2,707
Views
8
CrossRef citations to date
0
Altmetric
Reviews

A Review of Lens Biomechanical Contributions to Presbyopia

&
Pages 182-194 | Received 14 Dec 2021, Accepted 04 Jun 2022, Published online: 17 Jun 2022

References

  • Grzybowski A, Markeviciute A, Zemaitiene R. A review of pharmacological presbyopia treatment. Asia Pac J Ophthalmol. 2020;9(3):226–233. doi:10.1097/APO.0000000000000297.
  • Michael R, Mikielewicz M, Gordillo C, Montenegro GA, Pinilla Cortés L, Barraquer RI. Elastic properties of human lens zonules as a function of age in presbyopes. Invest Ophthalmol Vis Sci. 2012;53(10):6109–6114. doi:10.1167/iovs.11-8702.
  • Krag S, Andreassen TT. Mechanical properties of the human lens capsule. Prog Retin Eye Res. 2003;22(6):749–767. doi:10.1016/S1350-9462(03)00063-6.
  • Anderson HA, Gloria H, Adrian G, Stuebing KK, Manny RE. Minus-lens-stimulated accommodative amplitude decreases sigmoidally with age: a study of objectively measured accommodative amplitudes from age 3. Invest Ophthalmol Vis Sci. 2008;49(7):2919–2926. doi:10.1167/iovs.07-1492.
  • Kaufman PL, Lütjen Drecoll E, Croft MA. Presbyopia and glaucoma: two diseases, one pathophysiology? The 2017 Friedenwald lecture. Invest Ophthalmol Vis Sci. 2019;60(5):1801–1812. doi:10.1167/iovs.19-26899.
  • Atchison DA. Accommodation and presbyopia. Ophthalmic Physiol Opt. 1995;15(4):255–272.
  • Reilly MA. A quantitative geometric mechanics lens model: insights into the mechanisms of accommodation and presbyopia. Vision Res. 2014;103:20–31. doi:10.1016/j.visres.2014.08.001.
  • Gambra E, Ortiz S, Perez-Merino P, Gora M, Wojtkowski M, Marcos S. Static and dynamic crystalline lens accommodation evaluated using quantitative 3-D OCT. Biomed Opt Express. 2013;4(9):1595–1609. doi:10.1364/BOE.4.001595.
  • Hermans EA, Dubbelman M, van der Heijde GL, Heethaar RM. Change in the accommodative force on the lens of the human eye with age. Vision Res. 2008;48(1):119–126. doi:10.1016/j.visres.2007.10.017.
  • Beers AP, van der Heijde GL. Age-related changes in the accommodation mechanism. Optom Vis Sci. 1996;73(4):235–242.
  • Fisher RF. Presbyopia and the changes with age in the human crystalline lens. J Physiol. 1973;228(3):765–779. doi:10.1113/jphysiol.1973.sp010111.
  • Fisher RF. The mechanics of accommodation in relation to presbyopia. Eye. 1988;2(6):646–649. doi:10.1038/eye.1988.119.
  • Strenk SA, Semmlow JL, Strenk LM, Munoz P, Gronlund-Jacob J, DeMarco JK. Age-related changes in human ciliary muscle and lens: a magnetic resonance imaging study. Invest Ophthalmol Vis Sci. 1999;40(6):1162–1169.
  • Girard MJA, Dupps WJ, Baskaran M, Scarcelli G, Yun SH, Quigley HA, Sigal IA, Strouthidis NG. Translating ocular biomechanics into clinical practice: current state and future prospects. Curr Eye Res. 2015;40(1):1–18. doi:10.3109/02713683.2014.914543.
  • de Sompel DV, Kunkel GJ, Hersh PS, Smits AJ. Model of accommodation: contributions of lens geometry and mechanical properties to the development of presbyopia. J Cataract Refract Surg. 2010;36(11):1960–1971. doi:10.1016/j.jcrs.2010.09.001.
  • Pierscionek B, Bahrami M, Hoshino M, Uesugi K, Regini J, Yagi N. The eye lens: age-related trends and individual variations in refractive index and shape parameters. Oncotarget. 2015;6(31):30532–30544. doi:10.18632/oncotarget.5762.
  • Coleman DJ, Fish SK. Presbyopia, accommodation, and the mature catenary. Ophthalmology. 2001;108(9):1544–1551. doi:10.1016/s0161-6420(01)00691-1.
  • Kumar B, Reilly MA. The development, growth, and regeneration of the crystalline lens: a review. Curr Eye Res. 2020;45(3):313–326. doi:10.1080/02713683.2019.1681003.
  • Bassnett S, Šikić H. The lens growth process. Prog Retin Eye Res. 2017;60:181–200. doi:10.1016/j.preteyeres.2017.04.001.
  • Reilly MA, Brian R, Hamilton PD, Shen AQ, Nathan R. Material characterization of porcine lenticular soluble proteins. Biomacromolecules. 2008;9(6):1519–1526. doi:10.1021/bm701229t.
  • Reilly MA, Hamilton PD, Nathan R. Dynamic multi-arm radial lens stretcher: a robotic analog of the ciliary body. Exp Eye Res. 2008;86(1):157–164. doi:10.1016/j.exer.2007.10.005.
  • Sharma PK, Busscher HJ, Terwee T, Koopmans SA, van Kooten TG. A comparative study on the viscoelastic properties of human and animal lenses. Exp Eye Res. 2011;93(5):681–688. doi:10.1016/j.exer.2011.08.009.
  • Soergel F, Meyer C, Eckert G, Abele B, Pechhold W. Spectral analysis of viscoelasticity of the human lens. J Refract Surg. 1999;15(6):714–716.
  • Itoi M, Ito N, Kaneko H. Visco-elastic properties of the lens. Exp Eye Res. 1965;4(3):168–173. doi:10.1016/S0014-4835(65)80028-8.
  • Kikkawa Y, Sato T. Elastic properties of the lens. Exp Eye Res. 1963;2:210–215. doi:10.1016/S0014-4835(63)80015-9.
  • Beers AP, van der Heijde RGL. In vivo determination of the biomechanical properties of the component elements of the accommodation mechanism. Vision Res. 1994;34(21):2897–2905. doi:10.1016/0042-6989(94)90058-2.
  • Kasthurirangan S, Glasser A. Age related changes in accommodative dynamics in humans. Vision Res. 2006;46(8-9):1507–1519. doi:10.1016/j.visres.2005.11.012.
  • Koretz JF, Kaufman PL, Neider MW, Goeckner PA. Accommodation and presbyopia in the human eye-aging of the anterior segment. Vision Res. 1989;29(12):1685–1692. doi:10.1016/0042-6989(89)90150-8.
  • Humphrey JD, Delange Sherry L. An introduction to biomechanics: solids and fluids, analysis and design. 2004.
  • Wilkes RP, Reilly MA. A pre-tensioned finite element model of ocular accommodation and presbyopia. Int J Adv Eng Sci Appl Math. 2016;8(1):25–14. doi:10.1007/s12572-015-0141-2.
  • Miesfeld JB, Brown NL. Eye organogenesis: a hierarchical view of ocular development. Curr Top Dev Biol. 2019;132:351–393. doi:10.1016/bs.ctdb.2018.12.008.
  • Zhang J, Hussain A, Yue S, Zhang T, Marshall J. Osmotically induced removal of lens epithelial cells to prevent PCO after pediatric cataract surgery: pilot study to assess feasibility. J Cataract Refract Surg. 2019;45(10):1480–1489. doi:10.1016/j.jcrs.2019.04.034.
  • Su SP, McArthur JD, Truscott RJ, Aquilina JA. Truncation, cross-linking and interaction of crystallins and intermediate filament proteins in the aging human lens. Biochim Biophys Acta. 2011;1814(5):647–656. doi:10.1016/j.bbapap.2011.03.014.
  • Sindhu Kumari S, Gupta N, Shiels A, FitzGerald PG, Menon AG, Mathias RT, Varadaraj K. Role of aquaporin 0 in lens biomechanics. Biochem Biophys Res Commun. 2015;462(4):339–345. doi:10.1016/j.bbrc.2015.04.138.
  • Rao PV, Maddala R. Ankyrin-B in lens architecture and biomechanics: just not tethering but more. Bioarchitecture. 2016;6(2):39–45. doi:10.1080/19490992.2016.1156284.
  • Iribarren R. Crystalline lens and refractive development. Prog Retin Eye Res. 2015;47:86–106. doi:10.1016/j.preteyeres.2015.02.002.
  • Gullstrand A. Helmholtz’s treatise on physiological optics. Translated ed. 1924.
  • Helmholtz H. Uber die akkommodation des auges. Arch Ophthalmol. 1855;1:1–74.
  • Hermans E, Dubbelman M, van der Heijde R, Heethaar R. The shape of the human lens nucleus with accommodation. J Vis. 2007;7(10):16.1–10. doi:10.1167/7.10.16.
  • Dubbelman M, van der Heijde GL, Weeber HA. Change in shape of the aging human crystalline lens with accommodation. Vision Res. 2005;45(1):117–132. doi:10.1016/j.visres.2004.07.032.
  • Koretz JF, Handelman GH, Brown NP. Analysis of human crystalline lens curvature as a function of accommodative state and age. Vision Res. 1984;24(10):1141–1151. doi:10.1016/0042-6989(84)90168-8.
  • Brown N. The change in lens curvature with age. Exp Eye Res. 1974;19(2):175–183. doi:10.1016/0014-4835(74)90034-7.
  • Grossniklaus HE, Nickerson JM, Edelhauser HF, Bergman LA, Berglin L. Anatomic alterations in aging and age-related diseases of the eye. Invest Ophthalmol Vis Sci. 2013;54(14):ORSF23– ORSF27. doi:10.1167/iovs.13-12711.
  • Bassnett S. Cell biology of lens epithelial cells. In Saika S, Werner L, Lovicu FJ (Eds). Lens Epithelium and Posterior Capsular Opacification (pp. 25–38), 2014.
  • Cheng C, Parreno J, Nowak RB, Biswas SK, Wang K, Hoshino M, Uesugi K, Yagi N, Moncaster JA, Lo W-K, et al. Age-related changes in eye lens biomechanics, morphology, refractive index and transparency. Aging. 2019;11(24):12497–12531. doi:10.18632/aging.102584.
  • Bassnett S, Costello MJ. The cause and consequence of fiber cell compaction in the vertebrate lens. Exp Eye Res. 2017;156:50–57.
  • Al-Ghoul KJ, Nordgren RK, Kuszak AJ, Freel CD, Costello MJ, Kuszak JR. Structural evidence of human nuclear fiber compaction as a function of ageing and cataractogenesis. Exp Eye Res. 2001;72(3):199–214. doi:10.1006/exer.2000.0937.
  • Augusteyn RC. On the growth and internal structure of the human lens. Exp Eye Res. 2010;90(6):643–654. doi:10.1016/j.exer.2010.01.013.
  • Costello MJ, Mohamed A, Gilliland KO, Fowler WC, Johnsen S. Ultrastructural analysis of the human lens fiber cell remodeling zone and the initiation of cellular compaction. Exp Eye Res. 2013;116:411–418. doi:10.1016/j.exer.2013.10.015.
  • Fincham EF. The mechanism of accommodation. Br J Ophthalmol. 1937;21(supple):1–80.
  • Barraquer RI, Michael R, Abreu R, Lamarca J, Tresserra F. Human lens capsule thickness as a function of age and location along the sagittal lens perimeter. Invest Ophthalmol Vis Sci. 2006;47(5):2053–2060. doi:10.1167/iovs.05-1002.
  • Danysh BP, Duncan MK. The lens capsule. Exp Eye Res. 2009;88(2):151–164. doi:10.1016/j.exer.2008.08.002.
  • Wilde GS, Burd HJ, Judge SJ. Shear modulus data for the human lens determined from a spinning lens test. Exp Eye Res. 2012;97(1):36–48. doi:10.1016/j.exer.2012.01.011.
  • Weeber HA, Eckert G, Pechhold W, van der Heijde RGL. Stiffness gradient in the crystalline lens. Graefes Arch Clin Exp Ophthalmol. 2007;245(9):1357–1366. doi:10.1007/s00417-007-0537-1.
  • Koretz JF, Handelman GH. How the human eye focuses. Sci Am. 1988;259(1):92–99. doi:10.1038/scientificamerican0788-92.
  • Fisher RF. Elastic constants of the human lens capsule. J Physiol. 1969;201(1):1–19. doi:10.1113/jphysiol.1969.sp008739.
  • Heys KR, Leigh CS, Willis TRJ. Massive increase in the stiffness of the human lens nucleus with age: the basis for presbyopia? Mol Vis. 2004;10:956–963.
  • Chai CK, Burd HJ, Wilde GS. Shear modulus measurements on isolated human lens nuclei. Exp Eye Res. 2012;103:78–81. doi:10.1016/j.exer.2012.08.003.
  • Weale RA. On potential causes of presbyopia. Vision Res. 1999;39(7):1263–1272. doi:10.1016/s0042-6989(98)00238-7.
  • Krag S, Andreassen TT. Mechanical properties of the human posterior lens capsule. Invest Ophthalmol Vis Sci. 2003;44(2):691–696. doi:10.1167/iovs.02-0096.
  • Gao CY, Bassnett S, Zelenka PS. Cyclin B, p34cdc2, and H1-kinase activity in terminally differentiating lens fiber cells. Dev Biol. 1995;169(1):185–194. doi:10.1006/dbio.1995.1136.
  • Kumar B, Chandler HL, Plageman T, Reilly MA. Lens stretching modulates lens epithelial cell proliferation via YAP regulation. Invest Ophthalmol Vis Sci. 2019;60(12):3920–3929. doi:10.1167/iovs.19-26893.
  • Shi Y, De Maria A, Lubura S, Sikic H, Bassnett S. The penny pusher: a cellular model of lens growth. Invest Ophthalmol Vis Sci. 2014;56(2):799–809. doi:10.1167/iovs.14-16028.
  • Bassnett S. Three-dimensional reconstruction of cells in the living lens: the relationship between cell length and volume. Exp Eye Res. 2005;81(6):716–723. doi:10.1016/j.exer.2005.04.009.
  • Bassnett S. On the mechanism of organelle degradation in the vertebrate lens. Exp Eye Res. 2009;88(2):133–139. doi:10.1016/j.exer.2008.08.017.
  • Bassnett S. The fate of the Golgi apparatus and the endoplasmic reticulum during lens fiber cell differentiation. Invest Ophthalmol Vis Sci. 1995;36(9):1793–1803.
  • Bassnett S. Lens organelle degradation. Exp Eye Res. 2002;74(1):1–6. doi:10.1006/exer.2001.1111.
  • Bassnett S, Beebe DC. Coincident loss of mitochondria and nuclei during lens fiber cell differentiation. Dev Dyn. 1992;194(2):85–93. doi:10.1002/aja.1001940202.
  • Bassnett S, Mataic D. Chromatin degradation in differentiating fiber cells of the eye lens. J Cell Biol. 1997;137(1):37–49. doi:10.1083/jcb.137.1.37.
  • Bassnett S, Shi Y, Vrensen GF. Biological glass: structural determinants of eye lens transparency. Philos Trans R Soc Lond B Biol Sci. 2011;366(1568):1250–1264. doi:10.1098/rstb.2010.0302.
  • Zandy AJ, Bassnett S. Proteolytic mechanisms underlying mitochondrial degradation in the ocular lens. Invest Ophthalmol Vis Sci. 2007;48(1):293–302. doi:10.1167/iovs.06-0656.
  • Banh A, Bantseev V, Choh V, Moran KL, Sivak JG. The lens of the eye as a focusing device and its response to stress. Prog Retin Eye Res. 2006;25(2):189–206. doi:10.1016/j.preteyeres.2005.10.001.
  • Glasser A, Campbell MCW. Reply: on the potential causes of presbyopia. Vision Res. 1999;39:1267–1272.
  • Wang K, Pierscionek BK. Biomechanics of the human lens and accommodative system: functional relevance to physiological states. Prog Retin Eye Res. 2019;71:114–131. doi:10.1016/j.preteyeres.2018.11.004.
  • Ziebarth NM, Borja D, Arrieta E, Aly M, Manns F, Dortonne I, Nankivil D, Jain R, Parel J-M. Role of the lens capsule on the mechanical accommodative response in a lens stretcher. Invest Ophthalmol Vis Sci. 2008;49(10):4490–4496. doi:10.1167/iovs.07-1647.
  • Aliyar H, Hamilton PD, Ravi N. Refilling of ocular lens capsule with copolymeric hydrogel containing reversible disulfide. Biomacromolecules. 2005;6(1):204–211. doi:10.1021/bm049574c.
  • Han YK, Kwon JW, Kim JS, Cho CS, Wee WR, Lee JH. In vitro and in vivo study of lens refilling with poloxamer hydrogel. Br J Ophthalmol. 2003;87(11):1399–1402. doi:10.1136/bjo.87.11.1399.
  • Kessler J. Experiments in refilling the lens. Arch Ophthalmol. 1964;71(1):412–417. doi:10.1001/archopht.1964.00970010428021.
  • Koopmans SA, Terwee T, Barkhof J, Haitjema HJ, Kooijman AC. Polymer refilling of presbyopic human lenses in vitro restores the ability to undergo accommodative changes. Invest Ophthalmol Vis Sci. 2003;44(1):250–257. doi:10.1167/iovs.02-0256.
  • Koopmans SA, Terwee T, Glasser A, Wendt M, Vilupuru AS, Vilipuru AS, van Kooten TG, Norrby S, Haitjema HJ, Kooijman AC. Accommodative lens refilling in rhesus monkeys. Invest Ophthalmol Vis Sci. 2006;47(7):2976–2984. doi:10.1167/iovs.05-1346.
  • Koopmans SA, Thom T, Haitjema HJ, Henk D, Sonja A, Kooijman AC. Relation between injected volume and optical parameters in refilled isolated porcine lenses. Ophthalmic Physiol Opt. 2004;24(6):572–579. doi:10.1111/j.1475-1313.2004.00238.x.
  • Nishi O, Nishi K, Mano C, Ichihara M, Honda T. Controlling the capsular shape in lens refilling. Arch Ophthalmol. 1997;115(4):507–510. doi:10.1001/archopht.1997.01100150509010.
  • Parel JM, Gelender H, Trefers WF, Norton EW. Phaco-Ersatz: cataract surgery designed to preserve accommodation. Graefes Arch Clin Exp Ophthalmol. 1986;224(2):165–173. doi:10.1007/BF02141492.
  • Reilly MA, Hamilton PD, Gavin P, Nathan R. Comparison of the behavior of natural and refilled porcine lenses in a robotic lens stretcher. Exp Eye Res. 2009;88(3):483–494. doi:10.1016/j.exer.2008.10.021.
  • Stachs O, Langner S, Terwee T, Sternberg K, Martin H, Schmitz K-P, Hosten N, Guthoff R. In vivo 7.1 T magnetic resonance imaging to assess the lens geometry in rabbit eyes 3 years after lens-refilling surgery. J Cataract Refract Surg. 2011;37(4):749–757. doi:10.1016/j.jcrs.2010.10.057.
  • Donaldson PJ, Grey AC, Maceo Heilman B, Lim JC, Vaghefi E. The physiological optics of the lens. Prog Retin Eye Res. 2017/01/01/2017;56:e1–e24. doi:10.1016/j.preteyeres.2016.09.002.
  • Hemenger RP, Garner LF, Ooi CS. Change with age of the refractive index gradient of the human ocular lens. Invest Ophthalmol Vis Sci. 1995;36(3):703–707.
  • Moffat BA, Atchison DA, Pope JM. Age-related changes in refractive index distribution and power of the human lens as measured by magnetic resonance micro-imaging in vitro. Vision Res. 2002;42(13):1683–1693. doi:10.1016/s0042-6989(02)00078-0.
  • Pierscionek BK, Regini JW. The gradient index lens of the eye: an opto-biological synchrony. Prog Retin Eye Res. 2012;31(4):332–349. doi:10.1016/j.preteyeres.2012.03.001.
  • Siedlecki D, Kasprzak H, Pierscionek BK. Schematic eye with a gradient-index lens and aspheric surfaces. Opt Lett. 2004;29(11):1197–1199. doi:10.1364/ol.29.001197.
  • Smith G, Atchison DA. The gradient index and spherical aberration of the lens of the human eye. Ophthalmic Physiol Opt. 2001;21(4):317–326. doi:10.1046/j.1475-1313.2001.00591.x.
  • Vaghefi E, Kim A, Donaldson PJ. Active maintenance of the gradient of refractive index is required to sustain the optical properties of the lens. Invest Ophthalmol Vis Sci. 2015;56(12):7195–7208. doi:10.1167/iovs.15-17861.
  • Weeber HA, van der Heijde RGL. On the relationship between lens stiffness and accommodative amplitude. Exp Eye Res. 2007;85(5):602–607. doi:10.1016/j.exer.2007.07.012.
  • Weeber HA, van der Heijde RG. Internal deformation of the human crystalline lens during accommodation. Acta Ophthalmol. 2008;86(6):642–647. doi:10.1111/j.1600-0420.2007.01116.x.
  • Kasthurirangan S, Markwell EL, Atchison DA, Pope JM. In vivo study of changes in refractive index distribution in the human crystalline lens with age and accommodation. Invest Ophthalmol Vis Sci. 2008;49(6):2531–2540. doi:10.1167/iovs.07-1443.
  • Reilly MA, Nathan R. Microindentation of the young porcine ocular lens. J Biomech Eng. 2009;131(4):044502.
  • Hejtmancik JF, Riazuddin SA, McGreal R, Liu W, Cvekl A, Shiels A. Chapter eleven - lens biology and biochemistry. In Hejtmancik JF, Nickerson JM (Eds). Progress in Molecular Biology and Translational Science (pp. 169–201), 2015.
  • Fudge DS, McCuaig JV, Van Stralen S, Hess JF, Wang H, Mathias RT, FitzGerald PG. Intermediate filaments regulate tissue size and stiffness in the murine lens. Invest Ophthalmol Vis Sci. May 2011;52(6):3860–3867. doi:10.1167/iovs.10-6231.
  • Won GJ, Fudge DS, Choh V. The effects of actomyosin disruptors on the mechanical integrity of the avian crystalline lens. Mol Vis. 2015;21:98–109.
  • Gokhin DS, Nowak RB, Kim NE, Arnett EE, Chen AC, Sah RL, Clark JI, Fowler VM. Tmod1 and CP49 synergize to control the fiber cell geometry, transparency, and mechanical stiffness of the mouse lens. PLoS One. 2012;7(11):e48734. doi:10.1371/journal.pone.0048734.
  • Stopka W, Libby T, Lin S, Wang E, Xia C-h, Gong X. Age-related changes of lens stiffness in wild-type and Cx46 knockout mice. Exp Eye Res. 2021;212:108777. doi:10.1016/j.exer.2021.108777.
  • Gu S, Biswas S, Rodriguez L, Li Z, Li Y, Riquelme MA, Shi W, Wang K, White TW, Reilly M, et al. Connexin 50 and AQP0 are essential in maintaining organization and integrity of lens fibers. Invest Ophthalmol Vis Sci. 2019;60(12):4021–4032. doi:10.1167/iovs.18-26270.
  • Lyon YA, Sabbah GM, Julian RR. Differences in α-Crystallin isomerization reveal the activity of protein isoaspartyl methyltransferase (PIMT) in the nucleus and cortex of human lenses. Exp Eye Res. 2018;171:131–141. doi:10.1016/j.exer.2018.03.018.
  • Grey AC, Schey KL. Age-related changes in the spatial distribution of human lens alpha-crystallin products by MALDI imaging mass spectrometry. Invest Ophthalmol Vis Sci. 2009;50(9):4319–4329. doi:10.1167/iovs.09-3522.
  • Zhao H, Brown PH, Magone MT, Schuck P. The molecular refractive function of lens γ-crystallins. J Mol Biol. 2011;411(3):680–699. doi:10.1016/j.jmb.2011.06.007.
  • Zhao H, Magone MT, Schuck P. The role of macromolecular crowding in the evolution of lens crystallins with high molecular refractive index. Phys Biol. 2011;8(4):046004. doi:10.1088/1478-3975/8/4/046004.
  • Bloemendal H, de Jong W, Jaenicke R, Lubsen NH, Slingsby C, Tardieu A. Ageing and vision: structure, stability and function of lens crystallins. Prog Biophys Mol Biol. 2004;86(3):407–485. doi:10.1016/j.pbiomolbio.2003.11.012.
  • Delaye M, Tardieu A. Short-range order of crystallin proteins accounts for eye lens transparency. Nature. 1983;302(5907):415–417. doi:10.1038/302415a0.
  • Tardieu A, Delaye M. Eye lens proteins and transparency: from light transmission theory to solution X-ray structural analysis. Annu Rev Biophys Biophys Chem. 1988;17:47–70. doi:10.1146/annurev.bb.17.060188.000403.
  • Veretout F, Delaye M, Tardieu A. Molecular basis of eye lens transparency. Osmotic pressure and X-ray analysis of alpha-crystallin solutions. J Mol Biol. 1989;205(4):713–728. doi:10.1016/0022-2836(89)90316-1.
  • Beebe DC, Parmelee JT, Belcher KS. Volume regulation in lens epithelial cells and differentiating lens fiber cells. J Cell Physiol. 1990;143(3):455–459. doi:10.1002/jcp.1041430308.
  • Kong C-W, Rosana G, Alvarez LJ, Candia OA. Changes in rabbit and cow lens shape and volume upon imposition of anisotonic conditions. Exp Eye Res. 2009;89(4):469–478. doi:10.1016/j.exer.2009.04.013.
  • Gao J, Sun X, Moore LC, Brink PR, White TW, Mathias RT. The effect of size and species on lens intracellular hydrostatic pressure. Invest Ophthalmol Vis Sci. 2013;54(1):183–192. doi:10.1167/iovs.12-10217.
  • Cheng C, Nowak RB, Gao J, Sun X, Biswas SK, Lo W-K, Mathias RT, Fowler VM. Lens ion homeostasis relies on the assembly and/or stability of large connexin 46 gap junction plaques on the broad sides of differentiating fiber cells. Am J Physiol Cell Physiol. May 2015;308(10):C835–C847. doi:10.1152/ajpcell.00372.2014.
  • Kumari SS, Varadaraj K. Aquaporin 0 plays a pivotal role in refractive index gradient development in mammalian eye lens to prevent spherical aberration. Biochem Biophys Res Commun. 2014;452(4):986–991. doi:10.1016/j.bbrc.2014.09.032.
  • Schey KL, Petrova RS, Gletten RB, Donaldson PJ. The role of aquaporins in ocular lens homeostasis. IJMS. 2017;18(12):2693. doi:10.3390/ijms18122693.
  • Candia OA, Mathias R, Gerometta R. Fluid circulation determined in the isolated bovine lens. Invest Ophthalmol Vis Sci. 2012;53(11):7087–7096. doi:10.1167/iovs.12-10295.
  • Gao J, Sun X, Moore LC, White TW, Brink PR, Mathias RT. Lens intracellular hydrostatic pressure is generated by the circulation of sodium and modulated by gap junction coupling. J Gen Physiol. 2011;137(6):507–520. doi:10.1085/jgp.201010538.
  • Petrova RS, Webb KF, Vaghefi E, Walker K, Schey KL, Donaldson PJ. Dynamic functional contribution of the water channel AQP5 to the water permeability of peripheral lens fiber cells. Am J Physiol Cell Physiol. 2018;314(2):C191–C201. doi:10.1152/ajpcell.00214.2017.
  • Mathias RT, Kistler J, Donaldson P. The lens circulation. J Membr Biol. 2007;216(1):1–16. doi:10.1007/s00232-007-9019-y.
  • Dubbelman M, van der Heijde GL, Weeber HA, Vrensen GF. Changes in the internal structure of the human crystalline lens with age and accommodation. Vision Res. 2003;43(22):2363–2375. doi:10.1016/S0042-6989(03)00428-0.
  • Augusteyn RC. Growth of the human eye lens. Mol Vis. 2007;13:252–257.
  • Fernández J, Rodríguez-Vallejo M, Martínez J, Tauste A, Piñero DP. From presbyopia to cataracts: a critical review on dysfunctional lens syndrome. J Ophthalmol. 2018;2018:4318405. doi:10.1155/2018/4318405.
  • Perng MD, Quinlan RA. Seeing is believing! The optical properties of the eye lens are dependent upon a functional intermediate filament cytoskeleton. Exp Cell Res. 2005;305(1):1–9. doi:10.1016/j.yexcr.2004.11.021.
  • Goulielmos G, Gounari F, Remington S, Müller S, Häner M, Aebi U, Georgatos SD. Filensin and phakinin form a novel type of beaded intermediate filaments and coassemble de novo in cultured cells. J Cell Biol. 1996;132(4):643–655. doi:10.1083/jcb.132.4.643.
  • Heys KR, Friedrich MG, Truscott RJ. Presbyopia and heat: changes associated with aging of the human lens suggest a functional role for the small heat shock protein, alpha-crystallin, in maintaining lens flexibility. Aging Cell. 2007;6(6):807–815. doi:10.1111/j.1474-9726.2007.00342.x.
  • Truscott RJ, Zhu X. Presbyopia and cataract: a question of heat and time. Prog Retin Eye Res. 2010;29(6):487–499. doi:10.1016/j.preteyeres.2010.05.002.
  • Maddala R, Skiba NP, Lalane R 3rd, Sherman DL, Brophy PJ, Rao PV. Periaxin is required for hexagonal geometry and membrane organization of mature lens fibers. Dev Biol. 2011;357(1):179–190. doi:10.1016/j.ydbio.2011.06.036.
  • Bao L, Sachs F, Dahl G. Connexins are mechanosensitive. Am J Physiol Cell Physiol. 2004;287(5):C1389–C1395. doi:10.1152/ajpcell.00220.2004.
  • Berthoud VM, Ngezahayo A. Focus on lens connexins. BMC Cell Biol. 2017;18(Suppl 1):6. doi:10.1186/s12860-016-0116-6.
  • Bennett AG. An historical review of optometric principles and techniques. Ophthalmic Physiol Opt. 1986;6(1):3–21. doi:10.1111/j.1475-1313.1986.tb00696.x.
  • Charman WN. Pinholes and presbyopia: solution or sideshow? Ophthalmic Physiol Opt. 2019;39(1):1–10. doi:10.1111/opo.12594.
  • Montés-Micó R, Charman WN. Pharmacological strategies for presbyopia correction. J Refract Surg. 2019;35(12):803–814. doi:10.3928/1081597X-20191010-04.
  • Garner WH, Garner MH. Protein disulfide levels and lens elasticity modulation: applications for presbyopia. Invest Ophthalmol Vis Sci. 2016;57(6):2851–2863. doi:10.1167/iovs.15-18413.
  • Cagini C, Leontiadis A, Ricci MA, Bartolini A, Dragoni A, Pellegrino RM. Study of alpha-lipoic acid penetration in the human aqueous after topical administration. Clin Exp Ophthalmol. 2010;38(6):572–576. doi:10.1111/j.1442-9071.2010.02319.x.
  • Takemoto L. Increase in the intramolecular disulfide bonding of alpha-A crystallin during aging of the human lens. Exp Eye Res. 1996;63(5):585–590. doi:10.1006/exer.1996.0149.
  • Flory PJ. Thermodynamics of crystallization in high polymers. IV. A theory of crystalline states and fusion in polymers, copolymers, and their mixtures with diluents. J Chem Phys. 1949;17(3):223–240. doi:10.1063/1.1747230.
  • Flory PJ. Molecular size distribution in three dimensional polymers. I. Gelation1. J Am Chem Soc. 1941;63(11):3083–3090. doi:10.1021/ja01856a061.
  • Kim S, Thomasy SM, Raghunathan VK, Teixeira LBC, Moshiri A, FitzGerald P, Murphy CJ. Ocular phenotypic consequences of a single copy deletion of the Yap1 gene (Yap1 (+/-)) in mice. Mol Vis. 2019;25:129–142.
  • Lee M, Goraya N, Kim S, Cho SH. Hippo-yap signaling in ocular development and disease. Dev Dyn. 2018;247(6):794–806. doi:10.1002/dvdy.24628.
  • Moon KH, Kim JW. Hippo signaling circuit and divergent tissue growth in mammalian eye. Mol Cells. 2018;41(4):257–263. doi:10.14348/molcells.2018.0091.
  • Morgan JT, Murphy CJ, Russell P. What do mechanotransduction, Hippo, Wnt, and TGFβ have in common? YAP and TAZ as key orchestrating molecules in ocular health and disease. Exp Eye Res. 2013;115:1–12. doi:10.1016/j.exer.2013.06.012.
  • Zhu JY, Lin S, Ye JY. YAP and TAZ, the conductors that orchestrate eye development, homeostasis, and disease. J Cell Physiol. 2018;234(1):246–258. doi:10.1002/jcp.26870.