3,737
Views
4
CrossRef citations to date
0
Altmetric
Reviews

The Roles of Vitreous Biomechanics in Ocular Disease, Biomolecule Transport, and Pharmacokinetics

, , , , &
Pages 195-207 | Received 01 Nov 2021, Accepted 19 Jan 2022, Published online: 05 Apr 2022

References

  • Swindle-Reilly KE, Reilly MA, Ravi N. Current concepts in the design of hydrogels as vitreous substitutes. In Biomaterials and Regenerative Medicine in Ophthalmology (pp. 101–130). Amsterdam: Elsevier, 2016. doi:10.1016/B978-0-08-100147-9.00005-5.
  • Narumi M, Nishitsuka K, Yamakawa M, Yamashita H. A survey of vitreous cell components performed using liquid-based cytology. Acta Ophthalmol. 2015;93(5):e386–e390. doi:10.1111/aos.12623.
  • Le Goff MM, Bishop PN. Adult vitreous structure and postnatal changes. Eye. 2008;22(10):1214–1222. doi:10.1038/eye.2008.21.
  • Nickerson CS, Karageozian HL, Park J, Kornfield JA. Internal tension: a novel hypothesis concerning the mechanical properties of the vitreous humor. Macromol Symp. 2005;227(1):183–190. doi:10.1002/masy.200550918.
  • Nickerson CS, Park J, Kornfield JA, Karageozian H. Rheological properties of the vitreous and the role of hyaluronic acid. J Biomech. 2008;41(9):1840–1846. doi:10.1016/j.jbiomech.2008.04.015.
  • Tram NK, Swindle-Reilly KE. Rheological properties and age-related changes of the human vitreous humor. Front Bioeng Biotechnol. 2018;6(DEC):199. doi:10.3389/fbioe.2018.00199.
  • Silva AF, Alves MA, Oliveira MSN. Rheological behaviour of vitreous humour. Rheol Acta. 2017;56(4):377–386. doi:10.1007/s00397-017-0997-0.
  • Filas BA, Zhang Q, Okamoto RJ, Shui YB, Beebe DC. Enzymatic degradation identifies components responsible for the structural properties of the vitreous body. Invest Ophthalmol Vis Sci. 2014;55(1):55–63. doi:10.1167/iovs.13-13026.
  • Huang D, Chen YS, Xu Q, Hanes J, Rupenthal ID. Effects of enzymatic degradation on dynamic mechanical properties of the vitreous and intravitreal nanoparticle mobility. Eur J Pharm Sci. 2018;118:124–133. doi:10.1016/j.ejps.2018.03.023.
  • Tram NK, Maxwell CJ, Swindle-Reilly KE. Macro- and microscale properties of the vitreous humor to inform substitute design and intravitreal biotransport. Curr Eye Res. 2021;46(4):429–444. doi:10.1080/02713683.2020.1826977.
  • Tram NK, Jiang P, Jacobs KM, Ruzga MN, Allen MG, Prieto RP, Carus SA, Reilly MA, Swindle-Reilly KE. Accommodative tissues influence the shape of the cornea and potentially drive corneal morphogenesis. J Biomech. 2020;100:109582. doi:10.1016/j.jbiomech.2019.109582.
  • Nickerson CS. Engineering the mechanical properties of ocular tissues, 2005.
  • Pokki J, Ergeneman O, Sevim S, Enzmann V, Torun H, Nelson BJ. Measuring localized viscoelasticity of the vitreous body using intraocular microprobes. Biomed Microdevices. 2015;17(5):85. doi:10.1007/s10544-015-9988-z.
  • Shafaie S, Hutter V, Brown MB, Cook MT, Chau DYS. Diffusion through the ex vivo vitreal body – bovine, porcine, and ovine models are poor surrogates for the human vitreous. Int J Pharm. 2018;550(1–2):207–215. doi:10.1016/j.ijpharm.2018.07.070.
  • Schulz A, Wahl S, Rickmann A, Ludwig J, Stanzel BV, Von Briesen H, Szurman P. Age-related loss of human vitreal viscoelasticity. Trans Vis Sci Tech. 2019;8(3):56. doi:10.1167/tvst.8.3.56.
  • Aboulatta A, Abass A, Makarem A, Eliasy A, Zhou D, Chen D, Liu X, Elsheikh A. Experimental evaluation of the viscoelasticity of porcine vitreous. J R Soc Interface. 2021;18(175):49. doi:10.1098/rsif.2020.0849.
  • Elmali A, Koc I, Ciftci SY, Nemutlu E, Surucu S, Kiratli H, Yuce D, Cengiz M, Zorlu F, Ozyigit G, et al. Radiotherapy-induced alterations in vitreous humor: a new potential critical structure. Exp Eye Res. 2021;212:108802 doi:10.1016/j.exer.2021.108802.
  • Thakur SS, Shenoy SK, Suk JS, Hanes JS, Rupenthal ID. Validation of hyaluronic acid-agar-based hydrogels as vitreous humor mimetics for in vitro drug and particle migration evaluations. Eur J Pharm Biopharm. 2020;148:118–125. doi:10.1016/j.ejpb.2020.01.008.
  • Thakur SS, Pan X, Kumarasinghe GL, Yin N, Pontré BP, Vaghefi E, Rupenthal ID. Relationship between rheological properties and transverse relaxation time (T2) of artificial and porcine vitreous humour. Exp Eye Res. 2020;194:108006. doi:10.1016/J.EXER.2020.108006.
  • Rangchian A, Hubschman JP, Kavehpour HP. Time dependent degradation of vitreous gel under enzymatic reaction: polymeric network role in fluid properties. J Biomech. 2020;109:109921. doi:10.1016/j.jbiomech.2020.109921.
  • Sharif-Kashani P, Hubschman JP, Sassoon D, Pirouz Kavehpour H. Rheology of the vitreous gel: effects of macromolecule organization on the viscoelastic properties. J Biomech. 2011;44(3):419–423. doi:10.1016/j.jbiomech.2010.10.002.
  • Bishop PN, Holmes DF, Kadler KE, McLeod D, Bos KJ. Age-related changes on the surface of vitreous collagen fibrils. Invest Ophthalmol Vis Sci. 2004;45(4):1041–1046. doi:10.1167/iovs.03-1017.
  • Spitzer MS, Januschowski K. Gesunder Glaskörper und seine Alterung. Ophthalmologe. 2015;112(7):552–558. doi:10.1007/s00347-015-0031-9.
  • Levin M, Cohen N. The effects of aging on the mechanical properties of the vitreous. J Biomech. 2021;119:110310. doi:10.1016/j.jbiomech.2021.110310.
  • Bishop P. Structural macromolecules and supramolecular organisation of the vitreous gel. Prog Retin Eye Res. 2000;19(3):323–344. doi:10.1016/S1350-9462(99)00016-6.
  • Sebag J. Vitreous and vision degrading myodesopsia. Prog Retin Eye Res. 2020;79:100847. doi:10.1016/j.preteyeres.2020.100847.
  • Hickenbotham A, Roorda A, Steinmaus C, Glasser A. Meta-analysis of sex differences in presbyopia. I. Invest Ophthalmol Vis Sci. 2012;53(6):3215–3220. doi:10.1167/IOVS.12-9791.
  • Mains J, Wilson CG. The vitreous humor as a barrier to nanoparticle distribution. J Ocul Pharmacol Ther. 2013;29(2):143–150. doi:10.1089/jop.2012.0138.
  • Harocopos GJ, Shui Y-B, McKinnon M, Holekamp NM, Gordon MO, Beebe DC. Importance of vitreous liquefaction in age-related cataract. Invest Ophthalmol Vis Sci. 2004;45(1):77. doi:10.1167/iovs.03-0820.
  • Hsu HT, Patterson R, Ryan SJ. Traumatic posterior vitreous detachment: scanning electron microscopy of an experimental model in the monkey eye. Scan Electron Microsc. 1984;1984(Pt 3):1361–1368. PMID: 6438790
  • Hayashi K, Manabe SI, Hirata A, Yoshimura K. Posterior vitreous detachment in highly myopic patients. Invest Ophthalmol Vis Sci. 2020;61(4):33. doi:10.1167/iovs.61.4.33.
  • Stay MS, Xu J, Randolph TW, Barocas VH. Computer simulation of convective and diffusive transport of controlled-release drugs in the vitreous humor. Pharm Res. 2003;20(1):96–102. doi:10.1023/A:1022207026982
  • Milston R, Madigan MC, Sebag J. Vitreous floaters: etiology, diagnostics, and management. Surv Ophthalmol. 2016;61(2):211–227. doi:10.1016/j.survophthal.2015.11.008.
  • Yadav I, Purohit SD, Singh H, Bhushan S, Yadav MK, Velpandian T, Chawla R, Hazra S, Mishra NC. Vitreous substitutes: an overview of the properties, importance, and development. J Biomed Mater Res B Appl Biomater. 2021;109(8):1156–1176. doi:10.1002/jbm.b.34778.
  • De Smet MD, Gad Elkareem AM, Zwinderman AH. The vitreous, the retinal interface in ocular health and disease. Ophthalmologica. 2013;230(4):165–178. doi:10.1159/000353447.
  • Creveling CJ, Colter J, Coats B. Changes in vitreoretinal adhesion with age and region in human and sheep eyes. Front Bioeng Biotechnol. 2018;6(OCT):153. doi:10.3389/fbioe.2018.00153.
  • Ponsioen TL, Van Luyn MJA, Van Der Worp RJ, Van Meurs JC, Hooymans JMM, Los LI. Collagen distribution in the human vitreoretinal interface. Invest Ophthalmol Vis Sci. 2008;49(9):4089–4095. doi:10.1167/iovs.07-1456.
  • Gandorfer A, Putz E, Welge-Lüssen U, Grüterich M, Ulbig M, Kampik A. Ultrastructure of the vitreoretinal interface following plasmin assisted vitrectomy. Br J Ophthalmol. 2001;85(1):6–10. doi:10.1136/bjo.85.1.6.
  • Sebag J. Age-related differences in the human vitreoretinal interface. Arch Ophthalmol. 1991;109(7):966–971. doi:10.1001/archopht.1991.01080070078039.
  • Rajshri H, Nagesha C, Ganne P. Inner retinal dehiscence and macular microhole secondary to vitreomacular traction. BMJ Case Rep. 2020;13(11):e239480. doi:10.1136/bcr-2020-239480.
  • Babu N, Kumar K, Kohli P, Ramasamy K. Apparent double macular hole caused by vitreomacular traction. Indian J Ophthalmol. 2020;68(3):518–519. doi:10.4103/ijo.IJO_886_19.
  • Hayashi I, Shinoda H, Nagai N, Tsubota K, Ozawa Y. Retinal inflammation diagnosed as an idiopathic macular hole with multiple recurrences and spontaneous closures: a case report. Medicine. 2019;98(4):e14230. doi:10.1097/MD.0000000000014230.
  • Di Michele F, Tatone A, Romano MR, Repetto R. A mechanical model of posterior vitreous detachment and generation of vitreoretinal tractions. Biomech Model Mechanobiol. 2020;19(6):2627–2641. doi:10.1007/s10237-020-01360-1.
  • Hayashi K, Sato T, Ichi MS, Hirata A, Yoshimura K. Posterior vitreous detachment in patients with diabetes mellitus. Jpn J Ophthalmol. 2020;64(2):187–195. doi:10.1007/s10384-020-00720-9.
  • Alpay A. Posterior vitreous detachment rate following intravitreal dexamethasone injection. Int J Ophthalmol. 2019;12(8):1298–1303. www.ijo.cn. doi:10.18240/ijo.2019.08.10.
  • Filas BA, Shah NS, Zhang Q, Shui YB, Lake SP, Beebe DC. Quantitative imaging of enzymatic vitreolysis-induced fiber remodeling. Invest Ophthalmol Vis Sci. 2014;55(12):8626–8637. doi:10.1167/iovs.14-15225.
  • Gishti O, van den Nieuwenhof R, Verhoekx J, van Overdam K. Symptoms related to posterior vitreous detachment and the risk of developing retinal tears: a systematic review. Acta Ophthalmol. 2019;97(4):347–352. doi:10.1111/aos.14012.
  • Vitreous Syneresis: An Impending Posterior Vitreous Detachment (PVD); 2021. Available Oct 13, from https://eyerounds.org/cases/196-PVD.htm.
  • Sebag J. Anatomy and pathology of the vitreo-retinal interface. Eye. 1992;6(6):541–552. doi:10.1038/eye.1992.119.
  • Bikbova G, Oshitari T, Baba T, Yamamoto S, Mori K. Pathogenesis and management of macular hole: review of current advances. J Ophthalmol. 2019;2019:3467381. [accessed 2021 Oct 12];2019:1–7. doi:10.1155/2019/3467381
  • Zhang ZY, Sun YJ, Song JY, Fan B, Li GY. Experimental models and examination methods of retinal detachment. Brain Res Bull. 2021;169:51–62. doi:10.1016/J.BRAINRESBULL.2021.01.004.
  • Chaudhary R, Scott RAH, Wallace G, Berry M, Logan A, Blanch RJ. Inflammatory and fibrogenic factors in proliferative vitreoretinopathy development. Transl Vis Sci Technol. 2020;9(3):23–23. [accessed 2021 Oct 29]doi:10.1167/TVST.9.3.23.
  • Lescrauwaet B, Blot K, Jackson TL. Patient-reported outcomes of ocriplasmin for the treatment of vitreomacular traction: a systematic review and synthesis of the literature. Patient Relat Outcome Meas. 2019;10:101–116. doi:10.2147/prom.s153718.
  • Koizumi H, Spaide RF, Fisher YL, Freund KB, Klancnik JM, Yannuzzi LA. Three-dimensional evaluation of vitreomacular traction and epiretinal membrane using spectral-domain optical coherence tomography. Am J Ophthalmol. 2008;145(3):509–517.e1. doi:10.1016/j.ajo.2007.10.014.
  • Bonfiglio A, Repetto R, Siggers JH, Stocchino A. Investigation of the motion of a viscous fluid in the vitreous cavity induced by eye rotations and implications for drug delivery. Phys Med Biol. 2013;58(6):1969–1982. doi:10.1088/0031-9155/58/6/1969.
  • Awwad S, Mohamed Ahmed AHA, Sharma G, Heng JS, Khaw PT, Brocchini S, Lockwood A. Principles of pharmacology in the eye. Br J Pharmacol. 2017;174(23):4205–4223. doi:10.1111/bph.14024.
  • Repetto R, Siggers JH, Stocchino A. Mathematical model of flow in the vitreous humor induced by saccadic eye rotations: effect of geometry. Biomech Model Mechanobiol. 2010;9(1):65–76. doi:10.1007/s10237-009-0159-0.
  • Huang X, Chau Y. Intravitreal nanoparticles for retinal delivery. Drug Discov Today. 2019;24(8):1510–1523. doi:10.1016/j.drudis.2019.05.005.
  • Käsdorf BT, Arends F, Lieleg O. Diffusion regulation in the vitreous humor. Biophys J. 2015;109(10):2171–2181. doi:10.1016/j.bpj.2015.10.002.
  • Stocchino A, Repetto R, Siggers JH. Mixing processes in the vitreous chamber induced by eye rotations. Phys Med Biol. 2010;55(2):453–467. doi:10.1088/0031-9155/55/2/008.
  • Balachandran RK, Barocas VH. Contribution of saccadic motion to intravitreal drug transport: theoretical analysis. Pharm Res. 2011;28(5):1049–1064. doi:10.1007/s11095-010-0356-7.
  • Abouali O, Modareszadeh A, Ghaffariyeh A, Tu J. Numerical simulation of the fluid dynamics in vitreous cavity due to saccadic eye movement. Med Eng Phys. 2012;34(6):681–692. doi:10.1016/j.medengphy.2011.09.011.
  • Repetto R, Stocchino A, Cafferata C. Experimental investigation of vitreous humour motion within a human eye model. Phys Med Biol. 2005;50(19):4729–4743. doi:10.1088/0031-9155/50/19/021.
  • Smith DW, Lee CJ, Gardiner BS. No flow through the vitreous humor: how strong is the evidence? Prog Retin Eye Res. 2020;78(January):100845. doi:10.1016/j.preteyeres.2020.100845.
  • Xu J, Heys JJ, Barocas VH, Randolph TW. Permeability and diffusion in vitreous humor: implications for drug delivery. Pharm Res. 2000;17(6):664–669. doi:10.1023/A:1007517912927
  • Park J, Bungay PM, Lutz RJ, Augsburger JJ, Millard RW, Roy AS, Banerjee RK. Evaluation of coupled convective-diffusive transport of drugs administered by intravitreal injection and controlled release implant. J Control Release. 2005;105(3):279–295. doi:10.1016/j.jconrel.2005.03.010.
  • Varela-Fernández R, Díaz-Tomé V, Luaces-Rodríguez A, Conde-Penedo A, García-Otero X, Luzardo-Álvarez A, Fernández-Ferreiro A, Otero-Espinar FJ. Drug delivery to the posterior segment of the eye: biopharmaceutic and pharmacokinetic considerations. Pharmaceutics. 2020;12(3):269. doi:10.3390/pharmaceutics12030269.
  • Sebag J, Ansari RR, Suh KI. Pharmacologic vitreolysis with microplasmin increases vitreous diffusion coefficients. Graefes Arch Clin Exp Ophthalmol. 2007;245(4):576–580. doi:10.1007/s00417-006-0394-3.
  • Bayat J, Emdad H, Abouali O. 3D numerical investigation of the fluid mechanics in a partially liquefied vitreous humor due to saccadic eye movement. Comput Biol Med. 2020;125(August):103955. doi:10.1016/j.compbiomed.2020.103955.
  • Tan LE, Orilla W, Hughes PM, Tsai S, Burke JA, Wilson CG. Effects of vitreous liquefaction on the intravitreal distribution of sodium fluorescein, fluorescein dextran, and fluorescent microparticles. Invest Ophthalmol Vis Sci. 2011;52(2):1111–1118. doi:10.1167/iovs.10-5813.
  • Fu Y, Dong Y, Gao Q. Age-related cataract and macular degeneration: oxygen receptor dysfunction diseases. Med Hypotheses. 2015;85(3):272–275. doi:10.1016/j.mehy.2015.05.020.
  • Murali K, Kang D, Nazari H, Scianmarello N, Cadenas E, Tai YC, Kashani A, Humayun M. Spatial variations in vitreous oxygen consumption. PLoS One. 2016;11(3):e0149961. doi:10.1371/journal.pone.0149961.
  • Filas BA, Shui YB, Beebe DC. Computational model for oxygen transport and consumption in human vitreous. Invest Ophthalmol Vis Sci. 2013;54(10):6549–6559. doi:10.1167/iovs.13-12609.
  • Issarti I, Koppen C, Rozema JJ. Influence of the eye globe design on biomechanical analysis. Comput Biol Med. 2021;135:104612. doi:10.1016/j.compbiomed.2021.104612.
  • Asejczyk-Widlicka M, Srodka W. Finite element simulation of Goldmann tonometry after refractive surgery. Clin Biomech. 2020;71:24–28. doi:10.1016/J.CLINBIOMECH.2019.09.007.
  • Suh DW, Song HH, Mozafari H, Thoreson WB. Determining the tractional forces on vitreoretinal interface using a computer simulation model in abusive head trauma. Am J Ophthalmol. 2021;223:396–404. doi:10.1016/j.ajo.2020.06.020.
  • Liu X, Wang L, Wang C, Sun G, Liu S, Fan Y. Mechanism of traumatic retinal detachment in blunt impact: a finite element study. J Biomech. 2013;46(7):1321–1327. doi:10.1016/J.JBIOMECH.2013.02.006.
  • Awwad S, Lockwood A, Brocchini S, Khaw PT. The PK-Eye: a novel in vitro ocular flow model for use in preclinical drug development. J Pharm Sci. 2015;104(10):3330–3342. doi:10.1002/jps.24480.
  • Loch C, Bogdahn M, Stein S, Nagel S, Guthoff R, Weitschies W, Seidlitz A. Simulation of drug distribution in the vitreous body after local drug application into intact vitreous body and in progress of posterior vitreous detachment. J Pharm Sci. 2014;103(2):517–526. doi:10.1002/jps.23808.
  • Henein C, Awwad S, Ibeanu N, Vlatakis S, Brocchini S, Khaw PT, Bouremel Y. Hydrodynamics of intravitreal injections into liquid vitreous substitutes. Pharmaceutics. 2019;11(8):371. doi:10.3390/pharmaceutics11080371.
  • Januschowski K, Schnichels S, Hurst J, Hohenadl C, Reither C, Rickmann A, Pohl L, Bartz-Schmidt K-U, Spitzer MS. Ex vivo biophysical characterization of a hydrogel-based artificial vitreous substitute Langmann T, editor. PLOS One. 2019;14(1):e0209217. doi:10.1371/journal.pone.0209217.
  • Bonfiglio A, Lagazzo A, Repetto R, Stocchino A. An experimental model of vitreous motion induced by eye rotations. Eye Vis. 2015;2(1):10–10. doi:10.1186/s40662-015-0020-8
  • Luaces-Rodríguez A, Del Amo EM, Mondelo-García C, Gómez-Lado N, Gonzalez F, Ruibal Á, González-Barcia M, Zarra-Ferro I, Otero-Espinar FJ, Fernández-Ferreiro A, et al. PET study of ocular and blood pharmacokinetics of intravitreal bevacizumab and aflibercept in rats. Eur J Pharm Biopharm. 2020;154:330–337. doi:10.1016/J.EJPB.2020.06.024.
  • Fernández-Ferreiro A, Luaces-Rodríguez A, Aguiar P, Pardo-Montero J, González-Barcia M, García-Varela L, Herranz M, Silva-Rodríguez J, Gil-Martínez M, Bermúdez MA, et al. Preclinical PET study of intravitreal injections. Invest Ophthalmol Vis Sci. 2017;58(7):2843–2851. doi:10.1167/IOVS.17-21812.
  • Evans LP, Newell EA, Mahajan MA, Tsang SH, Ferguson PJ, Mahoney J, Hue CD, Vogel EW, Morrison B, Arancio O, et al. Acute vitreoretinal trauma and inflammation after traumatic brain injury in mice. Ann Clin Transl Neurol. 2018;5(3):240–251. doi:10.1002/acn3.523.
  • Liu Y, Yang T, Yu J, Li M, Li J, Yan H. Creation of a new explosive injury equipment to induce a rabbit animal model of closed globe blast injury via gas shock. 2021;Front Med. 8:749351. doi:10.3389/fmed.2021.749351.
  • Watson R, Gray W, Sponsel WE, Lund BJ, Glickman RD, Groth SL, Reilly MA. Simulations of porcine eye exposure to primary blast insult. Trans Vis Sci Tech. 2015;4(4):8. doi:10.1167/tvst.4.4.8.
  • Rangarajan N, Kamalakkannan SB, Hasija V, Shams T, Jenny C, Serbanescu I, Ho J, Rusinek M, Levin AV. Finite element model of ocular injury in abusive head trauma. J Aapos. 2009;13(4):364–369. doi:10.1016/j.jaapos.2008.11.006.
  • Karimi A, Razaghi R, Biglari H, Sera T, Kudo S. Collision of the glass shards with the eye: a computational fluid-structure interaction model. J Chem Neuroanat. 2018;90:80–86. doi:10.1016/j.jchemneu.2017.12.008.