2,016
Views
6
CrossRef citations to date
0
Altmetric
Retina

The Effects of Acute Intracranial Pressure Changes on the Episcleral Venous Pressure, Retinal Vein Diameter and Intraocular Pressure in a Pig Model

, , , , , , , & show all
Pages 524-531 | Received 13 Apr 2020, Accepted 30 Jul 2020, Published online: 17 Aug 2020

References

  • Kim H, Lee HJ, Kim YT, Son Y, Smielewski P, Czosnyka M, Kim DJ. Novel index for predicting mortality during the first 24 hours after traumatic brain injury. J Neurosurg. 2018;131(6):1887–1895.
  • Nakagawa K, Smith WS. Evaluation and management of increased intracranial pressure. Continuum (Minneap Minn). 2011;17:1077–93.
  • Lele, A, Kannan, N, Vavilala, MS, Sharma, D, Mossa-Basha, M, Agyem, K, Mock, C, Pandey, RM, Dash, HH, Mahapatra, A, Gupta, D. Patients who benefit from intracranial pressure monitoring without cerebrospinal fluid drainage after severe traumatic brain injury. Neurosurgery 2019;85(2):231–239.
  • Dawes AJ, Sacks GD, Cryer HG, Gruen JP, Preston C, Gorospe D, Cohen M, McArthur DL, Russell MM, Maggard-Gibbons M, et al. Los Angeles County Trauma Consortium. Intracranial pressure monitoring and inpatient mortality in severe traumatic brain injury: A propensity score-matched analysis. J Trauma Acute Care Surg. 2015;78:492–501. discussion 501-2.
  • Brain Trauma Foundation. Guidelines for the management of severe traumatic brain injury. 3rd edition. J Neurotrauma 2007;24:S–45.
  • Bruce BB. Noninvasive assessment of cerebrospinal fluid pressure. J Neuroophthalmol. 2014;34:288–94.
  • Jonas JB, Berenshtein E, Holbach L. Anatomic relationship between lamina cribrosa, intraocular space, and cerebrospinal fluid space. Invest Ophthalmol Vis Sci. 2003;44:5189–95.
  • Steffen H, Eifert B, Aschoff A, Kolling GH, Volcker HE. The diagnostic value of optic disc evaluation in acute elevated intracranial pressure. Ophthalmology. 1996;103:1229–32.
  • Selhorst JB, Gudeman SK, Butterworth JF, Harbison JW, Miller JD, Becker DP. Papilledema after acute head injury. Neurosurgery. 1985;16:357–63.
  • Gampa A, Vangipuram G, Shirazi Z, Moss HE. Quantitative association between peripapillary Bruch’s membrane shape and intracranial pressure. Invest Ophthalmol Vis Sci. 2017;58:2739–45.
  • Malhotra K, Patel MD, Shirazi Z, Moss HE. Association between peripapillary Bruch’s membrane shape and intracranial pressure: Effect of image acquisition pattern and image analysis method, a preliminary study. Front Neurol. 2018;9:1137.
  • Kupersmith MJ, Sibony P, Mandel G, Durbin M, Kardon RH. Optical coherence tomography of the swollen optic nerve head: Deformation of the peripapillary retinal pigment epithelium layer in papilledema. Invest Ophthalmol Vis Sci. 2011;52:6558–64.
  • Swanson JW, Aleman TS, Xu W, Ying GS, Pan W, Liu GT, Lang SS, Heuer GG, Storm PB, Bartlett SP, et al. Evaluation of optical coherence tomography to detect elevated intracranial pressure in children. JAMA Ophthalmol. 2017;135:320–28.
  • Robba C, Santori G, Czosnyka M, Corradi F, Bragazzi N, Padayachy L, Taccone FS, Citerio G. Optic nerve sheath diameter measured sonographically as non-invasive estimator of intracranial pressure: A systematic review and meta-analysis. Intensive Care Med. 2018;44:1284–94.
  • Rajajee V, Fletcher JJ, Rochlen LR, Jacobs TL. Comparison of accuracy of optic nerve ultrasound for the detection of intracranial hypertension in the setting of acutely fluctuating vs stable intracranial pressure: Post-hoc analysis of data from a prospective, blinded single center study. Crit Care. 2012;16:R79.
  • Brubaker RF. Goldmann’s equation and clinical measures of aqueous dynamics. Exp Eye Res. 2004;78:633–37.
  • Twedt M, Pfeifer C, Thorell W, Bashford G. Measuring hemodynamic changes in the ophthalmic artery during applied force for noninvasive intracranial pressure monitoring: Test results in a porcine model. Mil Med. 2017;182:72–77.
  • Ghoshal NG, Zguigal H. Dural sinuses in the pig and their extracranial venous connections. Am J Vet Res. 1986;47:1165–69.
  • Eisenberg DL, Sherman BG, McKeown CA, Schuman JS. Tonometry in adults and children. A manometric evaluation of pneumatonometry, applanation, and TonoPen in vitro and in vivo. Ophthalmology. 1998;105:1173–81.
  • Zeimer RC, Gieser DK, Wilensky JT, Noth JM, Mori MM, Odunukwe EE. A practical venomanometer. measurement of episcleral venous pressure and assessment of the normal range. Arch Ophthalmol. 1983;101:1447–49.
  • Hayreh SS, Edwards J. Ophthalmic arterial and venous pressures. effects of acute intracranial hypertension. Br J Ophthalmol. 1971;55:649–63.
  • Khanna RK, Pham CJ, Malik GM, Spickler EM, Mehta B, Rosenblum ML Bilateral superior ophthalmic vein enlargement associated with diffuse cerebral swelling. report of 11 cases. J Neurosurg. 1997;86:893–97.
  • Lirng JF, Fuh JL, Wu ZA, Lu SR, Wang SJ. Diameter of the superior ophthalmic vein in relation to intracranial pressure. AJNR Am J Neuroradiol. 2003;24:700–03.
  • Firsching R, Schutze M, Motschmann M, Behrens-Baumann W. Venous opthalmodynamometry: A noninvasive method for assessment of intracranial pressure. J Neurosurg. 2000;93:33–36.
  • Firsching R, Muller C, Pauli SU, Voellger B, Rohl FW, Behrens-Baumann W. Noninvasive assessment of intracranial pressure with venous ophthalmodynamometry. clinical article. J Neurosurg. 2011;115:371–74.
  • Wong SH, White RP. The clinical validity of the spontaneous retinal venous pulsation. J Neuroophthalmol. 2013;33:17–20.
  • Jacks AS, Miller NR. Spontaneous retinal venous pulsation: Aetiology and significance. J Neurol Neurosurg Psychiatry. 2003;74:7–9.
  • Rios-Montenegro EN, Anderson DR, David NJ. Intracranial pressure and ocular hemodynamics. Arch Ophthalmol. 1973;89:52–58.
  • Moss HE, Treadwell G, Wanek J, DeLeon S, Shahidi M. Retinal vessel diameter assessment in papilledema by semi-automated analysis of SLO images: Feasibility and reliability. Invest Ophthalmol Vis Sci. 2014;55:2049–54.
  • Blank W, Spring A. Brain death and intraocular pressure. Neurosurg Rev. 1988;11:19–23.
  • Sheeran P, Bland JM, Hall GM. Intraocular pressure changes and alterations in intracranial pressure. Lancet. 2000;355:899.
  • Lashutka MK, Chandra A, Murray HN, Phillips GS, Hiestand BC. The relationship of intraocular pressure to intracranial pressure. Ann Emerg Med. 2004;43:585–91.
  • Sajjadi SA, Harirchian MH, Sheikhbahaei N, Mohebbi MR, Malekmadani MH, Saberi H. The relation between intracranial and intraocular pressures: Study of 50 patients. Ann Neurol. 2006;59:867–70.
  • Han Y, McCulley TJ, Horton JC. No correlation between intraocular pressure and intracranial pressure. Ann Neurol. 2008;64:221–24.
  • Czarnik T, Gawda R, Kolodziej W, Latka D, Sznajd-Weron K, Weron R. Associations between intracranial pressure, intraocular pressure and mean arterial pressure in patients with traumatic and non-traumatic brain injuries. Injury. 2009;40:33–39.
  • Spentzas T, Henricksen J, Patters AB, Chaum E. Correlation of intraocular pressure with intracranial pressure in children with severe head injuries. Pediatr Crit Care Med. 2010;11:593–98.
  • Ren R, Zhang X, Wang N, Li B, Tian G, Jonas JB. Cerebrospinal fluid pressure in ocular hypertension. Acta Ophthalmol. 2011;89:e142–8.
  • Kirk T, Jones K, Miller S, Corbett J. Measurement of intraocular and intracranial pressure: Is there a relationship? Ann Neurol. 2011;70:323–26.
  • Muchnok T, Deitch K, Giraldo P. Can intraocular pressure measurements be used to screen for elevated intracranial pressure in emergency department patients? J Emerg Med. 2012;43:532–37.
  • Li Z, Yang Y, Lu Y, Liu D, Xu E, Jia J, Yang D, Zhang X, Yang H, Ma D, et al. Intraocular pressure vs intracranial pressure in disease conditions: A prospective cohort study (beijing iCOP study). BMC Neurol. 2012;12:66.
  • Golan S, Kurtz S, Mezad-Koursh D, Waisbourd M, Kesler A, Halpern P. Poor correlation between intracranial pressure and intraocular pressure by hand-held tonometry. Clin Ophthalmol. 2013;7:1083–87.
  • Gonzalez-Camarena PI, San-Juan D, Gonzalez-Olhovich I, Rodriguez-Arevalo D, Lozano-Elizondo D, Trenado C, Anschel DJ. Dynamic changes of the intraocular pressure and the pressure of cerebrospinal fluid in nonglaucomatous neurological patients. Acta Ophthalmol. 2017;95:e138–e143.
  • Czorlich P, Kratzig T, Kluge N, Skevas C, Knospe V, Spitzer MS, Dreimann M, Mende KC, Westphal M, Eicker SO. Intraocular pressure during neurosurgical procedures in context of head position and loss of cerebrospinal fluid. J Neurosurg. 2018;131:271–80.
  • Lehman RA, Krupin T, Podos SM. Experimental effect of intracranial hypertension upon intraocular pressure. J Neurosurg. 1972;36:60–66.
  • Hou R, Zhang Z, Yang D, Wang H, Chen W, Li Z, Sang J, Liu S, Cao Y, Xie X, et al. Pressure balance and imbalance in the optic nerve chamber: The beijing intracranial and intraocular pressure (iCOP) study. Sci China Life Sci. 2016;59:495–503.
  • Kupfer C, Gaasterland D, Ross K. Studies of aqueous humor dynamics in man. II. measurements in young normal subjects using acetazolamide and L-epinephrine. Invest Ophthalmol. 1971;10:523–33.
  • Ficarrotta KR, Passaglia CL. Intracranial pressure modulates aqueous humour dynamics of the eye. J Physiol. 2020;598:403–13.
  • Colton T, Ederer F. The distribution of intraocular pressures in the general population. Surv Ophthalmol. 1980;25:123–29.
  • Blondeau P, Tetrault JP, Papamarkakis C. Diurnal variation of episcleral venous pressure in healthy patients: A pilot study. J Glaucoma. 2001;10:18–24.
  • Nau CB, Malihi M, McLaren JW, Hodge DO, Sit AJ. Circadian variation of aqueous humor dynamics in older healthy adults. Invest Ophthalmol Vis Sci. 2013;54:7623–29.
  • Sultan M, Blondeau P. Episcleral venous pressure in younger and older subjects in the sitting and supine positions. J Glaucoma. 2003;12:370–73.
  • Albrecht May C. Comparative anatomy of the optic nerve head and inner retina in non-primate animal models used for glaucoma research. Open Ophthalmol J. 2008;2:94–101.
  • Ninomiya H, Inomata T. Microvascular anatomy of the pig eye: Scanning electron microscopy of vascular corrosion casts. J Vet Med Sci. 2006;68:1149–54.