439
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Corneal Biomechanics Losses Caused by Refractive Surgery

, , , , &
Pages 137-143 | Received 23 Feb 2022, Accepted 13 Jul 2022, Published online: 24 Aug 2022

References

  • Wolle MA, Randleman JB, Woodward MA. Complications of refractive surgery: Ectasia after refractive surgery. Int Ophthalmol Clin. 2016;56(2):127–139. doi:10.1097/IIO.0000000000000102.
  • Salomao MQ, Hofling-Lima AL, Gomes Esporcatte LP, Correa FF, Lopes B, Sena N, Jr., Dawson DG, Ambrosio R. Jr. Ectatic diseases. Exp Eye Res. 2021;202:108347. doi:10.1016/j.exer.2020.108347.
  • Ambrosio R. Jr. Post-LASIK Ectasia: twenty years of a Conundrum. Semin Ophthalmol. 2019;34:66–68.
  • Dawson DG, Randleman JB, Grossniklaus HE, O’Brien TP, Dubovy SR, Schmack I, Stulting RD, Edelhauser HF. Corneal ectasia after excimer laser keratorefractive surgery: histopathology, ultrastructure, and pathophysiology. Ophthalmology. 2008;115(12):2181–2191 e1. doi:10.1016/j.ophtha.2008.06.008.
  • Randleman JB, Woodward M, Lynn MJ, Stulting RD. Risk assessment for ectasia after corneal refractive surgery. Ophthalmology. 2008;115(1):37–50. doi:10.1016/j.ophtha.2007.03.073.
  • Jin SX, Dackowski E, Chuck RS. Risk factors for postlaser refractive surgery corneal ectasia. Curr Opin Ophthalmol. 2020;31(4):288–292. doi:10.1097/ICU.0000000000000662.
  • Santhiago MR. Percent tissue altered and corneal ectasia. Curr Opin Ophthalmol. 2016;27(4):311–315. doi:10.1097/ICU.0000000000000276.
  • Bergmanson JP, Horne J, Doughty MJ, Garcia M, Gondo M. Assessment of the number of lamellae in the central region of the normal human corneal stroma at the resolution of the transmission electron microscope. Eye Contact Lens. 2005;31(6):281–287. doi:10.1097/01.icl.0000165280.94927.0d.
  • Toshino A, Uno T, Ohashi Y, Maeda N, Oshika T. Transient keratectasia caused by intraocular pressure elevation after laser in situ keratomileusis. J Cataract Refract Surg. 2005;31(1):202–204. doi:10.1016/j.jcrs.2004.08.046.
  • Pinero DP, Nieto JC, Lopez-Miguel A. Characterization of corneal structure in keratoconus. J Cataract Refract Surg. 2012;38(12):2167–2183. doi:10.1016/j.jcrs.2012.10.022.
  • Ucakhan OO, Cetinkor V, Ozkan M, Kanpolat A. Evaluation of Scheimpflug imaging parameters in subclinical keratoconus, keratoconus, and normal eyes. J Cataract Refract Surg. 2011;37(6):1116–1124. doi:10.1016/j.jcrs.2010.12.049.
  • Maeda N, Klyce S, Smolek M. Comparison of methods for detecting keratoconus using videokeratography. Arch Ophthalmol. 1995;113(7):870–874. doi:10.1001/archopht.1995.01100070044023.
  • Smadja D, Touboul D, Cohen A, Doveh E, Santhiago MR, Mello GR, Krueger RR, Colin J. Detection of subclinical keratoconus using an automated decision tree classification. Am J Ophthalmol. 2013;156(2):237–246 e1. doi:10.1016/j.ajo.2013.03.034.
  • Zhang X, Munir SZ, Sami Karim SA, Munir WM. A review of imaging modalities for detecting early keratoconus. Eye. 2021;35(1):173–187. doi:10.1038/s41433-020-1039-1.
  • Gokul A, Vellara HR, Patel DV. Advanced anterior segment imaging in keratoconus: a review. Clin Exp Ophthalmol. 2018;46(2):122–132. doi:10.1111/ceo.13108.
  • Atalay E, Ozalp O, Yildirim N. Advances in the diagnosis and treatment of keratoconus. Ther Adv Ophthalmol. 2021; 13:25158414211012796. doi:10.1177/25158414211012796.
  • Gomes JA, Tan D, Rapuano CJ, Belin MW, Ambrosio R, Jr., Guell JL, Malecaze F, Nishida K, Sangwan VS. Global consensus on keratoconus and ectatic diseases. Cornea. 2015;34(4):359–369. doi:10.1097/ICO.0000000000000408.
  • Bao F, Geraghty B, Wang Q, Elsheikh A. Consideration of corneal biomechanics in the diagnosis and management of keratoconus: is it important? Eye Vis. 2016; 3:18. doi:10.1186/s40662-016-0048-4.
  • Kling S, Hafezi F. Corneal biomechanics – a review. Ophthalmic Physiol Opt. 2017;37(3):240–252. doi:10.1111/opo.12345.
  • Pinero DP, Alcon N. In vivo characterization of corneal biomechanics. J Cataract Refract Surg. 2014; 40:870–887.
  • Chong J, Dupps WJ. Jr. Corneal biomechanics: measurement and structural correlations. Exp Eye Res. 2021;205:108508. doi:10.1016/j.exer.2021.108508.
  • Wilson A, Marshall J. A review of corneal biomechanics: mechanisms for measurement and the implications for refractive surgery. Indian J Ophthalmol. 2020;68(12):2679–2690. doi:10.4103/ijo.IJO_2146_20.
  • Seiler TG, Shao P, Eltony A, Seiler T, Yun SH. Brillouin spectroscopy of normal and keratoconus corneas. Am J Ophthalmol. 2019; 202:118–125. doi:10.1016/j.ajo.2019.02.010.
  • Nair A, Singh M, Aglyamov SR, Larin KV. Heartbeat OCE: corneal biomechanical response to simulated heartbeat pulsation measured by optical coherence elastography. J Biomed Opt. 2020;25(5):1–9. doi:10.1117/1.JBO.25.5.055001.
  • Kwok S, Clayson K, Hazen N, Pan X, Ma Y, Hendershot AJ, Liu J. Heartbeat-induced corneal axial displacement and strain measured by high frequency ultrasound elastography in human volunteers. Transl Vis Sci Technol. 2020;9(13):33. doi:10.1167/tvst.9.13.33.
  • Pavlatos E, Chen H, Clayson K, Pan X, Liu J. Imaging corneal biomechanical responses to ocular pulse using high-frequency ultrasound. IEEE Trans Med Imaging. 2018;37(2):663–670. doi:10.1109/TMI.2017.2775146.
  • Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg. 2005;31(1):156–162. doi:10.1016/j.jcrs.2004.10.044.
  • Roberts CJ. Concepts and misconceptions in corneal biomechanics. J Cataract Refract Surg. 2014;40(6):862–869. doi:10.1016/j.jcrs.2014.04.019.
  • Shah S, Laiquzzaman M, Bhojwani R, Mantry S, Cunliffe I. Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes. Invest Ophthalmol Vis Sci. 2007;48(7):3026–3031. doi:10.1167/iovs.04-0694.
  • Hallahan KM, Roy AS, Ambrosio R, Jr., Salomao M, Dupps WJ. Jr. Discriminant value of custom ocular response analyzer waveform derivatives in keratoconus. Ophthalmology. 2014;121(2):459–468. doi:10.1016/j.ophtha.2013.09.013.
  • Kirwan C, O’Malley D, O’Keefe M. Corneal hysteresis and corneal resistance factor in keratoectasia: findings using the Reichert ocular response analyzer. Ophthalmologica. 2008;222(5):334–337. doi:10.1159/000145333.
  • Fontes BM, Ambrosio R, Jr Velarde GC, Nose W. Corneal biomechanical evaluation in healthy thin corneas compared with matched keratoconus cases. Arq Bras Oftalmol. 2011;74(1):13–16. doi:10.1590/S0004-27492011000100003.
  • Sedaghat MR, Momeni-Moghaddam H, Ambrosio R, Jr., Heidari HR, Maddah N, Danesh Z, Sabzi F. Diagnostic ability of corneal shape and biomechanical parameters for detecting Frank Keratoconus. Cornea. 2018;37(8):1025–1034. doi:10.1097/ICO.0000000000001639.
  • Roberts CJ, Mahmoud AM, Bons JP, Hossain A, Elsheikh A, Vinciguerra R, Vinciguerra P, Ambrosio R. Jr. Introduction of two novel stiffness parameters and interpretation of air puff-induced biomechanical deformation parameters with a dynamic scheimpflug analyzer. J Refract Surg. 2017;33(4):266–273. doi:10.3928/1081597X-20161221-03.
  • Yang K, Xu L, Fan Q, Zhao D, Ren S. Repeatability and comparison of new Corvis ST parameters in normal and keratoconus eyes. Sci Rep. 2019; 9(1):10. doi:10.1038/s41598-019-51502-4.
  • Zhao Y, Shen Y, Yan Z, Tian M, Zhao J, Zhou X. Relationship among corneal stiffness, thickness, and biomechanical parameters measured by Corvis ST, Pentacam and ORA in keratoconus. Front Physiol. 2019;10:740.
  • Herber R, Ramm L, Spoerl E, Raiskup F, Pillunat LE, Terai N. Assessment of corneal biomechanical parameters in healthy and keratoconic eyes using dynamic bidirectional applanation device and dynamic Scheimpflug analyzer. J Cataract Refract Surg. 2019;45(6):778–788. doi:10.1016/j.jcrs.2018.12.015.
  • Leao E, Ing Ren T, Lyra JM, Machado A, Koprowski R, Lopes B, Vinciguerra R, Vinciguerra P, Roberts CJ, Elsheikh A, et al. Corneal deformation amplitude analysis for keratoconus detection through compensation for intraocular pressure and integration with horizontal thickness profile. Comput Biol Med. 2019;109:263–271. doi:10.1016/j.compbiomed.2019.04.019.
  • Vinciguerra R, Elsheikh A, Roberts CJ, Ambrosio R, Jr., Kang DS, Lopes BT, Morenghi E, Azzolini C, Vinciguerra P. Influence of pachymetry and intraocular pressure on dynamic corneal response parameters in healthy patients. J Refract Surg. 2016;32(8):550–561. doi:10.3928/1081597X-20160524-01.
  • Chan TC, Wang YM, Yu M, Jhanji V. Comparison of corneal dynamic parameters and tomographic measurements using Scheimpflug imaging in keratoconus. Br J Ophthalmol. 2018;102(1):42–47. doi:10.1136/bjophthalmol-2017-310355.
  • Vinciguerra R, Ambrosio R, Jr., Elsheikh A, Roberts CJ, Lopes B, Morenghi E, Azzolini C, Vinciguerra P. Detection of keratoconus with a new biomechanical index. J Refract Surg. 2016;32(12):803–810. doi:10.3928/1081597X-20160629-01.
  • Vinciguerra R, Ambrosio R, Jr., Elsheikh A, Hafezi F, Yong Kang DS, Kermani O, Koh S, Lu N, Padmanabhan P, Roberts CJ, et al. Detection of postlaser vision correction ectasia with a new combined biomechanical index. J Cataract Refract Surg. 2021;47(10):1314–1318. doi:10.1097/j.jcrs.0000000000000629.
  • Ambrosio R, Jr., Lopes BT, Faria-Correia F, Salomao MQ, Buhren J, Roberts CJ, Elsheikh A, Vinciguerra R, Vinciguerra P. Integration of Scheimpflug-based corneal tomography and biomechanical assessments for enhancing ectasia detection. J Refract Surg. 2017;33(7):434–443. doi:10.3928/1081597X-20170426-02.
  • Vellara HR, Patel DV. Biomechanical properties of the Keratoconic cornea: a review. Clin Exp Optom. 2015;98(1):31–38. doi:10.1111/cxo.12211.
  • Zhang M, Zhang F, Li Y, Song Y, Wang Z. Early diagnosis of keratoconus in chinese myopic eyes by combining Corvis ST with Pentacam. Curr Eye Res. 2020;45(2):118–123.
  • Ren S, Xu L, Fan Q, Gu Y, Yang K. Accuracy of new Corvis ST parameters for detecting subclinical and clinical keratoconus eyes in a Chinese population. Sci Rep. 2021;11(1):4962. doi:10.1038/s41598-021-84370-y.
  • Shetty R, Nuijts RM, Srivatsa P, Jayadev C, Pahuja N, Akkali MC, Sinha Roy A. Understanding the correlation between tomographic and biomechanical severity of Keratoconic Corneas. Biomed Res Int. 2015;2015:1–9. doi:10.1155/2015/294197.
  • Koh S, Inoue R, Ambrosio R, Jr., Maeda N, Miki A, Nishida K. Correlation between corneal biomechanical indices and the severity of keratoconus. Cornea. 2020;39(2):215–221. doi:10.1097/ICO.0000000000002129.
  • Flockerzi E, Vinciguerra R, Belin MW, Vinciguerra P, Ambrosio R, Jr., Seitz B. Correlation of the Corvis biomechanical factor with tomographic parameters in keratoconus. J Cataract Refract Surg. 2022;48(2):215–221. doi:10.1097/j.jcrs.0000000000000740.
  • Shen Y, Han T, Jhanji V, Shang J, Zhao J, Li M, Zhou X. Correlation between corneal topographic, densitometry, and biomechanical parameters in keratoconus eyes. Trans Vis Sci Tech. 2019;8(3):12. doi:10.1167/tvst.8.3.12.
  • Scarcelli G, Kling S, Quijano E, Pineda R, Marcos S, Yun SH. Brillouin microscopy of collagen crosslinking: noncontact depth-dependent analysis of corneal elastic modulus. Invest Ophthalmol Vis Sci. 2013;54(2):1418–1425. doi:10.1167/iovs.12-11387.
  • Cherfan D, Verter EE, Melki S, Gisel TE, Doyle FJ, Scarcelli G, Yun SH, Redmond RW, Kochevar IE. Collagen cross-linking using rose bengal and green light to increase corneal stiffness. Invest Ophthalmol Vis Sci. 2013;54(5):3426–3433. doi:10.1167/iovs.12-11509.
  • Kwok SJJ, Kuznetsov IA, Kim M, Choi M, Scarcelli G, Yun SH. Selective two-photon collagen crosslinking in situ measured by Brillouin microscopy. Optica. 2016;3(5):469–472. doi:10.1364/OPTICA.3.000469.
  • Randleman JB, Su JP, Scarcelli G. Biomechanical changes after LASIK flap creation combined with rapid cross-linking measured with brillouin microscopy. J Refract Surg. 2017;33(6):408–414. doi:10.3928/1081597X-20170421-01.
  • Webb JN, Su JP, Scarcelli G. Mechanical outcome of accelerated corneal crosslinking evaluated by Brillouin microscopy. J Cataract Refract Surg. 2017;43(11):1458–1463. doi:10.1016/j.jcrs.2017.07.037.
  • Webb JN, Langille E, Hafezi F, Randleman JB, Scarcelli G. Biomechanical impact of localized corneal cross-linking beyond the irradiated treatment area. J Refract Surg. 2019;35(4):253–260. doi:10.3928/1081597X-20190304-01.
  • Zhang H, Roozbahani M, Piccinini AL, Golan O, Hafezi F, Scarcelli G, Randleman JB. Depth-dependent reduction of biomechanical efficacy of contact lens–assisted corneal cross-linking analyzed by brillouin microscopy. J Refract Surg. 2019;35(11):721–728. doi:10.3928/1081597X-20191004-01.
  • Ambekar YS, Singh M, Zhang J, Nair A, Aglyamov SR, Scarcelli G, Larin KV. Multimodal quantitative optical elastography of the crystalline lens with optical coherence elastography and Brillouin microscopy. Biomed Opt Express. 2020;11(4):2041–2051. doi:10.1364/BOE.387361.
  • Wu PJ, Kabakova IV, Ruberti JW, Sherwood JM, Dunlop IE, Paterson C, Torok P, Overby DR. Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials. Nat Methods. 2018;15(8):561–562. doi:10.1038/s41592-018-0076-1.
  • De Stefano VS, Dupps WJ. Jr. Biomechanical diagnostics of the cornea. Int Ophthalmol Clin. 2017;57(3):75–86. doi:10.1097/IIO.0000000000000172.
  • Clayson K, Pavlatos E, Pan X, Sandwisch T, Ma Y, Liu J. Ocular pulse elastography: imaging corneal biomechanical responses to simulated ocular pulse using ultrasound. Transl Vis Sci Technol. 2020;9(1):5. doi:10.1167/tvst.9.1.5.
  • Wilson A, Jones J, Tyrer JR, Marshall J. An interferometric ex vivo study of corneal biomechanics under physiologically representative loading, highlighting the role of the limbus in pressure compensation. Eye Vis. 2020; 7:43. doi:10.1186/s40662-020-00207-1.
  • Wilson A, Jones J, Marshall J. Interferometric ex vivo evaluation of the spatial changes to corneal biomechanics introduced by topographic CXL: a pilot study. J Refract Surg. 2021;37(4):263–273. doi:10.3928/1081597X-20210203-01.
  • Cao K, Liu L, Yu T, Chen F, Bai J, Liu T. Changes in corneal biomechanics during small-incision lenticule extraction (SMILE) and femtosecond-assisted laser in situ keratomileusis (FS-LASIK). Lasers Med Sci. 2020;35(3):599–609. doi:10.1007/s10103-019-02854-w.
  • Khamar P, Shetty R, Vaishnav R, Francis M, Nuijts R, Sinha Roy A. Biomechanics of LASIK flap and SMILE Cap: a prospective, clinical study. J Refract Surg. 2019;35(5):324–332. doi:10.3928/1081597X-20190319-01.
  • Sachdev G, Sachdev MS, Sachdev R, Gupta H. Unilateral corneal ectasia following small-incision lenticule extraction. J Cataract Refract Surg. 2015;41(9):2014–2018. doi:10.1016/j.jcrs.2015.08.006.
  • Mastropasqua L. Bilateral ectasia after femtosecond laser-assisted small-incision lenticule extraction. J Cataract Refract Surg. 2015;41(6):1338–1339. doi:10.1016/j.jcrs.2015.05.013.
  • El-Naggar MT. Bilateral ectasia after femtosecond laser-assisted small-incision lenticule extraction. J Cataract Refract Surg. 2015;41(4):884–888. doi:10.1016/j.jcrs.2015.02.008.
  • Wang Y, Cui C, Li Z, Tao X, Zhang C, Zhang X, Mu G. Corneal ectasia 6.5 months after small-incision lenticule extraction. J Cataract Refract Surg. 2015;41(5):1100–1106. doi:10.1016/j.jcrs.2015.04.001.
  • Mattila JS, Holopainen JM. Bilateral ectasia after femtosecond laser-assisted Small Incision Lenticule Extraction (SMILE). J Refract Surg. 2016;32(7):497–500. doi:10.3928/1081597X-20160502-03.
  • Voulgari N, Mikropoulos D, Kontadakis GA, Safi A, Tabibian D, Kymionis GD. Corneal scarring and hyperopic shift after corneal cross-linking for corneal ectasia after SMILE. J Refract Surg. 2018;34(11):779–782. doi:10.3928/1081597X-20180921-01.
  • Pazo EE, McNeely RN, Arba-Mosquera S, Palme C, Moore JE. Unilateral ectasia after small-incision lenticule extraction. J Cataract Refract Surg. 2019;45(2):236–241. doi:10.1016/j.jcrs.2018.10.018.
  • Shetty R, Kumar NR, Khamar P, Francis M, Sethu S, Randleman JB, Krueger RR, Sinha Roy A, Ghosh A. Bilaterally asymmetric corneal ectasia following SMILE with asymmetrically reduced stromal molecular markers. J Refract Surg. 2019;35(1):6–14. doi:10.3928/1081597X-20181128-01.
  • Spiru B, Kling S, Hafezi F, Sekundo W. Biomechanical Properties of Human Cornea Tested by Two-Dimensional Extensiometry ex vivo in fellow eyes: femtosecond laser-assisted LASIK versus SMILE. J Refract Surg. 2018;34(6):419–423. doi:10.3928/1081597X-20180402-05.
  • Reinstein DZ, Archer TJ, Randleman JB. Mathematical model to compare the relative tensile strength of the cornea after PRK, LASIK, and small incision lenticule extraction. J Refract Surg. 2013;29(7):454–460. doi:10.3928/1081597X-20130617-03.
  • Seven I, Vahdati A, Pedersen IB, Vestergaard A, Hjortdal J, Roberts CJ, Dupps WJ. Jr. Contralateral eye comparison of SMILE and flap-based corneal refractive surgery: computational analysis of biomechanical impact. J Refract Surg. 2017;33(7):444–453. doi:10.3928/1081597X-20170504-01.
  • Guo H, Hosseini-Moghaddam SM, Hodge W. Corneal biomechanical properties after SMILE versus FLEX, LASIK, LASEK, or PRK: a systematic review and meta-analysis. BMC Ophthalmol. 2019;19(1):167. doi:10.1186/s12886-019-1165-3.
  • Raevdal P, Grauslund J, Vestergaard AH. Comparison of corneal biomechanical changes after refractive surgery by noncontact tonometry: small-incision lenticule extraction versus flap-based refractive surgery – a systematic review. Acta Ophthalmol. 2019;97(2):127–136. doi:10.1111/aos.13906.
  • Pedersen IB, Bak-Nielsen S, Vestergaard AH, Ivarsen A, Hjortdal J. Corneal biomechanical properties after LASIK, ReLEx flex, and ReLEx smile by Scheimpflug-based dynamic tonometry. Graefes Arch Clin Exp Ophthalmol. 2014;252(8):1329–1335. doi:10.1007/s00417-014-2667-6.
  • Shen Y, Chen Z, Knorz MC, Li M, Zhao J, Zhou X. Comparison of corneal deformation parameters after SMILE, LASEK, and femtosecond laser-assisted LASIK. J Refract Surg. 2014;30(5):310–318. doi:10.3928/1081597X-20140422-01.
  • Sefat SM, Wiltfang R, Bechmann M, Mayer WJ, Kampik A, Kook D. Evaluation of changes in human corneas after femtosecond laser-assisted LASIK and Small-Incision Lenticule Extraction (SMILE) using non-contact tonometry and ultra-high-speed camera (Corvis ST). Curr Eye Res. 2016;41(7):917–922. doi:10.3109/02713683.2015.1082185.
  • Xin Y, Lopes B, Wang J, Wu J, Zhu M, Jiang M, Miao Y, Lin H, Cao S, Zheng X, et al. Biomechanical effects of tPRK, FS-LASIK and SMILE on the cornea. Front Bioeng Biotechnol. 2022;10:834270.
  • Lee H, Roberts CJ, Kim TI, Ambrosio R, Jr., Elsheikh A, Yong Kang DS. Changes in biomechanically corrected intraocular pressure and dynamic corneal response parameters before and after transepithelial photorefractive keratectomy and femtosecond laser-assisted laser in situ keratomileusis. J Cataract Refract Surg. 2017;43(12):1495–1503. doi:10.1016/j.jcrs.2017.08.019.
  • Lee H, Roberts CJ, Ambrosio R, Jr., Elsheikh A, Kang DSY, Kim TI. Effect of accelerated corneal crosslinking combined with transepithelial photorefractive keratectomy on dynamic corneal response parameters and biomechanically corrected intraocular pressure measured with a dynamic Scheimpflug analyzer in healthy myopic patients. J Cataract Refract Surg. 2017;43(7):937–945. doi:10.1016/j.jcrs.2017.04.036.
  • Fernandez J, Rodriguez-Vallejo M, Martinez J, Tauste A, Pinero DP. Corneal thickness after SMILE affects scheimpflug-based dynamic tonometry. J Refract Surg. 2016;32(12):821–828. doi:10.3928/1081597X-20160816-02.
  • Wang D, Liu M, Chen Y, Zhang X, Xu Y, Wang J, To CH, Liu Q. Differences in the corneal biomechanical changes after SMILE and LASIK. J Refract Surg. 2014;30(10):702–707. doi:10.3928/1081597X-20140903-09.
  • Raghunathan VK, Thomasy SM, Strom P, Yanez-Soto B, Garland SP, Sermeno J, Reilly CM, Murphy CJ. Tissue and cellular biomechanics during corneal wound injury and repair. Acta Biomater. 2017; 58:291–301. doi:10.1016/j.actbio.2017.05.051.
  • Bao F, Cao S, Wang J, Wang Y, Huang W, Zhu R, Zheng X, Huang J, Chen S, Li Y, et al. Regional changes in corneal shape over a 6-month follow-up after femtosecond-assisted LASIK. J Cataract Refract Surg. 2019;45(6):766–777. doi:10.1016/j.jcrs.2018.12.017.
  • Randleman JB. Ectasia after corneal refractive surgery: nothing to SMILE about. J Refract Surg. 2016;32(7):434–435. doi:10.3928/1081597X-20160613-01.
  • Ambrosio R, Jr., Dawson DG, Salomao M, Guerra FP, Caiado AL, Belin MW. Corneal ectasia after LASIK despite low preoperative risk: tomographic and biomechanical findings in the unoperated, stable, fellow eye. J Refract Surg. 2010;26(11):906–911. doi:10.3928/1081597X-20100428-02.
  • Roy AS, Dupps WJ. Jr. Patient-specific modeling of corneal refractive surgery outcomes and inverse estimation of elastic property changes. J Biomech Eng. 2011;133:e011002.
  • Pandolfi A, Fotia G, Manganiello F. Finite element simulations of laser refractive corneal surgery. Eng Comput. 2009;25(1):15–24. doi:10.1007/s00366-008-0102-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.