3,650
Views
13
CrossRef citations to date
0
Altmetric
Review

Macro- and Microscale Properties of the Vitreous Humor to Inform Substitute Design and Intravitreal Biotransport

, &
Pages 429-444 | Received 30 Jun 2020, Accepted 11 Sep 2020, Published online: 12 Oct 2020

References

  • Swindle-Reilly KE, Reilly MA, Ravi N. Chapter 5: current concepts in the design of hydrogels as vitreous substitutes. In: Chirila T, Harkin D editors. Biomaterials and regenerative medicine in ophthalmology. Second. Oxford (UK): Woodhead Publishing; 2016. p. 101–30.
  • Le Goff MM. Adult vitreous structure and postnatal changes. Eye (Lond). 2008;22:1214–22.
  • Nickerson CS, Park J, Kornfield JA, Karageozian H. Rheological properties of the vitreous and the role of hyaluronic acid. J Biomech. 2008;41:1840–46.
  • Coulombre AJ. The role of intraocular pressure in the development of the chick eye. I. Control of Eye Size. J Exper Zool. 1956;133:211–25.
  • Coulombre AJ, Coulombre JL. The role of intraocular pressure in the development of the chick eye. IV. Corneal Curvature. AMA Arch Ophthalmol. 1958;59:502–06.
  • Siegfried CJ, Shui YB. Intraocular oxygen and antioxidant status: new insights on the effect of vitrectomy and glaucoma pathogenesis. Am J Ophthalmol. 2019;203:12–25.
  • Siegfried CJ, Shui YB, Tian B, Nork TM, Heatley GA, Kaufman PL. Effects of vitrectomy and lensectomy on older rhesus macaques: oxygen distribution, antioxidant status, and aqueous humor dynamics. Invest Ophthalmol Vis Sci. 2017;58:4003–14.
  • Beebe DC, Shui Y, Siegfried CJ, Holekamp NM, Bai F. Preserve the (intraocular) environment: the importance of maintaining normal oxygen gradients in the eye. Jpn J Ophthalmol. 2014;58:225–31.
  • Siegfried CJ, Shui YB, Holekamp NM, Bai F, Beebe DC. Oxygen distribution in the human eye: relevance to the etiology of open-angle glaucoma after vitrectomy. Invest Ophthalmol Vis Sci. 2010;51:5731–38.
  • Filas BA, Shui Y-B, Beebe DC. Computational model for oxygen transport and consumption in human vitreous. Invest Ophthalmol Vis Sci. 2013;54(10):6549–59. doi:10.1167/iovs.13-12609.
  • Shui YB, Holekamp NM, Kramer BC, Crowley JR, Wilkins MA, Chu F, Malone PE, Mangers SJ, Hou JH, Siegfried CJ, et al. The gel state of the vitreous and ascorbate-dependent oxygen consumption: relationship to the etiology of nuclear cataracts. Arch Ophthalmol. 2009;127(4):475–82.
  • Thakur SS, Pan X, Kumarasinghe GL, Yin N, Pontré BP, Vaghefi E, Rupenthal ID. Relationship between rheological properties and transverse relaxation time (T2) of artificial and porcine vitreous humour. Exp Eye Res. 2020;194:108006.
  • Rangchian A, Hubschman JP, Kavehpour HP. Time dependent degradation of vitreous gel under enzymatic reaction: polymeric network role in fluid properties. J Biomech. 2020;109:109921.
  • Rangchian A, Francone A, Farajzadeh M, Hosseini H, Connelly K, Hubschman JP, Kavehpour P. Effects of collagenase type II on vitreous humor, an in-situ rheological study. J Biomech Eng. 2019;141(8):081007.
  • Schulz A, Wahl S, Rickmann A, Ludwig J, Stanzel BV, von Briesen H, Szurman P. Age-related loss of human vitreal viscoelasticity. Transl Vis Sci Technol. 2019;8:56.
  • Shafaie S, Hutter V, Brown MB, Cook MT, Chau DY. Diffusion through the ex vivo vitreal body–Bovine, porcine, and ovine models are poor surrogates for the human vitreous. Int J Pharm. 2018;550:207–15.
  • Tram NK, Swindle-Reilly KE. Rheological properties and age-related changes of the human vitreous humor. Front Bioeng Biotechnol. 2018. 6.
  • Huang D, Chen YS, Xu Q, Hanes J, Rupenthal ID. Effects of enzymatic degradation on dynamic mechanical properties of the vitreous and intravitreal nanoparticle mobility. Eur J Pharm Sci. 2018;118:124–33.
  • Stein S, Hadlich S, Langner S, Biesenack A, Zehm N, Kruschke S, Oelze M, Grimm M, Mahnhardt S, Weitschies W, Seidlitz A. 7.1 T MRI and T2 mapping of the human and porcine vitreous body post mortem. Eur J Pharm Biopharm. 2018;131:82–91.
  • Silva AF, Alves MA, Oliveira MSN. Rheological behaviour of vitreous humour. Rheol Acta. 2017;56:377–86.
  • Shah NS, Beebe DC, Lake SP, Filas BA. On the spatiotemporal material anisotropy of the vitreous body in tension and compression. Ann Biomed Eng. 2016;44:3084–95.
  • Pokki J, Ergeneman O, Sevim S, Enzmann V, Torun H, Nelson BJ. Measuring localized viscoelasticity of the vitreous body using intraocular microprobes. Biomed Microdevices. 2015;17:85.
  • Colter J, Williams A, Moran P, Coats B. Age-related changes in dynamic moduli of ovine vitreous. J Mech Behav Biomed Mater. 2015;41:315–24.
  • Abdelkawi SA, Abdel-Salam AM, Ghoniem DF, Ghaly SK. Vitreous humor rheology after nd: yAGlaser photo disruption. Cell Biochem Biophys. 2014;68:267–74.
  • Filas BA, Zhang Q, Okamoto RJ, Shui Y, Beebe DC. Enzymatic degradation identifies components responsible for the structural properties of the vitreous body. Invest Ophthalmol Vis Sci. 2014;55:55–63.
  • Watts F, Tan LE, Wilson CG, Girkin JM, Tassieri M, Wright AJ. Investigating the micro-rheology of the vitreous humor using an optically trapped local probe. J Opt. 2014;16:015301.
  • Zhang Q, Filas BA, Roth R, Heuser J, Ma N, Sharma S, Panitch A, Beebe DC, Shui YB. Preservation of the structure of enzymatically-degraded bovine vitreous using synthetic proteoglycan mimics. Invest Ophthalmol Vis Sci. 2014;55:8153–62.
  • Yoon S, Aglyamov S, Karpiouk A, Correspondence: ES. Spatial variations of viscoelastic properties of porcine vitreous humors. IEEE Trans Ultrason Ferroelectr Freq Control. 2013;60:2453–60.
  • Rossi T, Querzoli G, Pasqualitto G, Iossa M, Placentino L, Repetto R, Stocchino A, Ripandelli G. Ultrasound imaging velocimetry of the human vitreous. Exp Eye Res. 2012;99:98–104.
  • Piccirelli M, Bergamin O, Landau K, Boesiger P, Luechinger R. Vitreous deformation during eye movement. NMR Biomed. 2012;25:59–66.
  • Sharif-Kashani P, Hubschman JP, Sassoon D, Kavehpour HP. Rheology of the vitreous gel: effects of macromolecule organization on the viscoelastic properties. J Biomech. 2011;44:419–23.
  • Zimberlin JA, McManus JJ, Crosby AJ. Cavitation rheology of the vitreous: mechanical properties of biological tissue. Soft Matter. 2010;6:3632–35.
  • Swindle-Reilly KE, Shah M, Hamilton PD, Eskin TA, Kaushal S, Ravi N. Rabbit study of an in situ forming hydrogel vitreous substitute. Invest Ophthalmol Vis Sci. 2009;50:4840–46.
  • Swindle KE, Hamilton PD, Ravi N. In situ formation of hydrogels as vitreous substitutes: viscoelastic comparison to porcine vitreous. J Biomed Mater Res A. 2008;87:656–65.
  • Sebag J, Ansari RR, Suh KI. Pharmacologic vitreolysis with microplasmin increases vitreous diffusion coefficients. Graefes Arch Clin Exp Ophthalmol. 2007;245:576–80.
  • Patz S, Bert RJ, Frederick E, Freddo TF. T(1) and T(2) measurements of the fine structures of the in vivo and enucleated human eye. J Magn Reson Imaging. 2007;26:510–18.
  • Suri S, Banerjee R. In vitro evaluation of in situ gels as short term vitreous substitutes. J Biomed Mater Res A. 2006;79:650–64.
  • Nickerson CS, Karageozian HL, Park J, Kornfield JA. Internal tension: a novel hypothesis concerning the mechanical properties of the vitreous humor. Macromol Symp. 2005;227:183–89.
  • Walton KA, Meyer CH, Harkrider CJ, Cox TA, Toth CA. Age-related changes in vitreous mobility as measured by video B scan ultrasound. Exp Eye Res. 2002;74:173–80.
  • Lee B, Litt M, Buchsbaum G. Rheology of the vitreous body: part 2. Viscoelasticity of Bovine and Porcine Vitreous. Biorheology. 1994;31:327–38.
  • Lee B, Litt M, Buchsbaum G. Rheology of the vitreous body. Part I: Viscoelasticity of Human Vitreous. Biorheology. 1992;29:521–33.
  • Aguayo J, Glaser B, Mildvan A, Cheng HM, Gonzalez RG, Brady T. Study of vitreous liquifaction by NMR spectroscopy and imaging. Invest Ophthalmol Vis Sci. 1985;26:692–97.
  • Tokita M, Fujiya Y, Hikichi K. Dynamic viscoelasticity of bovine vitreous body. Biorheology. 1984;21:751–56.
  • Weber H, Landwehr G, Kilp H, Neubauer H. The mechanical properties of the vitreous of pig and human donor eyes. Ophthalmic Res. 1982;14:335–43.
  • Zimmerman RL. In vivo measurements of the viscoelasticity of the human vitreous humor. Biophys J. 1980;29:539–44.
  • Bettelheim FA, Wang TJY. Dynamic viscoelastic properties of bovine vitreous. Exp Eye Res. 1976;23:435–41.
  • Oksala A. Ultrasonic findings in the vitreous body at different ages and in patients with detachment of the retina. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1975;197:83–87.
  • Okada Y, Konomi H, Yada T, Kimata K, Nagase H. Degradation of type IX collagen by matrix metalloproteinase 3 (stromelysin) from human rheumatoid synovial cells. FEBS Lett. 1989;244:473–76.
  • Brown DJ, Bishop P, Hamdi H, Kenney MC. Cleavage of structural components of mammalian vitreous by endogenous matrix metalloproteinase-2. Curr Eye Res. 1996;15:439–45.
  • Sebag J. Ageing of the vitreous. Eye. 1987;1:254–62.
  • Los LI, van der Worp RJ, van Luyn MJ, Hooymans JM. Age-related liquefaction of the human vitreous body: LM and TEM evaluation of the role of proteoglycans and collagen. Invest Ophthalmol Vis Sci. 2003;44:2828–33.
  • Harocopos GJ, Shui YB, McKinnon M, Holekamp NM, Gordon MO, Beebe DC. Importance of vitreous liquefaction in age-related cataract. Invest Ophthalmol Vis Sci. 2004;45:77–85.
  • Kleinberg TT, Tzekov RT, Stein L, Ravi N, Kaushal S. Vitreous substitutes: a comprehensive review. Surv Ophthalmol. 2011 Jul-Aug;56(4):300–23.
  • Federman JL, Schubert HD. Complications associated with the use of silicone oil in 150 eyes after retina-vitreous surgery. Ophthalmology. 1988;95:870–76.
  • Giordano GG, Refojo MF. Silicone oils as vitreous substitutes. Prog Polym Sci. 1998;23:509–32.
  • Ding C, Fan Y. Measurement of diffusion coefficients of air in silicone oil and in hydraulic oil. Chinese Journal of Chemical Engineering. 2011;19:205–11.
  • Foulds WS. Is your vitreous really necessary? Eye (Lond). 1987;1:641–64.
  • Snider S. FDA approves silicone oil for retinal reattachment. Rockville, MD: US Food and Drug Administration; 1994.
  • Tram NK, Jiang P, Torres‐Flores TC, Jacobs KM, Chandler HL, Swindle‐Reilly KE. A hydrogel vitreous substitute that releases antioxidant. Macromol Biosci. 2020;20:e1900305.
  • Xue K, Liu Z, Jiang L, Kai D, Li Z, Su X, Loh XJ. A new highly transparent injectable PHA-based thermogelling vitreous substitute. Biomater Sci. 2020;8:926–36.
  • Liu Z, Liow SS, Lai SL, Alli-Shaik A, Holder GE, Parikh BH, Krishnakumar S, Li Z, Tan MJ, Gunaratne J, et al. Retinal-detachment repair and vitreous-like-body reformation via a thermogelling polymer endotamponade. Nat Biomed Eng. 2019;3(8):598–610.
  • Wang H, Wu Y, Cui C, Yang J, Liu W. Antifouling super water absorbent supramolecular polymer hydrogel as an artificial vitreous body. Adv Sci. 2018;5:1800711.
  • Hayashi K, Okamoto F, Hoshi S, Katashima T, Zujur DC, Li X, Shibayama M, Gilbert EP, Chung UI, Ohba S, et al. Fast-forming hydrogel with ultralow polymeric content as an artificial vitreous body. Nat Biomed Eng. 2017;1:0044.
  • Liang J, Struckhoff JJ, Du H, Hamilton PD, Ravi N. Synthesis and characterization of in situ forming anionic hydrogel as vitreous substitutes. J Biomed Mater Res B Appl Biomater. 2017;105:977–88.
  • Davis JT, Hamilton PD, Poly RN. (acrylamide co-acrylic acid) for use as an in situ gelling vitreous substitute. J Bioact Compat Polym. 2017;32:528–41.
  • Morandim-Giannetti A, Silva RC, Magalhães O, Junior OM, Schor P, Bersanetti PA. Conditions for obtaining polyvinyl alcohol/trisodium trimetaphosphate hydrogels as vitreous humor substitute. J Biomed Mater Res B Appl Biomater. 2016;104:1386–95.
  • Chang J, Tao Y, Wang B. An in situ-forming zwitterionic hydrogel as vitreous substitute. J Mater Chem B. 2015;3:1097–105.
  • Chang J, Tao Y, Wang B. Evaluation of a redox-initiated in situ hydrogel as vitreous substitute. Polymer. 2014;55:4627–33.
  • Tao Y, Tong X, Zhang Y. Evaluation of an in situ chemically crosslinked hydrogel as a long-term vitreous substitute material. Acta Biomater. 2013;9:5022–30.
  • Strotmann F, Wolf I, Galla HJ. The biocompatibility of a polyelectrolyte vitreous body substitute on a high resistance in vitro model of the blood-retinal barrier. J Biomater Appl. 2013 Sep;28(3):334–42.
  • Lamponi S, Leone G, Consumi M, Greco G, Magnani A. In vitro biocompatibility of new PVA-based hydrogels as vitreous body substitutes. J Biomater Sci Polym Ed. 2012;23:555–75.
  • Bohm I, Strotmann F, Koopmans C, Wolf I, Galla HJ, Ritter H. Two-component in situ forming supramolecular hydrogels as advanced biomaterials in vitreous body surgery. Macromol Biosci. 2012 Apr;12(4):432–37.
  • Pritchard CD, Crafoord S, Andreasson S, Arner KM, O’Shea TM, Langer R, Ghosh FK. Evaluation of viscoelastic poly(ethylene glycol) sols as vitreous substitutes in an experimental vitrectomy model in rabbits. Acta Biomater. 2011 Mar;7(3):936–43.
  • Annaka M, Mortensen K, Vigild ME, Matsuura T, Tsuji S, Ueda T, Tsujinaka H. Design of an injectable in situ gelation biomaterials for vitreous substitute. Biomacromolecules. 2011 Nov 14;12(11):4011–21.
  • Strotmann F, Bezdushna E, Ritter H, Galla HJ. In situ forming hydrogels: a Thermo‐Responsive polyelectrolyte as promising liquid artificial vitreous body replacement. Adv Eng Mater. 2011;13:B172–80.
  • Leone G, Consumi M, Aggravi M, Donati A, Lamponi S, Magnani A. PVA/STMP based hydrogels as potential substitutes of human vitreous. J Mater Sci Mater Med. 2010 Aug;21(8):2491–500.
  • Maruoka S, Matsuura T, Kawasaki K, Okamoto M, Yoshiaki H, Kodama M, Sugiyama M, Annaka M. Biocompatibility of polyvinylalcohol gel as a vitreous substitute. Curr Eye Res. 2006;31:599–606.
  • Foster WJ, Aliyar HA, Hamilton P, Ravi N. Internal osmotic pressure as a mechanism of retinal attachment in a vitreous substitute. J Bioact Compat Polym. 2006;21:221–35.
  • Aliyar HA, Foster WJ, Hamilton PD, Ravi N. Towards the development of an artificial human vitreous. Polym Prep. 2004;45:469–70.
  • Bruining MJ, Edelbroek-Hoogendoorn PS, Blaauwgeers HG, Mooy CM, Hendrikse FH, Koole LH. New biodegradable networks of poly(N-vinylpyrrolidinone) designed for controlled nonburst degradation in the vitreous body. J Biomed Mater Res. 1999;47:189–97.
  • Chirila TV, Hong YE. Poly (1‐vinyl‐2‐pyrrolidinone) hydrogels as vitreous substitutes: a rheological study. Polym Int. 1998;46:183–95.
  • Hong Y, Chirila TV, Vijayasekaran S, Shen W, Lou X, Dalton PD. Biodegradation in vitro and retention in the rabbit eye of crosslinked poly(1-vinyl-2-pyrrolidinone) hydrogel as a vitreous substitute. J Biomed Mater Res. 1998;39:650–59.
  • Hong Y, Chirila TV, Cuypers MJ, Constable IJ. Polymers of 1-vinyl-2-pyrrolidinone as potential vitreous substitutes: physical selection. J Biomater Appl. 1996;11:135–81.
  • Hong Y, Chirila TV, Vijayasekaran S. Crosslinked poly(1-vinyl-2-pyrrolidinone) as a vitreous substitute. J Biomed Mater Res. 1996;30:441–48.
  • Vijayasekaran S, Chirila TV, Hong Y, Tahija SG, Dalton PD, Constable IJ, McAllister IL. Poly(1-vinyl-2-pyrrolidinone) hydrogels as vitreous substitutes: histopathological evaluation in the animal eye. J Biomater Sci Polym Ed. 1996;7:685–96.
  • Chirila TV, Constable IJ, Hong Y, Vijayasekaran S, Humphrey MF, Dalton PD, Tahija SG, Maley MAL, Cuypers MJH, Sharp C, et al. Synthetic hydrogel as an artificial vitreous body. A One-year Animal Study of Its Effects on the Retina. Eur Cell Mater. 1995;5(1):83–96.
  • Yamauchi A. Synthetic vitreous body of PVA hydrogel. In: DeRossi D, Kajiwara K, Osada Y, Yamauchi A, editors. Polymer gels. Boston (MA): Springer. 1991, p. 127–134.
  • Hogen-Esch TE, Shah KR, Fitzgerald CR. Development of injectable poly(glyceryl methacrylate) hydrogels for vitreous prosthesis. J Biomed Mater Res. 1976;10:975–76.
  • Mueller-Jensen K. Polyacrylamide as an alloplastic vitreous implant. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1973;189:147–258.
  • Refojo MF, Zauberman H. Optical properties of gels designed for vitreous implantation. Invest Ophthalmol. 1973;12:465–67.
  • Daniele S, Refojo MF, Schepens CL, Freeman HM. Glyceryl methacrylate hydrogel as a vitreous implant. An Experimental Study. Arch Ophthalmol. 1968;80:120–27.
  • Laradji A, Shui YB, Karakocak BB, Evans L, Hamilton P, Ravi N. Bioinspired thermosensitive hydrogel as a vitreous substitute: synthesis, properties, and progress of animal studies. Materials. 2020;13:E1337.
  • Yu Z, Ma S, Wu M, Cui H, Wu R, Chen S, Xu C, Lu X, Feng S. Self‐assembling hydrogel loaded with 5‐FU PLGA microspheres as A novel vitreous substitute for proliferative vitreoretinopathy. J Biomed Mater Res A. Epub ahead of print. PMID: 32419359.
  • Januschowski K, Schnichels S, Hurst J, Hohenadl C, Reither C, Rickmann A, Pohl L, Bartz-Schmidt KU, Spitzer MS. Ex vivo biophysical characterization of a hydrogel-based artificial vitreous substitute. PLoS One. 2019;14:e0209217.
  • Barth H, Crafoord S, Arnér K, Ghosh F. Inflammatory responses after vitrectomy with vitreous substitutes in a rabbit model. Graefes Arch Clin Exp Ophthalmol. 2019;257:769–83.
  • Santhanam S, Shui YB, Struckhoff J, Karakocak BB, Hamilton PD, Harocopos GJ, Ravi N. Bioinspired fibrillary hydrogel with controlled swelling behavior: applicability as an artificial vitreous. ACS Appl Bio Mater. 2018;2:70–80.
  • Jiang X, Peng Y, Yang C, Liu W, Han B. The feasibility study of an in situ marine polysaccharide‐based hydrogel as the vitreous substitute. J Biomed Mater Res A. 2018;106(7):1997–2006.
  • Schnichels S, Schneider N, Hohenadl C, Hurst J, Schatz A, Januschowski K, Spitzer MS. Efficacy of two different thiol-modified crosslinked hyaluronate formulations as vitreous replacement compared to silicone oil in a model of retinal detachment. PLoS One. 2017;12:e0172895.
  • Barth H, Crafoord S, Andréasson S, Ghosh F. A cross-linked hyaluronic acid hydrogel (healaflow®) as a novel vitreous substitute. Graefes Arch Clin Exp Ophthalmol. 2016;254:697–703.
  • Morozova S, Hamilton P, Ravi N, Muthukumar M. Development of a vitreous substitute: incorporating charges and fibrous structures in synthetic hydrogel materials. Macromolecules. 2016;49:4619–26.
  • Santhanam S, Liang J, Struckhoff JJ, Hamilton PD, Ravi N. Biomimetic hydrogel with tunable mechanical properties for vitreous substitutes. Acta Biomater. 2016;43:327–37.
  • Lin YK, Chen KH, Kuan CY. The synthesis and characterization of a thermally responsive hyaluronic acid/pluronic copolymer and an evaluation of its potential as an artificial vitreous substitute. J Bioact Compat Polym. 2013;28:355–57.
  • Schramm C, Spitzer MS, Henke-Fahle S, Steinmetz G, Januschowski K, Heiduschka P, Geis-Gerstorfer J, Biedermann T, Bartz-Schmidt KU, Szurman P. The cross-linked biopolymer hyaluronic acid as an artificial vitreous substitute. Invest Ophthalmol Vis Sci. 2012 Feb 2;53(2):613–21.
  • Su W, Chen K, Chen Y, Lee Y, Tseng C, Lin F. An injectable oxidated hyaluronic acid/adipic acid dihydrazide hydrogel as a vitreous substitute. J Biomater Sci Polym Ed. 2011;22:1777–97.
  • De Jong C, Bali E, Libert J, Caspers-Velu -LADCON-L. hydrogel as a vitreous substitute: preliminary results. Bull Soc Belge Ophtalmol. 2000;278:71–75.
  • Liang C, Peyman GA, Serracarbassa P, Calixto N, Chow AA, Rao P. An evaluation of methylated collagen as a substitute for vitreous and aqueous humor. Int Ophthalmol. 1998;22:13–18.
  • Nakagawa M, Tanaka M, Miyata T. Evaluation of collagen gel and hyaluronic acid as vitreous substitutes. Ophthalmic Res. 1997;29:409–20.
  • Fernandez-Vigo J, Refojo MF, Verstraeten T. Evaluation of a viscoelastic solution of hydroxypropyl methylcellulose as a potential vitreous substitute. Retina. 1990;10:148–52.
  • Raia NR, Jia D, Ghezzi CE, Muthukumar M, Kaplan DL. Characterization of silk-hyaluronic acid composite hydrogels towards vitreous humor substitutes. Biomaterials. 2020;233:119729.
  • Uesugi K, Sakaguchi H, Hayashida Y. A self-assembling peptide gel as a vitreous substitute: a rabbit study. Invest Ophthalmol Vis Sci. 2017;58:4068–75.
  • Koster R, Stilma JS. Healon as intravitreal substitute in retinal detachment surgery in 40 patients. Doc Ophthalmol. 1986;64:13–17.
  • Pruett RC, Schepens CL, Swann DA. Hyaluronic acid vitreous substitute. A Six-year Clinical Evaluation. Arch Ophthalmol. 1979;97:2325–30.
  • Pruett RC, Schepens CL, Freeman HM. Collagen vitreous substitute. II. Preliminary Clinical Trials. Arch Ophthalmol. 1974;91:29–32.
  • Balazs EA, Freeman MI, Klöti R, Meyer-Schwickerath G, Regnault F, Sweeney DB. Hyaluronic acid and replacement of vitreous and aqueous humor. Mod Probl Ophthalmol. 1972;10:3–21.
  • Pruett RC, Calabria GA, Schepens CL. Collagen vitreous substitute. I. Experimental Study. Arch Ophthalmol. 1972;88:540–43.
  • Dunn M, Shafer D, Stenzel KH, Rubin AL, Miyata T, Hopkins L, Powers MJ. Collagen as a vitreous heterograft. Trans Am Soc Artif Intern Organs. 1971;17:421–23.
  • Dunn MW, Stenzel KH, Rubin AL, Miyata T. Collagen implants in the vitreous. Arch Ophthalmol. 1969;82:840–44.
  • Stenzel KH, Dunn MW, Rubin AL, Miyata T. Collagen gels: design for a vitreous replacement. Science. 1969;164:1282–83.
  • Dunn MW, Miyata T, Stenzel KH, Rubin AL. Studies on collagen implants in the vitreous. Surg Forum. 1968;19:492–94.
  • Gombos GM, Berman ER. Chemical and clinical observations on the fate of various vitreous substitutes. Acta Ophthalmol. 1967;45:794–806.
  • Balazs EA, Sweeney DB. The replacement of the vitreous body in the monkey by reconstituted vitreous and by hyaluronic acid. Bibl Ophthalmol. 1966;70:230–32.
  • Oosterhuis JA. Polygeline as a vitreous substitute. II. Clinical Results. Arch Ophthalmol. 1966;76:374–77.
  • Oosterhuis JA, van Haeringen NJ, Jeltes IG, Glasius E. Polygeline as a vitreous substitute. I. Observations in Rabbits. Arch Ophthalmol. 1966;76:258–65.
  • Zhang X, Tian X, Zhang B, Guo L, Li X, Jia Y. Study on the effectiveness and safety of foldable capsular vitreous body implantation. BMC Ophthalmol. 2019;19:260.
  • Zhang B, Li C, Jia Y, Li X, Guo L, Wang C, Tian X. A pilot clinical study of treating rhegmatogenous retinal detachment by silicone rubber balloon scleral buckling. Retina. 2019;40(10):1918–28.
  • Lin X, Sun X, Wang Z. Three-year efficacy and safety of a silicone oil-filled foldable-capsular-vitreous-body in three cases of severe retinal detachment. Transl Vis Sci Technol. 2016;5:2.
  • Yang W, Yuan Y, Zong Y, Huang Z, Mai S, Li Y, Qian X, Liu Y, Gao Q. Preliminary study on retinal vascular and oxygen-related changes after long-term silicone oil and foldable capsular vitreous body tamponade. Sci Rep. 2014;4:5272.
  • Feng S, Chen H, Liu Y, Huang Z, Sun X, Zhou L, Lu X, Gao Q. A novel vitreous substitute of using a foldable capsular vitreous body injected with polyvinylalcohol hydrogel. Sci Rep. 2013;3:1838.
  • Chen H, Feng S, Liu Y, Huang Z, Sun X, Zhou L, Lu X, Gao Q. Functional evaluation of a novel vitreous substitute using polyethylene glycol sols injected into a foldable capsular vitreous body. J Biomed Mater Res A. 2013;101:2538–47.
  • Wang T, Huang X, Gao Q, Feng L, Xie Z, Jiang Z, Liu Y, Li Y, Lin X, Lin J. A preliminary study to treat severe endophthalmitis via a foldable capsular vitreous body with sustained levofloxacin release in rabbits. Invest Ophthalmol Vis Sci. 2013;54:804–12.
  • Jiang Z, Wang T, Pan B, Xie Z, Wang P, Liu Y, Gao Q. Evaluation of the levofloxacin release characters from a rabbit foldable capsular vitreous body. Int J Nanomedicine. 2012;7:1–10.
  • Jiang Z, Wang P, Pan B, Xie Z, Li D, Wang T, Liu Y, Yuan Z, Gao Q. Evaluation of levofloxacin release characteristics from a human foldable capsular vitreous body in vitro. J Ocul Pharmacol Ther. 2012;28:33–40.
  • Lin X, Wang Z, Jiang Z, Long C, Liu Y, Wang P, Jin C, Yi C, Gao Q. Preliminary efficacy and safety of a silicone oil-filled foldable capsular vitreous body in the treatment of severe retinal detachment. Retina. 2012;32:729–41.
  • Wang P, Gao Q, Lin X, Zhang S, Hu J, Liu Y, Xu N, Ge J. Comprehensive analysis of inflammatory immune mediators of the intraocular fluid aspirated from the foldable capsular vitreous body filled-eyes. PloS One. 2012;7:e46384.
  • Wang P, Gao Q, Jiang Z, Lin J, Liu Y, Chen J, Zhou L, Li H, Yang Q, Wang T. Biocompatibility and retinal support of a foldable capsular vitreous body injected with saline or silicone oil implanted in rabbit eyes. Clin Exp Ophthalmol. 2012;40:e67–75.
  • Zheng H, Wang Z, Wang P, Liu Y, Jiang Z, Gao Q. Evaluation of 5-fluorouracil released from a foldable capsular vitreous body in vitro and in vivo. Graefes Arch Clin Exp Ophthalmol. 2012;250:751–59.
  • Chen X, Liu Y, Jiang Z, Zhou L, Ge J, Gao Q. Protein kinase cα downregulation via siRNA-PKCα released from foldable capsular vitreous body in cultured human retinal pigment epithelium cells. Int J Nanomedicine. 2011;6:1303–11.
  • Chen J, Gao Q, Liu Y, Ge J, Cao X, Luo Y, Huang D, Zhou G, Lin S, Lin J, et al. Clinical device-related article evaluation of morphology and functions of a foldable capsular vitreous body in the rabbit eye. J Biomed Mater Res B Appl Biomater. 2011;97(2):396–404.
  • Lin X, Ge J, Gao Q, Wang Z, Long C, He L, Liu Y, Jiang Z. Evaluation of the flexibility, efficacy, and safety of a foldable capsular vitreous body in the treatment of severe retinal detachment. Invest Ophthalmol Vis Sci. 2011;52:374–81.
  • Zhang R, Wang T, Xie C, Lin X, Jiang Z, Wang Z, Liu Y, Luo Y, Long C, He L, et al. Evaluation of supporting role of a foldable capsular vitreous body with magnetic resonance imaging in the treatment of severe retinal detachment in human eyes. Eye. 2011;25:794–802.
  • Liu Y, Ke Q, Chen J, Wang Z, Xie Z, Jiang Z, Ge J, Gao Q. Sustained mechanical release of dexamethasone sodium phosphate from a foldable capsular vitreous body. Invest Ophthalmol Vis Sci. 2010;51:1636–42.
  • Liu Y, Jiang Z, Gao Q, Ge J, Chen J, Cao X, Shen Q, Ma P. Technical standards of a foldable capsular vitreous body in terms of mechanical, optical, and biocompatible properties. Artif Organs. 2010;34:836–45.
  • Gao Q, Mou S, Ge J, To CH, Hui Y, Liu A, Wang Z, Long C, Tan J. A new strategy to replace the natural vitreous by a novel capsular artificial vitreous body with pressure-control valve. Eye. 2008;22:461–68.
  • Chan IM, Tolentino FI, Refojo MF, Fournier G, Albert DM. Vitreous substitute. Experimental Studies and Review. Retina. 1984;4:51–59.
  • Chirila TV, Tahija S, Hong Y, Vijayasekaran S, Constable IJ. Synthetic polymers as materials for artificial vitreous body: review and recent advances. J Biomater Appl. 1994;9:121–37.
  • Chirila TV, Hong YE, Dalton PD, Constable IJ, Refojo MF. The use of hydrophilic polymers as artificial vitreous. Prog Polym Sci. 1998;23:475–508.
  • Soman N, Banerjee R. Artificial vitreous replacements. Biomed Mater Eng. 2003;13:59–74.
  • Swindle K, Ravi N. Recent advances in polymeric vitreous substitutes. Expert Rev Ophthalmol. 2007;2:255–66.
  • Baino F. The use of polymers in the treatment of retinal detachment: current trends and future perspectives. Polymers. 2010;2:286–322.
  • Baino F. Towards an ideal biomaterial for vitreous replacement: historical overview and future trends. Acta Biomater. 2011 Mar;7(3):921–35.
  • Donati S, Caprani SM, Airaghi G, Vinciguerra R, Bartalena L, Testa F, Mariotti C, Porta G, Simonelli F, Azzolini C. Vitreous substitutes: the present and the future. Biomed Res Int. 2014;2014:351804.
  • Gao QY, Fu Y, Hui YN. Vitreous substitutes: challenges and directions. Int J Ophthalmol. 2015;8:437–40.
  • Alovisi C, Panico C, de Sanctis U, Eandi CM. Vitreous substitutes: old and new materials in vitreoretinal surgery. J Ophthalmol. 2017;2017:3172138.
  • Cai P, Chen X. Hydrogels for artificial vitreous: from prolonged substitution to elicited regeneration. ACS Materials Lett. 2019;1:285–89.
  • Flohé L, editor. Glutathione. Proceedings of the 16th conference of the german society of biological chemistry; March 1973; Tübingen, Germany: Biochem Soc Trans; 1974.
  • Michael R, Bron AJ. The ageing lens and cataract: a model of normal and pathological ageing. Philos Trans R Soc Lond B Biol Sci. 2011;366:1278–92.
  • Whitson JA, Sell DR, Goodman MC, Monnier VM, Fan X. Evidence of dual mechanisms of glutathione uptake in the rodent lens: a novel role for vitreous humor in lens glutathione homeostasis. Invest Ophthalmol Vis Sci. 2016;57:3914–25.
  • Tram NK, McLean RM, Swindle-Reilly KE. Glutathione improves the antioxidant activity of vitamin C in human lens and retinal epithelial cells: implications for vitreous substitutes. Curr Eye Res. 2020. Epub ahead of print. PMID: 32838548.
  • Chockalingam S, Roth C, Henzel T, Cohen T. Probing local nonlinear viscoelastic properties in soft materials. arXiv. 2020;2007:11090.
  • Scarcelli G, Seok HY. In vivo brillouin optical microscopy of the human eye. Opt Express. 2012;20:9197–202.
  • Reiß S, Burau G, Stachs O, Guthoff R, Stolz H. Spatially resolved brillouin spectroscopy to determine the rheological properties of the eye lens. Biomed Opt Express. 2011;2:2144–59.
  • Aloy MA, Adsuara JE, Cerdá-Durán P, Obergaulinger M, Esteve-Taboada JJ, Ferrer-Blasco T, Montés-Micó R. Estimation of the mechanical properties of the eye through the study of its vibrational modes. PloS One. 2017;12:e0183892.
  • High-frequency harmonic imaging of the eye.; 2005.
  • Santoro M, Marchetti P, Rossi F, Perale G, Castiglione F, Mele A, Masi M. Smart approach to evaluate drug diffusivity in injectable agar− carbomer hydrogels for drug delivery. J Phys Chem B. 2011;115:2503–10.
  • Tong J, Anderson JL. Partitioning and diffusion of proteins and linear polymers in polyacrylamide gels. Biophys J. 1996;70:1505–13.
  • Spitzer MS, Januschowski K. Aging and age-related changes of the vitreous body. Ophthalmologe. 2015;112:552–54.
  • Koo H, Moon H, Han H, Na JH, Huh MS, Park JH, Woo SJ, Park KH, Kwon IC, Kim K, et al. The movement of self-assembled amphiphilic polymeric nanoparticles in the vitreous and retina after intravitreal injection. Biomaterials. 2012;33(12):3485–93.
  • Stocchino A, Repetto R, Siggers JH. Mixing processes in the vitreous chamber induced by eye rotations. Phys Med Biol. 2009;55:453–67.
  • Repetto R, Siggers JH, Stocchino A. Mathematical model of flow in the vitreous humor induced by saccadic eye rotations: effect of geometry. Biomech Model Mechanobiol. 2010;9:65–76.
  • Balachandran RK, Barocas VH. Contribution of saccadic motion to intravitreal drug transport: theoretical analysis. Pharm Res. 2011;28:1049–64.
  • Abouali O, Modareszadeh A, Ghaffariyeh A, Tu J. Numerical simulation of the fluid dynamics in vitreous cavity due to saccadic eye movement. Med Eng Phys. 2012;34:681–92.
  • Modareszadeh A, Abouali O, Ghaffarieh A, Ahmadi G. Saccade movements effect on the intravitreal drug delivery in vitreous substitutes: a numerical study. Biomech Model Mechanobiol. 2013 Apr;12(2):281–90.
  • Bonfiglio A, Repetto R, Siggers JH, Stocchino A. Investigation of the motion of a viscous fluid in the vitreous cavity induced by eye rotations and implications for drug delivery. Phys Med Biol. 2013;58:1969–82.
  • Isakova K, Pralits JO, Repetto R, Romano MR. Mechanical models of the dynamics of vitreous substitutes. Biomed Res Int. 2014;2014:672926.
  • Awwad S, Lockwood A, Brocchini S, Khaw PT. The PK-eye: a novel in vitro ocular flow model for use in preclinical drug development. J Pharm Sci. 2015;104:3330–42.
  • Murali K, Kang D, Nazari H. Spatial variations in vitreous oxygen consumption. PLoS One. 2016;11:e0149961.
  • Wu HTD, Howse LA, Vaghefi E. Effect of age-related human lens sutures growth on its fluid dynamics. Invest Ophthalmol Vis Sci. 2017;58:6351–57.
  • Awwad S, Mohamed Ahmed AH, Sharma G, Heng JS, Khaw PT, Brocchini S, Lockwood A. Principles of pharmacology in the eye. Br J Pharmacol. 2017;174:4205–23.
  • Romano MR, Stocchino A, Ferrara M, Lagazzo A, Repetto R. Fluidics of single and double blade guillotine vitrectomy probes in balanced salt solution and artificial vitreous. Transl Vis Sci Technol. 2018;7:19.
  • Ferroni M, Cereda MG, Boschetti F. A combined approach for the analysis of ocular fluid dynamics in the presence of saccadic movements. Ann Biomed Eng. 2018;46:2091–101.
  • Henein C, Awwad S, Ibeanu N, Vlatakis S, Brocchini S, Tee Khaw P, Bouremel Y. Hydrodynamics of intravitreal injections into liquid vitreous substitutes. Pharmaceutics. 2019;11:371.
  • Stocchino A, Nepita I, Repetto R, Dodero A, Castellano M, Ferrara M, Romano MR. Fluid dynamic assessment of hypersonic and guillotine vitrectomy probes in viscoelastic vitreous substitutes. Transl Vis Sci Technol. 2020;9:9.
  • Bayat J, Emdad H, Abouali O. 3D numerical investigation of the fluid mechanics in a partially liquefied vitreous humor due to saccadic eye movement. Comput Biol Med. 2020;125:103955.
  • Awwad S, Henein C, Ibeanu N, Khaw PT, Brocchini S. Preclinical challenges for developing long acting intravitreal medicines. Eur J Pharm Biopharm. 2020;S0939–6411:30132–36.
  • Creveling CJ, Colter J, Coats B. Changes in vitreoretinal adhesion with age and region in human and sheep eyes. Front Bioeng Biotechnol. 2018;6:153.
  • Santra M, Sharma M, Katoch D, Jain S, Saikia UN, Dogra MR, Luthra-Guptasarma M. Induction of posterior vitreous detachment (PVD) by non-enzymatic reagents targeting vitreous collagen liquefaction as well as vitreoretinal adhesion. Sci Rep. 2020;10:1–14.
  • Di Michele F, Tatone A, Romano MR, Repetto R. A mechanical model of posterior vitreous detachment and generation of vitreoretinal tractions. Biomech Model Mechanobiol. 2020;1–15. Epub ahead of print. PMID: 32642790
  • Beebe DC, Holekamp NM, Shui YB. Oxidative damage and the prevention of age-related cataracts. Ophthalmic Res. 2010;44:155–65.
  • Kandarakis SA, Piperi C, Topouzis F, Papavassiliou AG. Emerging role of advanced glycation-end products (AGEs) in the pathobiology of eye diseases. Prog Retin Eye Res. 2014;42:85–102.
  • Stitt AW, Moore JE, Sharkey JA, Murphy G, Simpson DA, Bucala R, Vlassara H, Archer DB. Advanced glycation end products in vitreous: structural and functional implications for diabetic vitreopathy. Invest Ophthalmol Vis Sci. 1998;39:2517–23.
  • Fokkens BT, Mulder DJ, Schalkwijk CG, Scheijen JL, Smit AJ, Los LI. Vitreous advanced glycation endproducts and α-dicarbonyls in retinal detachment patients with type 2 diabetes mellitus and non-diabetic controls. PloS One. 2017;12:e0173379.
  • Lee OT, Good SD, Lamy R, Kudisch M, Stewart JM. Advanced glycation end-product accumulation reduces vitreous permeability. Invest Ophthalmol Vis Sci. 2015;56:2892–97.