, Kureshi A, Grobe G, Reichl S, Geerling G, Daniels J, Schrader S. Development of a conjunctival tissue substitute on the basis of plastic compressed collagen. J. Tissue Eng. Regener. Med. 2015;11(3):896–904.
  • Witt J, Borrelli M, Mertsch S, Geerling G, Spaniol K, Schrader S. Evaluation of plastic compressed collagen for conjunctival repair in a rabbit model. Tissue Eng. Part A. 2018;25:1084–95. doi:10.1089/ten.TEA.2018.0190
  • Dehghani S, Rasoulianboroujeni M, Ghasemi H, Keshel SH, Nozarian Z, Hashemian MN, Zarei-Ghanavati M, Latifi G, Ghaffari R, Cui Z. 3d-printed membrane as an alternative to amniotic membrane for ocular surface/conjunctival defect reconstruction: an in vitro & in vivo study. Biomaterials. 2018;174:95–112. doi:10.1016/j.biomaterials.2018.05.013.
  • Zhu X, Beuerman RW, Chan-Park M, Cheng Z, Ang LP, Tan DT. Enhancement of the mechanical and biological properties of a biomembrane for tissue engineering the ocular surface. Ann. Acad. Med. Singapore. 2006;35:210.
  • Borrelli M, Joepen N, Reichl S, Finis D, Schoppe M, Geerling G, Schrader S. Keratin films for ocular surface reconstruction: evaluation of biocompatibility in an in-vivo model. Biomaterials. 2015;42:112–20. doi:10.1016/j.biomaterials.2014.11.038.
  • Borrelli M, Reichl S, Feng Y, Schargus M, Schrader S, Geerling G. In vitro characterization and ex vivo surgical evaluation of human hair keratin films in ocular surface reconstruction after sterilization processing. J. Mater. Sci. Mater. Med. 2013;24(1):221–30. doi:10.1007/s10856-012-4774-4.
  • Feng Y, Borrelli M, Meyer-ter-Vehn T, Reichl S, Schrader S, Geerling G. Epithelial wound healing on keratin film, amniotic membrane and polystyrene in vitro. Curr. Eye Res. 2014;39(6):561–70. doi:10.3109/02713683.2013.853804.
  • Reichl S, Borrelli M, Geerling G. Keratin films for ocular surface reconstruction. Biomaterials. 2011;32(13):3375–86. doi:10.1016/j.biomaterials.2011.01.052.
  • Cakmak H, Can GD, Can M, Cagil N. A novel graft option after pterygium excision: platelet-rich fibrin for conjunctivoplasty. Eye. 2017;31(11):1606. doi:10.1038/eye.2017.109.
  • Safinaz M, Norzana A, Nizam MH, Ropilah A, Faridah H, Chua K, Ruszymah B, Jemaima C. The use of autologous fibrin as a scaffold for cultivating autologous conjunctiva in the treatment of conjunctival defect. Cell Tissue Bank. 2014;15(4):619–26. doi:10.1007/s10561-014-9436-y.
  • Long K, Liu Y, Li W, Wang L, Liu S, Wang Y, Wang Z, Ren L. Improving the mechanical properties of collagen‐based membranes using silk fibroin for corneal tissue engineering. J. Biomed. Mater. Res. A. 2015;103(3):1159–68. doi:10.1002/jbm.a.35268.
  • Witt J, Mertsch S, Borrelli M, Dietrich J, Geerling G, Schrader S, Spaniol K. Decellularised conjunctiva for ocular surface reconstruction. Acta Biomater. 2017;67:259–69. doi:10.1016/j.actbio.2017.11.054.
  • Witt J, Dietrich J, Geerling G, Mertsch S, Schrader S, Spaniol K. Tissue engineered conjunctival substitute on the basis of decellularized porcine conjunctiva. Invest. Ophthalmol. Visual Sci. 2019;60:6253.
  • Sotozono C, Inatomi T, Nakamura T, Koizumi N, Yokoi N, Ueta M, Matsuyama K, Kaneda H, Fukushima M, Kinoshita S. Cultivated oral mucosal epithelial transplantation for persistent epithelial defect in severe ocular surface diseases with acute inflammatory activity. Acta Ophthalmol. (Copenh). 2014;92(6):e447–e453. doi:10.1111/aos.12397.
  • Satake Y, Higa K, Tsubota K, Shimazaki J. Long-term outcome of cultivated oral mucosal epithelial sheet transplantation in treatment of total limbal stem cell deficiency. Ophthalmology. 2011;118(8):1524–30. doi:10.1016/j.ophtha.2011.01.039.
  • Ang LP, Tanioka H, Kawasaki S, Ang LP, Yamasaki K, Do TP, Thein ZM, Koizumi N, Nakamura T, Yokoi N. Cultivated human conjunctival epithelial transplantation for total limbal stem cell deficiency. Invest. Ophthalmol. Visual Sci. 2010;51(2):758–64. doi:10.1167/iovs.09-3379.
  • Hussey GS, Dziki JL, Badylak SF. Extracellular matrix-based materials for regenerative medicine. Nat. Rev. Mater. 2018;3:159–73. doi:10.1038/s41578-018-0023-x
  • Fagerholm P, Lagali NS, Ong JA, Merrett K, Jackson WB, Polarek JW, Suuronen EJ, Liu Y, Brunette I, Griffith M. Stable corneal regeneration four years after implantation of a cell-free recombinant human collagen scaffold. Biomaterials. 2014;35(8):2420–27. doi:10.1016/j.biomaterials.2013.11.079.
  • Fagerholm P, Lagali NS, Merrett K, Jackson WB, Munger R, Liu Y, Polarek JW, Söderqvist M, Griffith M. A biosynthetic alternative to human donor tissue for inducing corneal regeneration: 24-month follow-up of a phase 1 clinical study. Sci. Transl. Med. 2010;2(46):46ra61–46ra61. doi:10.1126/scitranslmed.3001022.
  • Brown RA, Wiseman M, Chuo CB, Cheema U, Nazhat SN. Ultrarapid engineering of biomimetic materials and tissues: fabrication of nano‐and microstructures by plastic compression. Adv. Funct. Mater. 2005;15(11):1762–70. doi:10.1002/adfm.200500042.
  • Spaniol K, Witt J, Mertsch S, Borrelli M, Geerling G, Schrader S. Generation and characterisation of decellularised human corneal limbus. Graefes Arch. Clin. Exp. Ophthalmol. 2018;256:547–57. doi:10.1007/s00417-018-3904-1
  • Lee EW, Berbos Z, Zaldivar RA, Lee MS, Harrison AR. Use of dermamatrix graft in oculoplastic surgery. Ophthal. Plast. Reconstr. Surg. 2010;26(3):153–54. doi:10.1097/IOP.0b013e3181b8e788.
  • Shorr N, Perry JD, Goldberg RA, Hoenig J, Shorr J. The safety and applications of acellular human dermal allograft in ophthalmic plastic and reconstructive surgery: A preliminary report. Ophthal. Plast. Reconstr. Surg. 2000;16(3):223–30. doi:10.1097/00002341-200005000-00010.
  • Borrelli M, Unterlauft J, Kleinsasser N, Geerling G. Decellularized porcine derived membrane (tarsys®) for correction of lower eyelid retraction. Orbit. 2012;31(3):187–89. doi:10.3109/01676830.2012.669012.
  • Park SJ, Kim Y, Jang SY. The application of an acellular dermal allograft (alloderm) for patients with insufficient conjunctiva during evisceration and implantation surgery. Eye (Lond). 2018;32(1):136–41. doi:10.1038/eye.2017.161.
  • Teo L, Woo YJ, Kim DK, Kim CY, Yoon JS. Surgical outcomes of porcine acellular dermis graft in anophthalmic socket: comparison with oral mucosa graft. Korean J. Ophthalmol. 2017;31(1):9–15. doi:10.3341/kjo.2017.31.1.9.
  • Kinoshita S, Koizumi N, Nakamura T. Transplantable cultivated mucosal epithelial sheet for ocular surface reconstruction. Exp. Eye Res. 2004;78(3):483–91. doi:10.1016/j.exer.2003.09.004.
  • Prabhasawat P, Ekpo P, Uiprasertkul M, Chotikavanich S, Tesavibul N, Pornpanich K, Luemsamran P. Long-term result of autologous cultivated oral mucosal epithelial transplantation for severe ocular surface disease. Cell Tissue Bank. 2016;17(3):491–503. doi:10.1007/s10561-016-9575-4.
  • Gopakumar V, Agarwal S, Srinivasan B, Krishnakumar S, Krishnan UM, Iyer G. Clinical outcome of autologous cultivated oral mucosal epithelial transplantation in ocular surface reconstruction. Cornea. 2019;38:1273–79. doi:10.1097/ICO.0000000000002082.
  • Shields CL, Uysal Y, Marr BP, Lally SE, Rodriques E, Kharod B, Shields JA. Experience with the polymer-coated hydroxyapatite implant after enucleation in 126 patients. Ophthalmology. 2007;114(2):367–73. doi:10.1016/j.ophtha.2006.08.030.
  • Hicks CR, Morrison D, Lou X, Crawford GJ, Gadjatsy A, Constable IJ. Orbital implants: potential new directions. Expert Rev. Med. Devices. 2006;3(6):805–15. doi:10.1586/17434440.3.6.805.
  • Thaller V. Enucleation volume measurement. Ophthal. Plast. Reconstr. Surg. 1997;13(1):18–20. doi:10.1097/00002341-199703000-00003.
  • Kaltreider SA, Jacobs JL, Hughes MO. Predicting the ideal implant size before enucleation. Ophthal. Plast. Reconstr. Surg. 1999;15:37–43. doi:10.1097/00002341-199901000-00009.
  • Custer PL, Trinkaus KM. Volumetric determination of enucleation implant size. Am. J. Ophthalmol. 1999;128(4):489–94. doi:10.1016/S0002-9394(99)00252-4.
  • Nunery WR, Cepela MA, Heinz GW, Zale D, Martin RT. Extrusion rate of silicone spherical anophthalmic socket implants. Ophthal. Plast. Reconstr. Surg. 1993;9(2):90–95. doi:10.1097/00002341-199306000-00003.
  • Shields CL, Shields JA, De Potter P, Singh AD. Problems with the hydroxyapatite orbital implant: experience with 250 consecutive cases. Br. J. Ophthalmol. 1994;78(9):702–06. doi:10.1136/bjo.78.9.702.
  • Culler AM. Enucleation and cosmetic rehabilitation: criteria for evaluation of current procedures. AMA Arch. Ophthalmol. 1951;45(4):445–57. doi:10.1001/archopht.1951.01700010455011.
  • Kaltreider SA. The ideal ocular prosthesis: analysis of prosthetic volume. Ophthal. Plast. Reconstr. Surg. 2000;16(5):388–92. doi:10.1097/00002341-200009000-00013.
  • Kaltreider SA, Lucarelli MJ. A simple algorithm for selection of implant size for enucleation and evisceration: a prospective study. Ophthal. Plast. Reconstr. Surg. 2002;18(5):336–41. doi:10.1097/00002341-200209000-00004.
  • Ashworth J, Rhatigan M, Brammar R, Sunderland S, Leatherbarrow B. A clinical study of the hydroxyapatite orbital implant. Eur. J. Ophthalmol. 1997;7(1):1–8. doi:10.1177/112067219700700101.
  • Sagoo MS, Rose GE. Mechanisms and treatment of extruding intraconal implants: socket aging and tissue restitution (the “cactus syndrome”). Arch .Ophthalmol. 2007;125(12):1616–20. doi:10.1001/archopht.125.12.1616.
  • Chalasani R, Poole-Warren L, Conway RM, Ben-Nissan B. Porous orbital implants in enucleation: a systematic review. Surv. Ophthalmol. 2007;52(2):145–55. doi:10.1016/j.survophthal.2006.12.007.
  • Garibaldi DC, Iliff NT, Grant MP, Merbs SL. Use of porous polyethylene with embedded titanium in orbital reconstruction: a review of 106 patients. Ophthal. Plast. Reconstr. Surg. 2007;23(6):439–44. doi:10.1097/IOP.0b013e31815a1235.
  • Sadiq SA, Mengher LS, Lowry J, Downes R. Integrated orbital implants—a comparison of hydroxyapatite and porous polyethylene implants. Orbit. 2008;27(1):37–40. doi:10.1080/01676830701512585.
  • Naik MN, Murthy RK, Honavar SG. Comparison of vascularization of medpor and medpor-plus orbital implants: a prospective, randomized study. Ophthal. Plast. Reconstr. Surg. 2007;23(6):463–67. doi:10.1097/IOP.0b013e318158ec8e.
  • Guthoff R, Vick H, Schaudig U. Prevention of postenucleation syndrome: the hydroxylapatite silicone implant. Preliminary experimental studies and initial clinical experiences. Ophthalmologe. 1995;92:198–205.
  • Ma X, Schou KR, Maloney-Schou M, Harwin FM, Ng JD. The porous polyethylene/bioglass spherical orbital implant: a retrospective study of 170 cases. Ophthal. Plast. Reconstr. Surg. 2011;27(1):21–27. doi:10.1097/IOP.0b013e3181de01a7.
  • Kotlus BS, Dryden RM. Correction of anophthalmic enophthalmos with injectable calcium hydroxylapatite (radiesse). Ophthal. Plast. Reconstr. Surg. 2007;23(4):313–14. doi:10.1097/IOP.0b013e318068742c.
  • Madill S, Maclean H. Enucleation with reverse replacement of sclera as an alternative to conventional evisceration. Orbit. 2005;24(1):23–28. doi:10.1080/01676830590894671.
  • Wells TS, Harris GJ. Direct fixation of extraocular muscles to a silicone sphere: a cost-sensitive, low-risk enucleation procedure. Ophthal. Plast. Reconstr. Surg. 2011;27(5):364–67. doi:10.1097/IOP.0b013e31821c1298.
  • Jongman HP, Marinkovic M, Notting I, Koetsier L, Swart W, Schalij‐Delfos NE, Bleeker J, Jager MJ, Luyten GP. Donor sclera‐wrapped acrylic orbital implants following enucleation: experience in 179 patients in the netherlands. Acta Ophthalmol. (Copenh). 2016;94(3):253–56. doi:10.1111/aos.12960.
  • Tataru C, Pop M. Enucleation in malignant choroidal melanoma-results in 15 years of using a new material in the prosthesis of the orbital cavity. J. Med. Life. 2012;5:185.
  • Schellini S, El Dib R, Silva LR, Farat JG, Zhang Y, Jorge EC. Integrated versus non‐integrated orbital implants for treating anophthalmic sockets. Cochrane Database Syst. Rev. 2016;11. doi:10.1002/14651858.CD011360.pub2.
  • Colen TP, Paridaens DA, Lemij HG, Mourits MP, van den Bosch WA. Comparison of artificial eye amplitudes with acrylic and hydroxyapatite spherical enucleation implants. Ophthalmology. 2000;107(10):1889–94. doi:10.1016/S0161-6420(00)00348-1.
  • Shome D, Honavar SG, Raizada K, Raizada D. Implant and prosthesis movement after enucleation: a randomized controlled trial. Ophthalmology. 2010;117(8):1638–44. doi:10.1016/j.ophtha.2009.12.035.
  • Tari AS, Malihi M, Kasaee A, Tabatabaie SZ, Hamzedust K, Musavi MF, Rajabi MT. Enucleation with hydroxyapatite implantation versus evisceration plus scleral quadrisection and alloplastic implantation. Ophthal. Plast. Reconstr. Surg. 2009;25(2):130–33. doi:10.1097/IOP.0b013e3181984dfe.
  • Smith B, Petrelli R. Dermis-fat graft as a movable implant within the muscle cone. Am. J. Ophthalmol. 1978;85(1):62–66. doi:10.1016/S0002-9394(14)76666-8.
  • Nentwich MM, Schebitz-Walter K, Hirneiss C, Hintschich C. Dermis fat grafts as primary and secondary orbital implants. Orbit. 2014;33(1):33–38. doi:10.3109/01676830.2013.844172.
  • Aryasit O, Preechawai P. Indications and results in anophthalmic socket reconstruction using dermis-fat graft. Clin. Ophthalmol. 2015;9:795. doi:10.2147/OPTH.S77948.
  • Smith B, Bosniak S, Nesi F, Lisman R. Dermis-fat orbital implantation: 118 cases. Ophthalmic Surg. Lasers Imaging. 1983;14:941–43.
  • Sihota R, Sujatha Y, Betharia SM. The fat pad in dermis fat grafts. Ophthalmology. 1994;101(2):231–34. doi:10.1016/S0161-6420(94)31342-X.
  • Galindo-Ferreiro A, Khandekar R, Hassan SA, Al-Hammad F, Al-Subaie H, Artioli Schellini S. Dermis-fat graft for anophthalmic socket reconstruction: indications and outcomes. Arq. Bras. Oftalmol. 2018;81(5):366–70. doi:10.5935/0004-2749.20180073.
  • Frileck SP. The lumbrical fat graft: A replacement for lost upper eyelid fat. Plast. Reconstr. Surg. 2002;109(5):1696–706. doi:10.1097/00006534-200204150-00036.
  • Czyz CN, Foster JA, Wulc AE. Superior sulcus volumetric rejuvenation utilizing dermis fat grafting. Aesthet. Surg. J. 2015;35(7):892–98. doi:10.1093/asj/sjv078.
  • Lin T-M, Lin T-Y, Chou C-K, Lai C-S, Lin S-D. Application of microautologous fat transplantation in the correction of sunken upper eyelid. Plast. Reconstr. Surg. Global Open. 2014;2(11):e259. doi:10.1097/GOX.0000000000000141.
  • Sergott TJ, Vistnes LM. Correction of enophthalmos and superior sulcus depression in the anophthalmic orbit: a long-term follow-up. Plast. Reconstr. Surg. 1987;79(3):331–38. doi:10.1097/00006534-198703000-00001.
  • Krishna DS, Soumadip D. Reconstruction of orbital floor fractures with porous polyethylene implants: A prospective study. J. Oral Maxillofac. Surg. 2016;15(3):300–07. doi:10.1007/s12663-015-0840-z.
  • Raisian S, Fallahi HR, Khiabani KS, Heidarizadeh M, Azdoo S. Customized titanium mesh based on the 3d printed model vs. Manual intraoperative bending of titanium mesh for reconstructing of orbital bone fracture: a randomized clinical trial. Rev. Recent Clin. Trials. 2017;12(3):154–58. doi:10.2174/1574887112666170821165206.
  • Li J, Li P, Lu H, Shen L, Tian W, Long J, Tang W. Digital design and individually fabricated titanium implants for the reconstruction of traumatic zygomatico-orbital defects. J. Craniofac. Surg. 2013;24(2):363–68. doi:10.1097/SCS.0b013e3182701243.
  • Koch K, Trester W, Müller-Uri N, Trester M, Cursiefen C, Heindl L. Ocular prosthetics. Fitting, daily use and complications. Der Ophthalmol. 2016;113(2):133–42. doi:10.1007/s00347-015-0091-x.
  • Rokohl AC, Mor JM, Trester M, Koch KR, Heindl LM. Rehabilitation of anophthalmic patients with prosthetic eyes in germany today-supply possibilities, daily use, complications and psychological aspects. Klin. Monbl. Augenheilkd. 2019;236(1):54–62. doi:10.1055/a-0764-4974.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.