315
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Ocular Rigidity and Current Therapy

ORCID Icon &
Pages 105-113 | Received 27 Dec 2021, Accepted 15 Jun 2022, Published online: 06 Jul 2022

References

  • Friedenwald JS. Contribution to the theory and practice of tonometry. Am J Ophthalmol. 1937;20(10):985–1024. doi:10.1016/S0002-9394(37)90425-2.
  • Ferrara M, Lugano G, Sandinha MT, Kearns VR, Geraghty B, Steel DHW. Biomechanical properties of retina and choroid: a comprehensive review of techniques and translational relevance. Eye (Lond). 2021;35(7):1818–1832. doi:10.1038/s41433-021-01437-w.
  • Pallikaris IG, Dastiridou AI, Tsilimbaris MK, Karyotakis NG, Ginis HS. Ocular rigidity. Expert Rev. Ophthalmol. 2010;5(3):343–351. doi:10.1586/eop.10.30.
  • Greene PR. Closed-form ametropic pressure-volume and ocular rigidity solutions. Am J Optom Physiol Opt. 1985;62(12):870–878. doi:10.1097/00006324-198512000-00008.
  • Ethier CR, Johnson M, Ruberti J. Ocular biomechanics and biotransport. Annu Rev Biomed Eng. 2004;6:249–273. doi:10.1146/annurev.bioeng.6.040803.140055.
  • Norman RE, Flanagan JG, Rausch SM, Sigal IA, Tertinegg I, Eilaghi A, Portnoy S, Sled JG, Ethier CR. Dimensions of the human sclera: thickness measurement and regional changes with axial length. Exp Eye Res. 2010;90(2):277–284. doi:10.1016/j.exer.2009.11.001.
  • Battaglioli JL, Kamm RD. Measurements of the compressive properties of scleral tissue. Invest Ophthalmol Vis Sci. 1984;25(1):59–65.
  • Perkins ES. Ocular volume and ocular rigidity. Exp Eye Res. 1981;33(2):141–145. doi:10.1016/s0014-4835(81)80062-0.
  • Sayah DN, Mazzaferri J, Descovich D, Costantino S, Lesk MR. The association between ocular rigidity and neuroretinal damage in glaucoma. Invest Ophthalmol Vis Sci. 2020;61(13):11. doi:10.1167/iovs.61.13.11.
  • Pallikaris IG, Kymionis GD, Ginis HS, Kounis GA, Tsilimbaris MK. Ocular rigidity in living human eyes. Invest Ophthalmol Vis Sci. 2005;46(2):409–414. doi:10.1167/iovs.04-0162.
  • Dastiridou AI, Ginis HS, De Brouwere D, Tsilimbaris MK, Pallikaris IG. Ocular rigidity, ocular pulse amplitude, and pulsatile ocular blood flow: the effect of intraocular pressure. Invest Ophthalmol Vis Sci. 2009;50(12):5718–5722. doi:10.1167/iovs.09-3760.
  • Eisenlohr JE, Langham ME, Maumenee AE. Manometric studies of the pressure-volume relationship in living and enucleated eyes of individual human subjects. Br J Ophthalmol. 1962;46(9):536–548. doi:10.1136/bjo.46.9.536.
  • Eisenlohr JE, Langham ME. The relationship between pressure and volume changes in living and dead rabbit eyes. Invest Ophthalmol. 1962;1:63–77.
  • Ytteborg J. The role of intraocular blood volume in rigidity measurements on human eyes. Acta Ophthalmol (Copenh). 1960;38:410–436. doi:10.1111/j.1755-3768.1960.tb00206.x.
  • Best M, Masket S, Rabinovitz AZ. Measurement of vascular rigidity in the living eye. Arch Ophthalmol. 1971;86(6):699–705. doi:10.1001/archopht.1971.01000010701016.
  • Kiel JW. The effect of arterial pressure on the ocular pressure-volume relationship in the rabbit. Exp Eye Res. 1995;60(3):267–278. doi:10.1016/S0014-4835(05)80109-5.
  • Dastiridou AI, Ginis H, Tsilimbaris M, Karyotakis N, Detorakis E, Siganos C, Cholevas P, Tsironi EE, Pallikaris IG. Ocular rigidity, ocular pulse amplitude, and pulsatile ocular blood flow: the effect of axial length. Invest Ophthalmol Vis Sci. 2013;54(3):2087–2092. doi:10.1167/iovs.12-11576.
  • Wang J, Freeman EE, Descovich D, Harasymowycz PJ, Kamdeu Fansi A, Li G, Lesk MR. Estimation of ocular rigidity in glaucoma using ocular pulse amplitude and pulsatile choroidal blood flow. Invest Ophthalmol Vis Sci. 2013;54(3):1706–1711. doi:10.1167/iovs.12-9841.
  • Friberg TR, Lace JW. A comparison of the elastic properties of human choroid and sclera. Exp Eye Res. 1988;47(3):429–436. doi:10.1016/0014-4835(88)90053-X.
  • Fazio MA, Grytz R, Morris JS, Bruno L, Girkin CA, Downs JC. Human scleral structural stiffness increases more rapidly with age in donors of African descent compared to donors of European descent. Invest Ophthalmol Vis Sci. 2014;55(11):7189–7198. doi:10.1167/iovs.14-14894.
  • Girkin CA, Fazio MA, Yang H, Reynaud J, Burgoyne CF, Smith B, Wang L, Downs JC. Variation in the three-dimensional histomorphometry of the normal human optic nerve head with age and race: lamina cribrosa and peripapillary scleral thickness and position. Invest Ophthalmol Vis Sci. 2017;58(9):3759–3769. doi:10.1167/iovs.17-21842.
  • Friedenwald JS. Tonometer calibration; an attempt to remove discrepancies found in the 1954 calibration scale for Schiotz tonometers. Trans Am Acad Ophthalmol Otolaryngol. 1957;61(1):108–122.
  • Jackson CR. Schiotz tonometers. An assessment of their usefulness. Br J Ophthalmol. 1965;49(9):478–484. doi:10.1136/bjo.49.9.478.
  • Gloster J, Perkins ES. Ocular rigidity and tonometry. Proc R Soc Med. 1957;50(9):667–674.
  • Hommer A, Fuchsjager-Mayrl G, Resch H, Vass C, Garhofer G, Schmetterer L. Estimation of ocular rigidity based on measurement of pulse amplitude using pneumotonometry and fundus pulse using laser interferometry in glaucoma. Invest Ophthalmol Vis Sci. 2008;49(9):4046–4050. doi:10.1167/iovs.07-1342.
  • Ebneter A, Wagels B, Zinkernagel MS. Non-invasive biometric assessment of ocular rigidity in glaucoma patients and controls. Eye (Lond). 2009;23(3):606–611. doi:10.1038/eye.2008.47.
  • Silver DM, Farrell RA, Langham ME, O'Brien V, Schilder P. Estimation of pulsatile ocular blood flow from intraocular pressure. Acta Ophthalmol Suppl (1985). 1989;191:25–29. doi:10.1111/j.1755-3768.1989.tb07083.x.
  • Ytteborg J. The effect of intraocular pressure on rigidity coefficient in the human eye. Acta Ophthalmol (Copenh). 1960;38:548–561. doi:10.1111/j.1755-3768.1960.tb00221.x.
  • Ytteborg J. Further investigations of factors influencing size of rigidity coefficient. Acta Ophthalmol (Copenh). 1960;38:643–657. doi:10.1111/j.1755-3768.1960.tb00233.x.
  • Beaton L, Mazzaferri J, Lalonde F, Hidalgo-Aguirre M, Descovich D, Lesk MR, Costantino S. Non-invasive measurement of choroidal volume change and ocular rigidity through automated segmentation of high-speed OCT imaging. Biomed Opt Express. 2015;6(5):1694–1706. doi:10.1364/BOE.6.001694.
  • Sayah DN, Mazzaferri J, Ghesquiere P, Duval R, Rezende F, Costantino S, Lesk MR. Non-invasive in vivo measurement of ocular rigidity: clinical validation, repeatability and method improvement. Exp Eye Res. 2020;190:107831. doi:10.1016/j.exer.2019.107831.
  • Friedman E, Ivry M, Ebert E, Glynn R, Gragoudas E, Seddon J. Increased scleral rigidity and age-related macular degeneration. Ophthalmology. 1989;96(1):104–108. doi:10.1016/S0161-6420(89)32936-8.
  • Pallikaris IG, Kymionis GD, Ginis HS, Kounis GA, Christodoulakis E, Tsilimbaris MK. Ocular rigidity in patients with age-related macular degeneration. Am J Ophthalmol. 2006;141(4):611–615. doi:10.1016/j.ajo.2005.11.010.
  • Raiskup F, Theuring A, Pillunat LE, Spoerl E. Corneal collagen crosslinking with riboflavin and ultraviolet-A light in progressive keratoconus: ten-year results. J Cataract Refract Surg. 2015;41(1):41–46. doi:10.1016/j.jcrs.2014.09.033.
  • Blackburn BJ, Rollins AM, Dupps WJ. Jr. Biomechanics of ophthalmic crosslinking. Transl Vis Sci Technol. 2021;10(5):8. doi:10.1167/tvst.10.5.8.
  • Foster PJ, Buhrmann R, Quigley HA, Johnson GJ. The definition and classification of glaucoma in prevalence surveys. Br J Ophthalmol. 2002;86(2):238–242. doi:10.1136/bjo.86.2.238.
  • Sommer A, Tielsch JM, Katz J, Quigley HA, Gottsch JD, Javitt J, Singh K. Relationship between intraocular pressure and primary open angle glaucoma among white and black Americans. The Baltimore Eye Survey. Arch Ophthalmol. 1991;109(8):1090–1095. doi:10.1001/archopht.1991.01080080050026.
  • Suzuki Y, Iwase A, Araie M, Yamamoto T, Abe H, Shirato S, Kuwayama Y, Mishima HK, Shimizu H, Tomita G, et al. Risk factors for open-angle glaucoma in a Japanese population: the Tajimi Study. Ophthalmology. 2006;113(9):1613–1617. doi:10.1016/j.ophtha.2006.03.05.
  • Gordon MO, Beiser JA, Brandt JD, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, Parrish RK, 2nd, Wilson MR, et al. The ocular hypertension treatment study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120(6):714–720. doi:10.1001/archopht.120.6.714.
  • Yan DB, Coloma FM, Metheetrairut A, Trope GE, Heathcote JG, Ethier CR. Deformation of the lamina cribrosa by elevated intraocular pressure. Br J Ophthalmol. 1994;78(8):643–648. doi:10.1136/bjo.78.8.643.
  • Sigal IA, Ethier CR. Biomechanics of the optic nerve head. Exp Eye Res. 2009;88(4):799–807. doi:10.1016/j.exer.2009.02.003.
  • Burgoyne CF, Downs JC, Bellezza AJ, Suh JK, Hart RT. The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res. 2005;24(1):39–73. doi:10.1016/j.preteyeres.2004.06.001.
  • Quigley H, Anderson DR. The dynamics and location of axonal transport blockade by acute intraocular pressure elevation in primate optic nerve. Invest Ophthalmol. 1976;15(8):606–616.
  • Quigley HA, Addicks EM, Green WR, Maumenee AE. Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch Ophthalmol. 1981;99(4):635–649. doi:10.1001/archopht.1981.03930010635009.
  • Sigal IA, Roberts MD, Girard MJA, Burgoyne CF, Downs JC. Chapter 20: biomechanical changes of the optic disc. In: Levin LA, Albert DM, editors. Ocular disease: mechanisms and management. London: Elsevier; 2010. p. 153–164.
  • Sigal IA, Flanagan JG, Ethier CR. Factors influencing optic nerve head biomechanics. Invest Ophthalmol Vis Sci. 2005;46(11):4189–4199. doi:10.1167/iovs.05-0541.
  • Sigal IA, Flanagan JG, Tertinegg I, Ethier CR. Finite element modeling of optic nerve head biomechanics. Invest Ophthalmol Vis Sci. 2004;45(12):4378–4387. doi:10.1167/iovs.04-0133.
  • Bellezza AJ, Hart RT, Burgoyne CF. The optic nerve head as a biomechanical structure: initial finite element modeling. Invest Ophthalmol Vis Sci. 2000;41(10):2991–3000.
  • Sigal IA, Flanagan JG, Tertinegg I, Ethier CR. Modeling individual-specific human optic nerve head biomechanics. Part II: influence of material properties. Biomech Model Mechanobiol. 2009;8(2):99–109. doi:10.1007/s10237-008-0119-0.
  • Eilaghi A, Flanagan JG, Simmons CA, Ethier CR. Effects of scleral stiffness properties on optic nerve head biomechanics. Ann Biomed Eng. 2010;38(4):1586–1592. doi:10.1007/s10439-009-9879-7.
  • Boote C, Sigal IA, Grytz R, Hua Y, Nguyen TD, Girard MJA. Scleral structure and biomechanics. Prog Retin Eye Res. 2020;74:100773. doi:10.1016/j.preteyeres.2019.100773.
  • McBrien NA, Jobling AI, Gentle A. Biomechanics of the sclera in myopia: extracellular and cellular factors. Optom Vis Sci. 2009;86(1):E23–30. doi:10.1097/OPX.0b013e3181940669.
  • Tamm ER, Ethier CR, L. IIoA Glaucomatous neurodegeneration P. Biological aspects of axonal damage in glaucoma: a brief review. Exp Eye Res. 2017;157:5–12. doi:10.1016/j.exer.2017.02.006.
  • Drance SM. The coefficient of scleral rigidity in normal and glaucomatous eyes. Arch Ophthalmol. 1960;63:668–674. doi:10.1001/archopht.1960.00950020670008.
  • Agrawal KK, Sharma DP, Bhargava G, Sanadhya DK. Scleral rigidity in glaucoma, before and during topical antiglaucoma drug therapy. Indian J Ophthalmol. 1991;39(3):85–86.
  • Coudrillier B, Tian J, Alexander S, Myers KM, Quigley HA, Nguyen TD. Biomechanics of the human posterior sclera: age- and glaucoma-related changes measured using inflation testing. Invest Ophthalmol Vis Sci. 2012;53(4):1714–1728. doi:10.1167/iovs.11-8009.
  • Thornton IL, Dupps WJ, Sinha Roy A, Krueger RR. Biomechanical effects of intraocular pressure elevation on optic nerve/lamina cribrosa before and after peripapillary scleral collagen cross-linking. Invest Ophthalmol Vis Sci. 2009;50(3):1227–1233. doi:10.1167/iovs.08-1960.
  • Bellezza AJ, Rintalan CJ, Thompson HW, Downs JC, Hart RT, Burgoyne CF. Deformation of the lamina cribrosa and anterior scleral canal wall in early experimental glaucoma. Invest Ophthalmol Vis Sci. 2003;44(2):623–637. doi:10.1167/iovs.01-1282.
  • Ivers KM, Yang H, Gardiner SK, Qin L, Reyes L, Fortune B, Burgoyne CF. In Vivo detection of laminar and peripapillary scleral hypercompliance in early monkey experimental glaucoma. Invest Ophthalmol Vis Sci. 2016;57(9):OCT388–403. doi:10.1167/iovs.15-18666.
  • Girard MJ, Suh JK, Bottlang M, Burgoyne CF, Downs JC. Biomechanical changes in the sclera of monkey eyes exposed to chronic IOP elevations. Invest Ophthalmol Vis Sci. 2011;52(8):5656–5669. doi:10.1167/iovs.10-6927.
  • Burgoyne CF, Quigley HA, Thompson HW, Vitale S, Varma R. Early changes in optic disc compliance and surface position in experimental glaucoma. Ophthalmology. 1995;102(12):1800–1809. doi:10.1016/S0161-6420(95)30791-9.
  • Fazio MA, Girard MJA, Lee W, Morris JS, Burgoyne CF, Downs JC. The relationship between scleral strain change and differential cumulative intraocular pressure exposure in the nonhuman primate chronic ocular hypertension model. Invest Ophthalmol Vis Sci. 2019;60(13):4141–4150. doi:10.1167/iovs.19-27060.
  • Cone FE, Gelman SE, Son JL, Pease ME, Quigley HA. Differential susceptibility to experimental glaucoma among 3 mouse strains using bead and viscoelastic injection. Exp Eye Res. 2010;91(3):415–424. doi:10.1016/j.exer.2010.06.018.
  • Cone FE, Steinhart MR, Oglesby EN, Kalesnykas G, Pease ME, Quigley HA. The effects of anesthesia, mouse strain and age on intraocular pressure and an improved murine model of experimental glaucoma. Exp Eye Res. 2012;99:27–35. doi:10.1016/j.exer.2012.04.006.
  • Nguyen C, Cone FE, Nguyen TD, Coudrillier B, Pease ME, Steinhart MR, Oglesby EN, Jefferys JL, Quigley HA. Studies of scleral biomechanical behavior related to susceptibility for retinal ganglion cell loss in experimental mouse glaucoma. Invest Ophthalmol Vis Sci. 2013;54(3):1767–1780. doi:10.1167/iovs.12-10952.
  • Dastiridou AI, Tsironi EE, Tsilimbaris MK, Ginis H, Karyotakis N, Cholevas P, Androudi S, Pallikaris IG. Ocular rigidity, outflow facility, ocular pulse amplitude, and pulsatile ocular blood flow in open-angle glaucoma: a manometric study. Invest Ophthalmol Vis Sci. 2013;54(7):4571–4577. doi:10.1167/iovs.13-12303.
  • Sayah DN, Lesk MR. Ocular rigidity and glaucoma. In: Pallikaris I, Tsilimbaris MK, Dastiridou AI, editors. Ocular rigidity, biomechanics and hydrodynamics of the eye. Cham, Switzerland: Springer; 2021.
  • Coleman DJ, Trokel S. Direct-recorded intraocular pressure variations in a human subject. Arch Ophthalmol. 1969;82(5):637–640. doi:10.1001/archopht.1969.00990020633011.
  • Downs JC, Burgoyne CF, Seigfreid WP, Reynaud JF, Strouthidis NG, Sallee V. 24-hour IOP telemetry in the nonhuman primate: implant system performance and initial characterization of IOP at multiple timescales. Invest Ophthalmol Vis Sci. 2011;52(10):7365–7375. doi:10.1167/iovs.11-7955.
  • Turner DC, Edmiston AM, Zohner YE, Byrne KJ, Seigfreid WP, Girkin CA, Morris JS, Downs JC. Transient intraocular pressure fluctuations: source, magnitude, frequency, and associated mechanical energy. Invest Ophthalmol Vis Sci. 2019;60(7):2572–2582. doi:10.1167/iovs.19-26600.
  • Sayah DN, Szigiato AA, Mazzaferri J, Descovich D, Duval R, Rezende FA, Costantino S, Lesk MR. Correlation of ocular rigidity with intraocular pressure spike after intravitreal injection of bevacizumab in exudative retinal disease. Br J Ophthalmol. 2020;105:bjophthalmol-2019-315595. doi:10.1136/bjophthalmol-2019-315595.
  • Clayson K, Pan X, Pavlatos E, Short R, Morris H, Hart RT, Liu J. Corneoscleral stiffening increases IOP spike magnitudes during rapid microvolumetric change in the eye. Exp Eye Res. 2017;165:29–34. doi:10.1016/j.exer.2017.08.015.
  • Morris HJ, Tang J, Cruz Perez B, Pan X, Hart RT, Weber PA, Liu J. Correlation between biomechanical responses of posterior sclera and IOP elevations during micro intraocular volume change. Invest Ophthalmol Vis Sci. 2013;54(12):7215–7222. doi:10.1167/iovs.13-12441.
  • Karimi A, Rahmati SM, Grytz RG, Girkin CA, Downs JC. Modeling the biomechanics of the lamina cribrosa microstructure in the human eye. Acta Biomater. 2021;134:357–378. doi:10.1016/j.actbio.2021.07.010.
  • Tengroth B, Ammitzboll T. Changes in the content and composition of collagen in the glaucomatous eye–basis for a new hypothesis for the genesis of chronic open angle glaucoma–a preliminary report. Acta Ophthalmol (Copenh). 1984;62(6):999–1008. doi:10.1111/j.1755-3768.1984.tb08452.x.
  • Heijl A, Leske MC, Bengtsson B, Hyman L, Bengtsson B, Hussein M, Early Manifest Glaucoma Trial G. Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol. 2002;120(10):1268–1279. doi:10.1001/archopht.120.10.1268.
  • Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, Parrish RK, 2nd, Wilson MR, Gordon MO. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120(6):701–713, 829–830. doi:10.1001/archopht.120.6.701.
  • Garway-Heath DF, Crabb DP, Bunce C, Lascaratos G, Amalfitano F, Anand N, Azuara-Blanco A, Bourne RR, Broadway DC, Cunliffe IA, et al. Latanoprost for open-angle glaucoma (UKGTS): a randomised, multicentre, placebo-controlled trial. Lancet. 2015;385(9975):1295–1304. doi:10.1016/S0140-6736(14)62111-5.
  • Strouthidis NG, Girard MJ. Altering the way the optic nerve head responds to intraocular pressure-a potential approach to glaucoma therapy. Curr Opin Pharmacol. 2013;13(1):83–89. doi:10.1016/j.coph.2012.09.001.
  • Liu B, McNally S, Kilpatrick JI, Jarvis SP, O’Brien CJ. Aging and ocular tissue stiffness in glaucoma. Surv Ophthalmol. 2018;63(1):56–74. doi:10.1016/j.survophthal.2017.06.007.
  • Downs JC. Optic nerve head biomechanics in aging and disease. Exp Eye Res. 2015;133:19–29. doi:10.1016/j.exer.2015.02.011.
  • Jan NJ, Brazile BL, Hu D, Grube G, Wallace J, Gogola A, Sigal IA. Crimp around the globe; patterns of collagen crimp across the corneoscleral shell. Exp Eye Res. 2018;172:159–170. doi:10.1016/j.exer.2018.04.003.
  • Gogola A, Jan NJ, Brazile B, Lam P, Lathrop KL, Chan KC, Sigal IA. Spatial patterns and age-related changes of the collagen crimp in the human cornea and sclera. Invest Ophthalmol Vis Sci. 2018;59(7):2987–2998. doi:10.1167/iovs.17-23474.
  • Iwase A, Suzuki Y, Araie M, Yamamoto T, Abe H, Shirato S, Kuwayama Y, Mishima HK, Shimizu H, Tomita G, et al. The prevalence of primary open-angle glaucoma in Japanese: the Tajimi Study. Ophthalmology. 2004;111(9):1641–1648. doi:10.1016/j.ophtha.2004.03.029.
  • Downs JC, Suh JK, Thomas KA, Bellezza AJ, Hart RT, Burgoyne CF. Viscoelastic material properties of the peripapillary sclera in normal and early-glaucoma monkey eyes. Invest Ophthalmol Vis Sci. 2005;46(2):540–546. doi:10.1167/iovs.04-0114.
  • Coudrillier B, Pijanka JK, Jefferys JL, Goel A, Quigley HA, Boote C, Nguyen TD. Glaucoma-related changes in the mechanical properties and collagen micro-architecture of the human sclera. PLoS One. 2015;10(7):e0131396. doi:10.1371/journal.pone.0131396.
  • Janowski M, Bulte JW, Handa JT, Rini D, Walczak P. Concise review: using stem cells to prevent the progression of myopia-a concept. Stem Cells. 2015;33(7):2104–2113. doi:10.1002/stem.1984.
  • Campbell IC, Hannon BG, Read AT, Sherwood JM, Schwaner SA, Ethier CR. Quantification of the efficacy of collagen cross-linking agents to induce stiffening of rat sclera. J R Soc Interface. 2017;14(129):20170014. doi:10.1098/rsif.2017.0014.
  • Coudrillier B, Campbell IC, Read AT, Geraldes DM, Vo NT, Feola A, Mulvihill J, Albon J, Abel RL, Ethier CR. Effects of peripapillary scleral stiffening on the deformation of the lamina cribrosa. Invest Ophthalmol Vis Sci. 2016;57(6):2666–2677. doi:10.1167/iovs.15-18193.
  • Gerberich BG, Hannon BG, Hejri A, Winger EJ, Schrader Echeverri E, Nichols LM, Gersch HG, MacLeod NA, Gupta S, Read AT, et al. Transpupillary collagen photocrosslinking for targeted modulation of ocular biomechanics. Biomaterials. 2021;271:120735. doi:10.1016/j.biomaterials.2021.120735.
  • Quigley HA, Pitha IF, Welsbie DS, Nguyen C, Steinhart MR, Nguyen TD, Pease ME, Oglesby EN, Berlinicke CA, Mitchell KL, et al. Losartan treatment protects retinal canglion cells and alters scleral remodeling in experimental glaucoma. PLoS One. 2015;10(10):e0141137. doi:10.1371/journal.pone.0141137.
  • Habashi JP, Doyle JJ, Holm TM, Aziz H, Schoenhoff F, Bedja D, Chen Y, Modiri AN, Judge DP, Dietz HC. Angiotensin II type 2 receptor signaling attenuates aortic aneurysm in mice through ERK antagonism. Science. 2011;332(6027):361–365. doi:10.1126/science.1192152.
  • Borras T. A single gene connects stiffness in glaucoma and the vascular system. Exp Eye Res. 2017;158:13–22. doi:10.1016/j.exer.2016.08.022.
  • Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sankaridurg P, Wong TY, Naduvilath TJ, Resnikoff S. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. 2016;123(5):1036–1042. doi:10.1016/j.ophtha.2016.01.006.
  • Ohno-Matsui K, Jonas JB. Posterior staphyloma in pathologic myopia. Prog Retin Eye Res. 2019;70:99–109. doi:10.1016/j.preteyeres.2018.12.001.
  • Ohno-Matsui K, Kawasaki R, Jonas JB, Cheung CM, Saw SM, Verhoeven VJ, Klaver CC, Moriyama M, Shinohara K, Kawasaki Y, et al. International photographic classification and grading system for myopic maculopathy. Am J Ophthalmol. 2015;159(5):877–883 e7. doi:10.1016/j.ajo.2015.01.022.
  • Metlapally R, Wildsoet CF. Scleral mechanisms underlying ocular growth and myopia. Prog Mol Biol Transl Sci. 2015;134:241–248. doi:10.1016/bs.pmbts.2015.05.005.
  • Rada JA, Mcfarland AL, Cornuet PK, Hassell JR. Proteoglycan synthesis by scleral chondrocytes is modulated by a vision dependent mechanism. Curr Eye Res. 1992;11(8):767–782. doi:10.3109/02713689209000750.
  • Rada JA, Perry CA, Slover ML, Achen VR. Gelatinase A and TIMP-2 expression in the fibrous sclera of myopic and recovering chick eyes. Invest Ophthalmol Vis Sci. 1999;40(13):3091–3099.
  • Norton TT, Rada JA. Reduced extracellular-matrix in mammalian sclera with induced myopia. Vision Res. 1995;35(9):1271–1281. doi:10.1016/0042-6989(94)00243-f.
  • Nickla DL, Wildsoet C, Wallman J. Compensation for spectacle lenses involves changes in proteoglycan synthesis in both the sclera and choroid (vol 16, pg 320, 1997). Curr Eye Res. 1997;16(4):320–625. doi:10.1076/ceyr.16.6.624.5072.
  • Guggenheim JA, McBrien NA. Form-deprivation myopia induces activation of scleral matrix metalloproteinase-2 in tree shrew. Invest Ophthalmol Vis Sci. 1996;37(7):1380–1395.
  • Charman WN, Radhakrishnan H. Peripheral refraction and the development of refractive error: a review. Ophthalmic Physiol Opt. 2010;30(4):321–338. doi:10.1111/j.1475-1313.2010.00746.x.
  • Troilo D, Gottlieb MD, Wallman J. Visual deprivation causes myopia in chicks with optic nerve section. Curr Eye Res. 1987;6(8):993–999. doi:10.3109/02713688709034870.
  • McBrien NA, Moghaddam HO, Cottriall CL, Leech EM, Cornell LM. The effects of blockade of retinal cell action potentials on ocular growth, emmetropization and form deprivation myopia in young chicks. Vision Res. 1995;35(9):1141–1152. doi:10.1016/0042-6989(94)00237-g.
  • Smith EL, 3rd, Hung LF, Huang J, Arumugam B. Effects of local myopic defocus on refractive development in monkeys. Optom Vis Sci. 2013;90(11):1176–1186. doi:10.1097/OPX.0000000000000038.
  • Summers JA. The choroid as a sclera growth regulator. Exp Eye Res. 2013;114:120–127. doi:10.1016/j.exer.2013.03.008.
  • Grytz R. Scleral remodeling in myopia. Amsterdam, the Netherlands: Kugler Publications; 2018. p. 383–403.
  • Chakraborty R, Pardue M. Molecular and biochemical aspects of the retina on refraction. Progress in molecular biology and translational science. 1st ed. Amsterdam, the Netherlands: Elsevier Inc.; 2015.
  • McBrien NA, Cornell LM, Gentle A. Structural and ultrastructural changes to the sclera in a mammalian model of high myopia. Invest Ophthalmol Vis Sci. 2001;42(10):2179–2187.
  • Grytz R, Siegwart JT. Jr. Changing material properties of the tree shrew sclera during minus lens compensation and recovery. Invest Ophthalmol Vis Sci. 2015;56(3):2065–2078. doi:10.1167/iovs.14-15352.
  • Harper AR, Summers JA. The dynamic sclera: extracellular matrix remodeling in normal ocular growth and myopia development. Exp Eye Res. 2015;133:100–111. doi:10.1016/j.exer.2014.07.015.
  • Grytz R, Girkin CA, Libertiaux V, Downs JC. Perspectives on biomechanical growth and remodeling mechanisms in glaucoma. Mech Res Commun. 2012;42:92–106. doi:10.1016/j.mechrescom.2012.01.007.
  • McBrien NA, Norton TT. Prevention of collagen crosslinking increases form-deprivation myopia in tree shrew. Exp Eye Res. 1994;59(4):475–486. doi:10.1006/exer.1994.1133.
  • Phillips JR, Khalaj M, McBrien NA. Induced myopia associated with increased scleral creep in chick and tree shrew eyes. Invest Ophthalmol Vis Sci. 2000;41(8):2028–2034.
  • Jonas JB, Berenshtein E, Holbach L. Lamina cribrosa thickness and spatial relationships between intraocular space and cerebrospinal fluid space in highly myopic eyes. Invest Ophthalmol Vis Sci. 2004;45(8):2660–2665. doi:10.1167/iovs.03-1363.
  • Jonas JB, Xu L. Histological changes of high axial myopia. Eye (Lond). 2014;28(2):113–117. doi:10.1038/eye.2013.223.
  • McBrien NA, Gentle A. Role of the sclera in the development and pathological complications of myopia. Prog Retin Eye Res. 2003;22(3):307–338. doi:10.1016/S1350-9462(02)00063-0.
  • Nijbroek G, Sood S, McIntosh I, Francomano CA, Bull E, Pereira L, Ramirez F, Pyeritz RE, Dietz HC. Fifteen novel FBN1 mutations causing Marfan syndrome detected by heteroduplex analysis of genomic amplicons. Am J Hum Genet. 1995;57(1):8–21.
  • Li J, Zhang Q. Insight into the molecular genetics of myopia. Mol Vis. 2017;23:1048–1080.
  • Saw SM, Gazzard G, Shih-Yen EC, Chua WH. Myopia and associated pathological complications. Ophthalmic Physiol Opt. 2005;25(5):381–391. doi:10.1111/j.1475-1313.2005.00298.x.
  • Mitchell P, Hourihan F, Sandbach J, Wang JJ. The relationship between glaucoma and myopia: the Blue Mountains Eye Study. Ophthalmology. 1999;106(10):2010–2015. doi:10.1016/S0161-6420(99)90416-5.
  • Marcus MW, de Vries MM, Junoy Montolio FG, Jansonius NM. Myopia as a risk factor for open-angle glaucoma: a systematic review and meta-analysis. Ophthalmology. 2011;118(10):1989–1994 e2. doi:10.1016/j.ophtha.2011.03.012.
  • Modjtahedi BS, Abbott RL, Fong DS, Lum F, Tan D. Task force on M. Reducing the global burden of myopia by delaying the onset of myopia and reducing myopic progression in children: the Academy’s task force on myopia. Ophthalmology. 2021;128(6):816–826. doi:10.1016/j.ophtha.2020.10.040.
  • Sanchez-Gonzalez JM, De-Hita-Cantalejo C, Baustita-Llamas MJ, Sanchez-Gonzalez MC, Capote-Puente R. The combined effect of low-dose atropine with orthokeratology in pediatric myopia control: review of the current treatment status for myopia. J Clin Med. 2020;9(8):2371.
  • Bullimore MA, Johnson LA. Overnight orthokeratology. Cont Lens Anterior Eye. 2020;43(4):322–332. doi:10.1016/j.clae.2020.03.018.
  • Yam JC, Li FF, Zhang X, Tang SM, Yip BHK, Kam KW, Ko ST, Young AL, Tham CC, Chen LJ, et al. Two-year clinical trial of the low-concentration atropine for myopia progression (LAMP) study: phase 2 report. Ophthalmology. 2020;127(7):910–919. doi:10.1016/j.ophtha.2019.12.011.
  • Chia A, Lu QS, Tan D. Five-year clinical trial on atropine for the treatment of myopia 2: myopia control with atropine 0.01% eyedrops. Ophthalmology. 2016;123(2):391–399. doi:10.1016/j.ophtha.2015.07.004.
  • Wang M, Zhang F, Liu K, Zhao X. Safety evaluation of rabbit eyes on scleral collagen cross-linking by riboflavin and ultraviolet A. Clin Exp Ophthalmol. 2015;43(2):156–163. doi:10.1111/ceo.12392.
  • Wang M, Corpuz CC. Effects of scleral cross-linking using genipin on the process of form-deprivation myopia in the guinea pig: a randomized controlled experimental study. BMC Ophthalmol. 2015;15(1):89. doi:10.1186/s12886-015-0086-z.
  • El Hamdaoui M, Levy AM, Gaonkar M, Gawne TJ, Girkin CA, Samuels BC, Grytz R. Effect of scleral crosslinking using multiple doses of genipin on experimental progressive myopia in tree shrews. Transl Vis Sci Technol. 2021;10(5):1. doi:10.1167/tvst.10.5.1.
  • Lin X, Naidu RK, Dai J, Zhou X, Qu X, Zhou H. Scleral cross-linking using glyceraldehyde for the prevention of axial elongation in the rabbit: blocked axial elongation and altered scleral microstructure. Curr Eye Res. 2019;44(2):162–171. doi:10.1080/02713683.2018.1522647.
  • Chu Y, Cheng Z, Liu J, Wang Y, Guo H, Han Q. The effects of scleral collagen cross-linking using glyceraldehyde on the progression of form-deprived myopia in guinea pigs. J Ophthalmol. 2016;2016:3526153. doi:10.1155/2016/3526153.
  • Hamdaoui ME, Levy AM, Stuber AB, Girkin CA, Kraft TW, Samuels BC, Grytz R. Scleral crosslinking using genipin can compromise retinal structure and function in tree shrews. Exp Eye Res. 2022;219:109039. doi:10.1016/j.exer.2022.109039.
  • Pitha I, Oglesby E, Chow A, Kimball E, Pease ME, Schaub J, Quigley H. Rho-kinase inhibition reduces myofibroblast differentiation and proliferation of scleral fibroblasts induced by transforming growth factor beta and experimental glaucoma. Trans Vis Sci Tech. 2018;7(6):6. doi:10.1167/tvst.7.6.6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.