201
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Corneal Biomechanics Assessment with Ultra High Speed Scheimpflug Camera in Primary Open Angle Glaucoma Compared with Healthy Subjects: A meta-analysis of the Literature

, , , &
Pages 161-171 | Received 29 Nov 2021, Accepted 21 Mar 2022, Published online: 18 Apr 2022

References

  • Kwon YH, Fingert JH, Kuehn MH, Alward WLM. Primary open-angle glaucoma. N Engl J Med. 2009;360(11):1113–1124. doi:10.1056/NEJMra0804630.
  • Zhang N, Wang J, Li Y, Jiang B. Prevalence of primary open angle glaucoma in the last 20 years: a meta-analysis and systematic review. Sci Rep. 2021;11(1):13762. doi:10.1038/s41598-021-92971-w.
  • Bahrami H. Causal inference in primary open angle glaucoma: specific discussion on intraocular pressure. Ophthalmic Epidemiol. 2006;13(4):283–289. doi:10.1080/09286580600681339.
  • Gordon MO, Beiser JA, Brandt JD, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, Parrish RK, Wilson MR, et al. The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120(6):714–720. doi:10.1001/archopht.120.6.714.
  • Medeiros FA, Sample PA, Zangwill LM, Bowd C, Aihara M, Weinreb RN. Corneal thickness as a risk factor for visual field loss in patients with preperimetric glaucomatous optic neuropathy. Am J Ophthalmol. 2003;136(5):805–813. doi:10.1016/s0002-9394(03)00484-7.
  • Kim JW, Chen PP. Central corneal pachymetry and visual field progression in patients with open-angle glaucoma. Ophthalmology. 2004;111(11):2126–2132. doi:10.1016/j.ophtha.2004.04.029.
  • Medeiros FA, Sample PA, Weinreb RN. Corneal thickness measurements and visual function abnormalities in ocular hypertensive patients. Am J Ophthalmol. 2003;135(2):131–137. doi:10.1016/S0002-9394(02)01886-X.
  • Burgoyne CF, Downs JC, Bellezza AJ, Suh JKF, Hart RT. The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res. 2005;24(1):39–73. doi:10.1016/j.preteyeres.2004.06.001.
  • Liu B, McNally S, Kilpatrick JI, Jarvis SP, O’Brien CJ. Aging and ocular tissue stiffness in glaucoma. Surv Ophthalmol. 2018;63(1):56–74. doi:10.1016/j.survophthal.2017.06.007.
  • Voorhees AP, Ho LC, Jan NJ, Tran H, van der Merwe Y, Chan K, Sigal IA. Whole-globe biomechanics using high-field MRI. Exp Eye Res. 2017;160:85–95. doi:10.1016/j.exer.2017.05.004.
  • Lee KM, Kim TW, Lee EJ, Girard MJA, Mari JM, Weinreb RN. Association of corneal hysteresis with lamina cribrosa curvature in primary open angle glaucoma. Invest Ophthalmol Vis Sci. 2019;60(13):4171–4177. doi:10.1167/iovs.19-27087.
  • Liang L, Zhang R, He LY. Corneal hysteresis and glaucoma. Int Ophthalmol. 2019;39(8):1909–1916. doi:10.1007/s10792-018-1011-2.
  • Touboul D, Roberts C, Kérautret J, Garra C, Maurice-Tison S, Saubusse E, Colin J. Correlations between corneal hysteresis, intraocular pressure, and corneal central pachymetry. J Cataract Refract Surg. 2008;34(4):616–622. doi:10.1016/j.jcrs.2007.11.051.
  • Hussnain SA, Alsberge JB, Ehrlich JR, Shimmyo M, Radcliffe NM. Change in corneal hysteresis over time in normal, glaucomatous and diabetic eyes. Acta Ophthalmol. 2015;93(8):e627-630–e630. doi:10.1111/aos.12726.
  • Deol M, Taylor DA, Radcliffe NM. Corneal hysteresis and its relevance to glaucoma. Curr Opin Ophthalmol. 2015;26(2):96–102.
  • Congdon NG, Broman AT, Bandeen-Roche K, Grover D, Quigley HA. Central corneal thickness and corneal hysteresis associated with glaucoma damage. Am J Ophthalmol. 2006;141(5):868–875. doi:10.1016/j.ajo.2005.12.007.
  • Medeiros FA, Meira-Freitas D, Lisboa R, Kuang TM, Zangwill LM, Weinreb RN. Corneal hysteresis as a risk factor for glaucoma progression: a prospective longitudinal study. Ophthalmology. 2013;120(8):1533–1540. doi:10.1016/j.ophtha.2013.01.032.
  • Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLOS Med. 2009;6(7):e1000097. doi:10.1371/journal.pmed.1000097.
  • European glaucoma society terminology and guidelines for glaucoma, 4th edition - chapter 2: classification and terminology supported by the EGS foundation: part 1: foreword; introduction; glossary; chapter 2 classification and terminology. Br J Ophthalmol. 2017;101(5):73–127.
  • Whiting PF, Rutjes AWS, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, Leeflang MMG, Sterne JAC, Bossuyt PMM. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155(8):529–536. doi:10.7326/0003-4819-155-8-201110180-00009.
  • Lee R, Chang RT, Wong IYH, Lai JSM, Lee JWY, Singh K. Novel parameter of corneal biomechanics that differentiate normals from glaucoma. J Glaucoma. 2016;25(6):e603-609–e609.
  • Wang W, Du S, Zhang X. Corneal deformation response in patients with primary open-angle glaucoma and in healthy subjects analyzed by CorVis ST. Invest Ophthalmol Vis Sci. 2015;56(9):5557–5565. doi:10.1167/iovs.15-16926.
  • Tian L, Wang D, Wu Y, Meng X, Chen B, Ge M, Huang Y. Corneal biomechanical characteristics measured by the CorVis Scheimpflug technology in eyes with primary open-angle glaucoma and normal eyes. Acta Ophthalmol. 2016;94(5):e317-324–e324. doi:10.1111/aos.12672.
  • Pradhan ZS, Deshmukh S, Dixit S, Sreenivasaiah S, Shroff S, Devi S, Webers CAB, Rao HL. A comparison of the corneal biomechanics in pseudoexfoliation glaucoma, primary open-angle glaucoma and healthy controls using Corvis ST. PLOS One. 2020;15(10):e0241296. doi:10.1371/journal.pone.0241296.
  • Vinciguerra R, Rehman S, Vallabh NA, Batterbury M, Czanner G, Choudhary A, Cheeseman R, Elsheikh A, Willoughby CE. Corneal biomechanics and biomechanically corrected intraocular pressure in primary open-angle glaucoma, ocular hypertension and controls. Br J Ophthalmol. 2020;104(1):121–126. doi:10.1136/bjophthalmol-2018-313493.
  • Coste V, Schweitzer C, Paya C, Touboul D, Korobelnik JF. Évaluation des propriétés biomécaniques de la cornée de patients glaucomateux et témoins par la technologie dynamique Scheimpflug de visualisation cornéenne. J Fr Ophthalmol. 2015;38(6):504–513. doi:10.1016/j.jfo.2015.01.007.
  • Salvetat ML, Zeppieri M, Tosoni C, Felletti M, Grasso L, Brusini P. Corneal deformation parameters provided by the CorVis-ST pachy-tonometer in healthy subjects and glaucoma patients. J Glaucoma. 2015;24(8):568–574.
  • Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg. 2005;31(1):156–162. doi:10.1016/j.jcrs.2004.10.044.
  • Roberts CJ. Concepts and misconceptions in corneal biomechanics. J Cataract Refract Surg. 2014;40(6):862–869. doi:10.1016/j.jcrs.2014.04.019.
  • Brown KE, Congdon NG. Corneal structure and biomechanics: impact on the diagnosis and management of glaucoma. Curr Opin Ophthalmol. 2006;17(4):338–343. doi:10.1097/01.icu.0000233951.01971.5b.
  • Quigley HA. Glaucoma: macrocosm to microcosm the Friedenwald lecture. Invest Ophthalmol Vis Sci. 2005;46(8):2662–2670. doi:10.1167/iovs.04-1070.
  • Campbell IC, Coudrillier B, Ross Ethier C. Biomechanics of the posterior eye: a critical role in health and disease. J Biomech Eng. 2014;136(2):021005. doi:10.1115/1.4026286.
  • Acott TS, Kelley MJ. Extracellular matrix in the trabecular meshwork. Exp Eye Res. 2008;86(4):543–561. doi:10.1016/j.exer.2008.01.013.
  • Gong H, Tripathi RC, Tripathi BJ. Morphology of the aqueous outflow pathway. Microsc Res Tech. 1996;33(4):336–367. doi:10.1002/(SICI)1097-0029(19960301)33:4<336::AID-JEMT4>3.0.CO;2-N.
  • Last JA, Pan T, Ding Y, Reilly CM, Keller K, Acott TS, Fautsch MP, Murphy CJ, Russell P. Elastic modulus determination of normal and glaucomatous human trabecular meshwork. Invest Ophthalmol Vis Sci. 2011;52(5):2147–2152. doi:10.1167/iovs.10-6342.
  • Tovar-Vidales T, Roque R, Clark AF, Wordinger RJ. Tissue transglutaminase expression and activity in normal and glaucomatous human trabecular meshwork cells and tissues. Invest Ophthalmol Vis Sci. 2008;49(2):622–628. doi:10.1167/iovs.07-0835.
  • Raghunathan V. Biomechanical properties of the trabecular meshwork in aqueous humor outflow resistance. In: Pallikaris I, Tsilimbaris MK, Dastiridou AI, editors. Ocular rigidity, biomechanics and hydrodynamics of the eye. Cham, Switzerland: Springer; 2021. p. 147–167.
  • Roberts CJ. PhD corneal hysteresis and beyond: does it involve the sclera? J Cataract Refract Surg. 2021;47(4):427–429. doi:10.1097/j.jcrs.0000000000000626.
  • Nemeth G, Hassan Z, Csutak A, Szalai E, Berta A, Modis L. Repeatability of ocular biomechanical data measurements with a Scheimpflug-based noncontact device on normal corneas. J Refract Surg. 2013;29(8):558–563. doi:10.3928/1081597X-20130719-06.
  • Tian L, Huang YF, Wang LQ, Bai H, Wang Q, Jiang JJ, Wu Y, Gao M. Corneal biomechanical assessment using corneal visualization scheimpflug technology in keratoconic and normal eyes. J Ophthalmol. 2014;2014:147516. doi:10.1155/2014/147516.
  • Ali NQ, Patel DV, McGhee CNJ. Biomechanical responses of healthy and keratoconic corneas measured using a noncontact scheimpflug-based tonometer. Invest Ophthalmol Vis Sci. 2014;55(6):3651–3659. doi:10.1167/iovs.13-13715.
  • Kaushik S, Pandav SS, Banger A, Aggarwal K, Gupta A. Relationship between corneal biomechanical properties, central corneal thickness, and intraocular pressure across the spectrum of glaucoma. Am J Ophthalmol. 2012;153(5):840–849.e2. doi:10.1016/j.ajo.2011.10.032.
  • Elsheikh A, Alhasso D, Rama P. Biomechanical properties of human and porcine corneas. Exp Eye Res. 2008;86(5):783–790. doi:10.1016/j.exer.2008.02.006.
  • Kida T, Liu JHK, Weinreb RN. Effects of aging on corneal biomechanical properties and their impact on 24-hour measurement of intraocular pressure. Am J Ophthalmol. 2008;146(4):567–572. doi:10.1016/j.ajo.2008.05.026.
  • Pérez-Rico C, Gutiérrez-Ortíz C, González-Mesa A, Zandueta AM, Moreno-Salgueiro A, Germain F. Effect of diabetes mellitus on Corvis ST measurement process. Acta Ophthalmol. 2015;93(3):e193–198–e198. doi:10.1111/aos.12530.
  • Lopes BT, Bao FJun, Wang JJie, Liu XYu, Wang L, Abass A, Eliasy A, Elsheikh A. Review of in-vivo characterisation of corneal biomechanics. Med Novel Technol Device. 2021;11:100073. doi:10.1016/j.medntd.2021.100073.
  • Jung Y, Park HYL, Oh S, Park CK. Corneal biomechanical responses detected using CorVis corvis st in primary open angle glaucoma and normal tension glaucoma. Medicine (Baltimore).2020;99(7):e19126. doi:10.1097/MD.0000000000019126.
  • Hong K, Wong IYH, Singh K, Chang RT. Corneal biomechanics using a scheimpflug-based noncontact device in normal-tension glaucoma and healthy controls. Asia Pac J Ophthalmol. 2019;8(1):22–29.
  • Sun Y, Guo Y, Cao K, Zhang Y, Xie Y, Pang R, Shi Y, Wang H, Wang N. Relationship between corneal stiffness parameters and lamina cribrosa curvature in normal tension glaucoma. Eur J Ophthalmol. 2020;31(6):3049–3056.
  • Matsuura M, Hirasawa K, Murata H, Nakakura S, Kiuchi Y, Asaoka R. The usefulness of CorvisST tonometry and the ocular response analyzer to assess the progression of glaucoma. Sci Rep. 2017;7(1):40798. doi:10.1038/srep40798.
  • Jung Y, Chun H, Moon JI. Corneal deflection amplitude and visual field progression in primary open-angle glaucoma. PLoS One. 2019;14(8):e0220655. doi:10.1371/journal.pone.0220655.
  • Jung Y, Park HYL, Park CK. Association between corneal deformation amplitude and posterior pole profiles in primary open-angle glaucoma. Ophthalmology. 2016;123(5):959–964. doi:10.1016/j.ophtha.2015.12.043.
  • Qassim A, Mullany S, Abedi F, Marshall H, Hassall MM, Kolovos A, Knight LSW, Nguyen T, Awadalla MS, Chappell A, et al. Corneal stiffness parameters are predictive of structural and functional progression in glaucoma suspect eyes. Ophthalmology. 2021;128(7):993–1004. doi:10.1016/j.ophtha.2020.11.021.
  • Ma Y, Moroi SE, Roberts CJ. Non-invasive clinical measurement of ocular rigidity and comparison to biomechanical and morphological parameters in glaucomatous and healthy subjects. Front Med. 2021;8:701997.
  • Eliasy A, Chen KJ, Vinciguerra R, Lopes BT, Abass A, Vinciguerra P, Ambrósio R, Jr, Roberts CJ, Elsheikh A. Determination of corneal biomechanical behavior in-vivo for healthy eyes using CorVis ST tonometry: stress-strain index. Front Bioeng Biotechnol. 2019;7:105.
  • Zhang H, Eliasy A, Lopes B, Abass A, Vinciguerra R, Vinciguerra P, Ambrósio R Jr, Roberts CJ, Elsheikh A. Stress-strain index map: a new way to represent corneal material stiffness. Front Bioeng Biotechnol. 2021;9:640434.
  • Wu N, Chen Y, Yu X, Li M, Wen W, Sun X. Changes in corneal biomechanical properties after long-term topical prostaglandin therapy. PLOS One. 2016;11(5):e0155527. doi:10.1371/journal.pone.0155527.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.