5,995
Views
19
CrossRef citations to date
0
Altmetric
Lens

Glutathione Improves the Antioxidant Activity of Vitamin C in Human Lens and Retinal Epithelial Cells: Implications for Vitreous Substitutes

, &
Pages 470-481 | Received 05 Jun 2020, Accepted 05 Aug 2020, Published online: 24 Aug 2020

References

  • Swindle-Reilly KE, Reilly MA, Ravi N. Chapter 5: current concepts in the design of hydrogels as vitreous substitutes. In: Chirila T, Harkin D, editors. Biomaterials and regenerative medicine in ophthalmology. Second ed. Oxford (UK): Woodhead Publishing; 2016. p. 101–130. doi:10.1016/B978-0-08-100147-9.00005-5.
  • Giblin FJ. Glutathione: a vital lens antioxidant. J Ocul Pharmacol Ther. 2000;16(2):121–35. doi:10.1089/jop.2000.16.121.
  • Shui YB, Holekamp NM, Kramer BC, Crowley JR, Wilkins MA, Chu F, Malone PE, Mangers SJ, Hou JH, Siegfried CJ, Beebe DC. The gel state of the vitreous and ascorbate-dependent oxygen consumption: relationship to the etiology of nuclear cataracts. Arch Ophthalmol. 2009;127(4):475–82. doi:10.1001/archophthalmol.2008.621.
  • de Bustros S, Thompson JT, Michels RG, Enger C, Rice TA, Glaser BM. Nuclear sclerosis after vitrectomy for idiopathic epiretinal membranes. Am J Ophthalmol. 1988;105(2):160–64. doi:10.1016/0002-9394(88)90180-8.
  • Cherfan GM, Michels RG, de Bustros S, Enger C, Glaser BM. Nuclear sclerotic cataract after vitrectomy for idiopathic epiretinal membranes causing macular pucker. Am J Ophthalmol. 1991;111(4):434–38. doi:10.1016/S0002-9394(14)72377-3.
  • Melberg NS, Thomas MA. Nuclear sclerotic cataract after vitrectomy in patients younger than 50 years of age. Ophthalmology. 1995;102(10):1466–71. doi:10.1016/S0161-6420(95)30844-5.
  • Panozzo G, Parolini B. Cataracts associated with posterior segment surgery. Ophthalmol Clin North Am. 2004;17(4):557–68. doi:10.1016/j.ohc.2004.06.009.
  • Feng H, Adelman RA. Cataract formation following vitreoretinal procedures. Clin Ophthalmol. 2014;8:1957–65. doi:10.2147/OPTH.S68661.
  • Siegfried CJ, Shui YB, Tian B, Nork TM, Heatley GA, Kaufman PL. Effects of vitrectomy and lensectomy on older rhesus macaques: oxygen distribution, antioxidant status, and aqueous humor dynamics. Invest Ophthalmol Vis Sci. 2017;58(10):4003–14. doi:10.1167/iovs.17-21890.
  • Siegfried CJ, Shui YB. Intraocular oxygen and antioxidant status: new insights on the effect of vitrectomy and glaucoma pathogenesis. Am J Ophthalmol. 2019;203:12–25. doi:10.1016/j.ajo.2019.02.008.
  • Holekamp NM. The vitreous gel: more than meets the eye. Am J Ophthalmol. 2010;149(1):32–36. doi:10.1016/j.ajo.2009.07.036.
  • Filas BA, Shui YB, Beebe DC. Computational model for oxygen transport and consumption in human vitreous. Invest Ophthalmol Vis Sci. 2013;54(10):6549–59. doi:10.1167/iovs.13-12609.
  • Tsukaguchi H, Tokui T, Mackenzie B, Berger UV. A family of mammalian na+-dependent L-ascorbic acid transporters. Nature. 1999;399(6731):70–75. doi:10.1038/19986.
  • Salceda R, Contreras-Cubas C. Ascorbate uptake in normal and diabetic rat retina and retinal pigment epithelium. Comp Biochem Physiol C Toxicol Pharmacol. 2007;146(1–2):175–79. doi:10.1016/j.cbpc.2007.02.015.
  • Locci E, Scano P, Rosa MF. A metabolomic approach to animal vitreous humor topographical composition: a pilot study. PLoS One. 2014;9(5):e97773. doi:10.1371/journal.pone.0097773.
  • Tsuchiya M, Tamai M. Biochemical characteristics of intraocular fluid after vitreous surgery in the rabbit. Invest Ophthalmol Vis Sci. 1988;29:97.
  • Koide K, Zhang XM, Ohishi K, Usami Y, Hotta Y, Hiramitsu T. Ascorbic acid concentration in rabbit vitreous measured by microdialysis with HPLC-electrochemical detection before and after vitreous surgery. Exp Eye Res. 2006;82(5):868–73. doi:10.1016/j.exer.2005.10.022.
  • Tram NK, Jiang P, Torres‐Flores TC, Jacobs KM, Chandler HL, Swindle‐Reilly KE. A hydrogel vitreous substitute that releases antioxidant. Macromol Biosci. 2020;20(2):e1900305. doi:10.1002/mabi.201900305.
  • Roig MG, Rivera ZS, Kennedy JF. A model study on rate of degradation of L-ascorbic acid during processing using home-produced juice concentrates. Int J Food Sci Nutr. 1995;46(2):107–15. doi:10.3109/09637489509012538.
  • Polydera AC, Stoforos NG, Taoukis PS. Comparative shelf life study and vitamin C loss kinetics in pasteurised and high pressure processed reconstituted orange juice. J Food Eng. 2003;60(1):21–29. doi:10.1016/S0260-8774(03)00006-2.
  • Serpen A, Gökmen V. Reversible degradation kinetics of ascorbic acid under reducing and oxidizing conditions. Food Chem. 2007;104(2):721–25. doi:10.1016/j.foodchem.2006.11.073.
  • Burdurlu HS, Koca N, Karadeniz F. Degradation of vitamin C in citrus juice concentrates during storage. J Food Eng. 2006;74(2):211–16. doi:10.1016/j.jfoodeng.2005.03.026.
  • Gillham B. Glutathione. NewYork (NY): GeorgThieme; 1974.
  • Michael R, Bron AJ. The ageing lens and cataract: a model of normal and pathological ageing. Philos Trans R Soc Lond B Biol Sci. 2011;366(1568):1278–92. doi:10.1098/rstb.2010.0300.
  • Whitson JA, Sell DR, Goodman MC, Monnier VM, Fan X. Evidence of dual mechanisms of glutathione uptake in the rodent lens: a novel role for vitreous humor in lens glutathione homeostasis. Invest Ophthalmol Vis Sci. 2016;57(8):3914–25. doi:10.1167/iovs.16-19592.
  • Ortwerth BJ, Olesen PR. Glutathione inhibits the glycation and crosslinking of lens proteins by ascorbic acid. Exp Eye Res. 1988;47(5):737–50. doi:10.1016/0014-4835(88)90041-3.
  • Winkler BS, Orselli SM, Rex TS. The redox couple between glutathione and ascorbic acid: a chemical and physiological perspective. Free Radic Biol Med. 1994;17(4):333–49. doi:10.1016/0891-5849(94)90019-1.
  • Sasaki H, Giblin FJ, Winkler BS, Chakrapani B, Leverenz V, Shu CC. A protective role for glutathione-dependent reduction of dehydroascorbic acid in lens epithelium. Invest Ophthalmol Vis Sci. 1995;36:1804–17.
  • Foyer CH, Noctor G. Ascorbate and glutathione: the heart of the redox hub. Plant Physiol. 2011;155(1):2–18. doi:10.1104/pp.110.167569.
  • Pau H, Graf P, Sies H. Glutathione levels in human lens: regional distribution in different forms of cataract. Exp Eye Res. 1990;50(1):17–20. doi:10.1016/0014-4835(90)90005-F.
  • Ganea E, Harding JJ. Glutathione-related enzymes and the eye. Curr Eye Res. 2006;31(1):1–11. doi:10.1080/02713680500477347.
  • Beebe DC, Holekamp NM, Shui YB. Oxidative damage and the prevention of age-related cataracts. Ophthalmic Res. 2010;44(3):155–65. doi:10.1159/000316481.
  • Lim JC, Umapathy A, Grey AC, Vaghefi E, Donaldson PJ. Novel roles for the lens in preserving overall ocular health. Exp Eye Res. 2017;156:117–23. doi:10.1016/j.exer.2016.05.027.
  • Fan X, Monnier VM, Whitson J. Lens glutathione homeostasis: discrepancies and gaps in knowledge standing in the way of novel therapeutic approaches. Exp Eye Res. 2017;156:103–11. doi:10.1016/j.exer.2016.06.018.
  • Shearer TR, David LL, Anderson RS, Azuma M. Review of selenite cataract. Curr Eye Res. 1992;11(4):357–69. doi:10.3109/02713689209001789.
  • Organisciak DT, Bicknell IR, Darrow RM. The effects of L-and D-ascorbic acid administration on retinal tissue levels and light damage in rats. Curr Eye Res. 1992;11(3):231–41. doi:10.3109/02713689209001774.
  • Spector A, Wang GM, Wang RR, Garner WH, Moll H. The prevention of cataract caused by oxidative stress in cultured rat lenses. I. H2O2 and photochemically induced cataract. Curr Eye Res. 1993;12(2):163–79. doi:10.3109/02713689308999484.
  • Umapathy A, Donaldson P, Lim J. Antioxidant delivery pathways in the anterior eye. Biomed Res Int. 2013;2013:207250. doi:10.1155/2013/207250.
  • Beebe DC, Shui Y, Siegfried CJ, Holekamp NM, Bai F. Preserve the (intraocular) environment: the importance of maintaining normal oxygen gradients in the eye. Jpn J Ophthalmol. 2014;58(3):225–31. doi:10.1007/s10384-014-0318-4.
  • Murali K, Kang D, Nazari H. Spatial variations in vitreous oxygen consumption. PLoS One. 2016;11(3):e0149961. doi:10.1371/journal.pone.0149961.
  • Nye-Wood MG, Spraggins JM, Caprioli RM, Schey KL, Donaldson PJ, Grey AC. Spatial distributions of glutathione and its endogenous conjugates in normal bovine lens and a model of lens aging. Exp Eye Res. 2017;154:70–78. doi:10.1016/j.exer.2016.11.008.
  • Umapathy A, Li B, Donaldson PJ, Lim JC. Functional characterisation of glutathione export from the rat lens. Exp Eye Res. 2018;166:151–59. doi:10.1016/j.exer.2017.10.010.
  • Ibaraki N, Chen SC, Lin LR, Okamoto H, Pipas JM, Reddy VN. Human lens epithelial cell line. Exp Eye Res. 1998;67(5):577–85. doi:10.1006/exer.1998.0551.
  • Ou Y, Geng P, Liao GY, Zhou Z, Wu WT, Intracellular GSH. ROS levels may be related to galactose-mediated human lens epithelial cell apoptosis: role of recombinant hirudin variant III. Chem Biol Interact. 2009;179(2–3):103–09. doi:10.1016/j.cbi.2008.10.039.
  • Sant DW, Camarena V, Mustafi S, Li Y, Wilkes Z, Van Booven D, Wen R, Wang G. Ascorbate suppresses VEGF expression in retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 2018;59(8):3608–18. doi:10.1167/iovs.18-24101.
  • Annaka M, Mortensen K, Vigild ME, Matsuura T, Tsuji S, Ueda T, Tsujinaka H. Design of an injectable in situ gelation biomaterials for vitreous substitute. Biomacromolecules. 2011;12(11):4011–21. doi:10.1021/bm201012f.
  • Lamponi S, Leone G, Consumi M, Greco G, Magnani A. In vitro biocompatibility of new PVA-based hydrogels as vitreous body substitutes. J Biomater Sci Polym Ed. 2012;23(1–4):555–75. doi:10.1163/092050611X554499.
  • Tao Y, Tong X, Zhang Y. Evaluation of an in situ chemically crosslinked hydrogel as a long-term vitreous substitute material. Acta Biomater. 2013;9(2):5022–30. doi:10.1016/j.actbio.2012.09.026.
  • Chang J, Tao Y, Wang B. An in situ-forming zwitterionic hydrogel as vitreous substitute. J Mater Chem B. 2015;3(6):1097–105. doi:10.1039/C4TB01775G.
  • Sant DW, Mustafi S, Gustafson CB, Chen J, Slingerland JM, Wang G. Vitamin C promotes apoptosis in breast cancer cells by increasing TRAIL expression. Sci Rep. 2018;8(1):5306. doi:10.1038/s41598-018-23714-7.
  • Hafer K, Iwamoto KS, Schiestl RH. Refinement of the dichlorofluorescein assay for flow cytometric measurement of reactive oxygen species in irradiated and bystander cell populations. Radiat Res. 2008;169(4):460–68. doi:10.1667/RR1212.1.
  • Hanashima C, Namiki H. Reduced viability of vascular endothelial cells by high concentration of ascorbic acid in vitreous humor. Cell Biol Int. 1999;23(4):287–98. doi:10.1006/cbir.1999.0347.
  • Shang F, Lu M, Dudek E, Reddan J, Taylor A. Vitamin C and vitamin E restore the resistance of GSH-depleted lens cells to H2O2. Free Radic Biol Med. 2003;34(5):521–30. doi:10.1016/S0891-5849(02)01304-7.
  • Goyal MM, Gajjar DU, Patel DB, Sune P, Vasavda AR. Effect of vitamin C and E activity on surgically removed cataractous human lens epithelium cells. Indian J Clin Biochem. 2009;24(4):375–80. doi:10.1007/s12291-009-0068-0.
  • Wei W, Li L, Zhang Y, Yang J, Zhang Y, Xing Y. Vitamin C protected human retinal pigmented epithelium from oxidant injury depending on regulating SIRT1. ScientificWorldJournal. 2014;2014:750634. doi:10.1155/2014/750634.
  • Chen-Roetling J, Regan KA, Regan RF. Protective effect of vitreous against hemoglobin neurotoxicity. Biochem Biophys Res Commun. 2018;503(1):152–56. doi:10.1016/j.bbrc.2018.05.202.
  • Mantha N, Burra S, Rajagopal K, Sreedhara A. Protein stability and photostability under in vitro vitreal conditions - implications for long acting delivery of protein therapeutics for ocular disease. Pharm Res. 2020;37(5):85. doi:10.1007/s11095-020-02798-9.
  • Ortwerth BJ, Speaker JA, Prabhakaram M, Lopeg MG, Li EY, Feather MS. Ascorbic acid glycation: the reactions of L-threose in lens tissue. Exp Eye Res. 1994;58(6):665–74. doi:10.1006/exer.1994.1064.
  • Kisic B, Miric D, Zoric L, Ilic A, Dragojevic I. Antioxidant capacity of lenses with age-related cataract. Oxid Med Cell Longev. 2012;2012:467130. doi:10.1155/2012/467130.
  • Sun Y, Zheng Y, Wang C, Liu Y. Glutathione depletion induces ferroptosis, autophagy, and premature cell senescence in retinal pigment epithelial cells. Cell Death Dis. 2018;9(7):1–15. doi:10.1038/s41419-018-0794-4.
  • Montecinos V, Guzmán P, Barra V, Villagrán M, Muñoz-Montesino C, Sotomayor K, Escobar E, Godoy A, Mardones L, Sotomayor P. Vitamin C is an essential antioxidant that enhances survival of oxidatively stressed human vascular endothelial cells in the presence of a vast molar excess of glutathione. J Biol Chem. 2007;282(21):15506–15. doi:10.1074/jbc.M608361200.
  • Kilic F, Trevithick JR. Vitamin C reduces cytochalasin D cataractogenesis. Curr Eye Res. 1995;14(10):943–49. doi:10.3109/02713689508995134.
  • Holekamp NM, Shui YB, Beebe DC. Vitrectomy surgery increases oxygen exposure to the lens: a possible mechanism for nuclear cataract formation. Am J Ophthalmol. 2005;139(2):302–10. doi:10.1016/j.ajo.2004.09.046.
  • Rose RC, Bode AM. Ocular ascorbate transport and metabolism. Comp Biochem Physiol A Comp Physiol. 1991;100(2):273–85. doi:10.1016/0300-9629(91)90470-W.
  • Gartaganis SP, Georgakopoulos CD, Patsoukis NE, Gotsis SS, Gartaganis VS, Georgiou CD. Glutathione and lipid peroxide changes in pseudoexfoliation syndrome. Curr Eye Res. 2005;30(8):647–51. doi:10.1080/02713680590968367.
  • Zoric L, Elek-Vlajic S, Jovanovic M, Kisic B, Djokic O, Canadanovic V, Cosic V, Jaksic V. Oxidative stress intensity in lens and aqueous depending on age-related cataract type and brunescense. Eur J Ophthalmol. 2008;18(5):669–74. doi:10.1177/112067210801800501.
  • Chang S. LXII edward jackson lecture: open angle glaucoma after vitrectomy. Am J Ophthalmol. 2006;141(6):1033–43. doi:10.1016/j.ajo.2006.02.014.
  • Sharma YR, Vajpayee RB, Bhatnagar R, Mohan M, Azad RV, Kumar M, Nath R. Topical glutathione therapy in senile cataracts. cataract-III. Indian J Ophthalmol. 1989;37:121–26.
  • Age-Related Eye Disease Study Research Group. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E and beta carotene for age-related cataract and vision loss: AREDS report no. 9. Arch Ophthalmol. 2001;119(10):1439–52. doi:10.1001/archopht.119.10.1439.
  • Moriarty-Craige SE, Adkison J, Lynn M, Gensler G, Bressler S, Jones DP, Sternberg P. Antioxidant supplements prevent oxidation of cysteine/cystine redox in patients with age-related macular degeneration. Am J Ophthalmol. 2005;140(6):1020–26. doi:10.1016/j.ajo.2005.06.043.
  • Mathew MC, Ervin AM, Tao J, Davis RM. Antioxidant vitamin supplementation for preventing and slowing the progression of age-related cataract. Cochrane Database Syst Rev. 2012;6:CD004567.
  • Age-Related Eye Disease Study 2 (AREDS2) Research Group; Chew E, SanGiovanni J, Ferris, FL, Wong, WT, Agron, E, Clemons, TE, Sperduto, R, Danis, R, Chandra, SR, Blodi, BA, Domalpally, A, Elman, MJ, et al. Lutein/zeaxanthin for the treatment of age-related cataract: AREDS2 randomized trial report no. 4. JAMA Ophthalmology. 2013;131(7):843–50. doi:10.1001/jamaophthalmol.2013.4412.
  • Thrimawithana TR, Rupenthal ID, Räsch SS, Lim JC, Morton JD, Bunt CR. Drug delivery to the lens for the management of cataracts. Adv Drug Deliv Rev. 2018;126:185–94. doi:10.1016/j.addr.2018.03.009.
  • Mahelková G, Bacáková L, Korynta J, Vajner L, Vytásek R. Effect of culture substrate and culture conditions on lens epithelial cell proliferation and alpha-smooth muscle actin expression. Folia Biol (Praha). 2009;55:66–76.
  • Blakely EA, Bjornstad KA, Chang PY, McNamara MP, Chang E, Aragon G, Lin SP, Lui G, Polansky JR. Growth and differentiation of human lens epithelial cells in vitro on matrix. Invest Ophthalmol Vis Sci. 2000;41:3898–907.
  • Kumar B, Chandler HL, Plageman T, Reilly MA. Lens stretching modulates lens epithelial cell proliferation via YAP regulation. Invest Ophthalmol Vis Sci. 2019;60(12):3920–29. doi:10.1167/iovs.19-26893.