5,259
Views
12
CrossRef citations to date
0
Altmetric
Reviews

Vitreous Humor: Composition, Characteristics and Implication on Intravitreal Drug Delivery

, , , & ORCID Icon
Pages 208-218 | Received 17 Feb 2022, Accepted 01 Aug 2022, Published online: 28 Nov 2022

References

  • WHO. World report on vision. 2019.
  • Harding S. Extracts from “concise clinical evidence”. BMJ. 2003;326(7397):1023–1025. doi:10.1136/bmj.326.7397.1023.
  • Hannover A. Mikroskopiske undersögelser af nervesystemet. 1842.
  • Höhn A, König J, Grune T. Protein oxidation in aging and the removal of oxidized proteins. J Proteomics. 2013;92:132–159. doi:10.1016/j.jprot.2013.01.004.
  • Lucentis® (ranibizumab). Abbreviated UK prescribing information. Eye. 2017;31:S18–S20. doi:10.1038/eye.2017.149.
  • Heier JS, Bressler NM, Avery RL, Bakri SJ, Boyer DS, Brown DM, Dugel PU, Freund KB, Glassman AR, Kim JE, for the American Society of Retina Specialists Anti-VEGF for Diabetic Macular Edema Comparative Effectiveness Panel, et al. Comparison of aflibercept, bevacizumab, and ranibizumab for treatment of diabetic macular edema: extrapolation of data to clinical practice. JAMA Ophthalmol. 2016;134(1):95–99. doi:10.1001/jamaophthalmol.2015.4110.
  • Squibb B-M. Kenalog for intramuscular or intra-articular use only (pp. 1–20). 2016.
  • Parenky AC, Wadhwa S, Chen HH, Bhalla AS, Graham KS, Shameem M. Container closure and delivery considerations for intravitreal drug administration. AAPS PharmSciTech. 2021;22(3):1–13. doi:10.1208/s12249-021-01949-4.
  • US FDA. FULL PRESCRIBING INFORMATION for ILUVIEN® (fluocinolone acetonide intravitreal implant) 0.19 mg For Intravitreal Injection. FDA.GOV, 2014. Reference ID: 3635981. 19631–10. https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/201923s000lbl.pdf
  • Eter N, Mohr A, Wachtlin J, Feltgen N, Shirlaw A, Leaback R; German Ozurdex in RVO Real World Study Group. Dexamethasone intravitreal implant in retinal vein occlusion: real-life data from a prospective, multicenter clinical trial. Graefes Arch Clin Exp Ophthalmol. 2017;255(1):77–87. doi: 10.1007/s00417-016-3431-x.
  • YUTIQ™ (fluocinolone acetonide intravitreal implant) 0.18 mg, for intravitreal injection. FDA.GOV., NDA 21-737/S-007. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2005/021737s000_AdminCorres.pdf
  • E. P. P. I. YUTIQ™ (fluocinolone acetonide intravitreal implant) 0.18 mg, for intravitreal injection. yutiq.com. 1963. https://yutiq.com/downloads/YUTIQ-USPI-20181120.pdf
  • Heimann F, Barteselli G, Brand A, Dingeldey A, Godard L, Hochstetter H, Schneider M, Rothkegel A, Wagner C, Horvath J, et al. A custom virtual reality training solution for ophthalmologic surgical clinical trials. Adv Simul. 2021; 6(1):7. doi:10.1186/s41077-021-00167-z.
  • Massa H, Georgoudis P, Panos GD. Dexamethasone intravitreal implant (OZURDEX®) for macular edema secondary to noninfectious uveitis: a review of the literature. Ther Deliv. 2019;10(6):343–351. doi:10.4155/tde-2019-0024.
  • Genentech, Inc., Study of the efficacy and safety of the ranibizumab port delivery system for sustained delivery of ranibizumab in patients with subfoveal neovascular age-related macular degeneration (LADDER), NCT02510794, Updated May 6, 2021. Accessed November 24, 2022. https://clinicaltrials.gov/ct2/show/NCT02510794
  • Holekamp NM, Campochiaro PA, Chang M, Miller D, Pieramici D, Adamis AP, Brittain C, Evans E, Kaufman D, Maass KF, all Archway Investigators, et al. Archway randomized phase 3 trial of the port delivery system with ranibizumab for neovascular age-related macular degeneration. Ophthalmology. 2022;129(3):295–307. doi:10.1016/j.ophtha.2021.09.016.
  • García-Quintanilla L, Luaces-Rodríguez A, Gil-Martínez M, Mondelo-García C, Maroñas O, Mangas-Sanjuan V, González-Barcia M, Zarra-Ferro I, Aguiar P, Otero-Espinar FJ, et al. Pharmacokinetics of intravitreal anti-VEGF drugs in age-related macular degeneration. Pharmaceutics. 2019;11(8):365. doi:10.3390/PHARMACEUTICS11080365.
  • Sebag J. Imaging vitreous. Eye. 2002;16(4):429–439. doi:10.1038/SJ.EYE.6700201.
  • Le Goff MM, Bishop PN. Adult vitreous structure and postnatal changes. Eye. 2008;22(10):1214–1222. doi:10.1038/eye.2008.21.
  • Peng Y, Yu Y, Lin L, Liu X, Zhang X, Wang P, Hoffman P, Kim SY, Zhang F, Linhardt RJ. Glycosaminoglycans from bovine eye vitreous humour and interaction with collagen type II. Glycoconj J. 2018;35(1):119–128. doi:10.1007/s10719-017-9808-1.
  • Tram NK, Swindle-Reilly KE. Rheological properties and age-related changes of the human vitreous humor. Front Bioeng Biotechnol. 2018; 6:199. doi:10.3389/FBIOE.2018.00199/BIBTEX.
  • Fernald RD, Wright SE. Maintenance of optical quality during crystalline lens growth. Nature. 1983;301(5901):618–620. doi:10.1038/301618a0.
  • Patel S, Tutchenko L. The refractive index of the human cornea: a review. Cont Lens Anterior Eye. 2019;42(5):575–580. doi:10.1016/j.clae.2019.04.018.
  • Silva AF, Alves MA, Oliveira MSN. Rheological behaviour of vitreous humour. Rheol Acta. 2017;56(4):377–386. doi:10.1007/s00397-017-0997-0.
  • Bishop PN, Crossman MV, McLeod D, Ayad S. Extraction and characterization of the tissue forms of collagen types II and IX from bovine vitreous. Biochem J. 1994;299(2):497–505. doi:10.1042/bj2990497.
  • Canty-Laird EG, Lu Y, Kadler KE. Stepwise proteolytic activation of type I procollagen to collagen within the secretory pathway of tendon fibroblasts in situ. Biochem J. 2012;441(2):707–717. doi:10.1042/BJ20111379.
  • Shafaie S, Hutter V, Brown MB, Cook MT, Chau DYS. Diffusion through the ex vivo vitreal body – bovine, porcine, and ovine models are poor surrogates for the human vitreous. Int J Pharm. 2018;550(1–2):207–215. doi:10.1016/j.ijpharm.2018.07.070.
  • Boneva SK, Wolf J, Rosmus DD, Schlecht A, Prinz G, Laich Y, Boeck M, Zhang P, Hilgendorf I, Stahl A, et al. Transcriptional profiling uncovers human hyalocytes as a unique innate immune cell population. Front Immunol. 2020;11:1–14. doi:10.3389/fimmu.2020.567274.
  • Ashworth JL, Kielty CM, McLeod D. Fibrillin and the eye. Br J Ophthalmol. 2000;84(11):1312–1317. doi:10.1136/bjo.84.11.1312.
  • Le Goff MM, Lu H, Ugarte M, Henry S, Takanosu M, Mayne R, Bishop PN. The vitreous glycoprotein opticin inhibits preretinal neovascularization. Invest Ophthalmol Vis Sci. 2012;53(1):228–234. doi:10.1167/iovs.11-8514.
  • Lindahl U, Couchman J, Kimata K. Proteoglycans and sulfated glycosaminoglycans. In Varki A, Cummings R, Esko J (Eds.). Essentials of glycobiology, 2015.
  • Kim H, Lizak MJ, Tansey G, Csaky KG, Robinson MR, Yuan P, Wang NS, Lutz RJ. Study of ocular transport of drugs released from an intravitreal implant using magnetic resonance imaging. Ann Biomed Eng. 2005;33(2):150–164. doi:10.1007/s10439-005-8974-7.
  • del Amo EM, Rimpelä AK, Heikkinen E, Kari OK, Ramsay E, Lajunen T, Schmitt M, Pelkonen L, Bhattacharya M, Richardson D, et al. Pharmacokinetic aspects of retinal drug delivery. Prog Retin Eye Res. 2017;57:134–185. doi:10.1016/j.preteyeres.2016.12.001.
  • Huerta Ángeles G, Nešporová K. Hyaluronan and its derivatives for ophthalmology: recent advances and future perspectives. Carbohydr Polym. 2021;259:117697. doi:10.1016/j.carbpol.2021.117697.
  • Loukovaara S, Nurkkala H, Tamene F, Gucciardo E, Liu X, Repo P, Lehti K, Varjosalo M. Quantitative proteomics analysis of vitreous humor from diabetic retinopathy patients. J Proteome Res. 2015;14(12):5131–5143. doi:10.1021/acs.jproteome.5b00900.
  • Sotoodehnejadnematalahi F, Burke B. Structure, function and regulation of versican: the most abundant type of proteoglycan in the extracellular matrix. Acta Med Iran. 2013;51(11):740–750.
  • Keenan TDL, Pickford CE, Holley RJ, Clark SJ, Lin W, Dowsey AW, Merry CL, Day AJ, Bishop PN. Age-dependent changes in heparan sulfate in human Bruch’s membrane: implications for age-related macular degeneration. Invest Ophthalmol Vis Sci. 2014;55(8):5370–5379. doi:10.1167/iovs.14-14126.
  • Zhang Q, Zhang Q, Filas BA, Roth R, Heuser J, Ma N, Ma N, Sharma S, Panitch A, Beebe DC, et al. Preservation of the structure of enzymatically-degraded bovine vitreous using synthetic proteoglycan mimics. Invest Ophthalmol Vis Sci. 2014;55(12):8153–8162. doi:10.1167/iovs.14-14366.
  • Beebe DC, Holekamp NM, Siegfried C, Shui YB. Vitreoretinal influences on lens function and cataract. Philos Trans R Soc Lond B Biol Sci. 2011;366(1568):1293–1300. doi:10.1098/rstb.2010.0228.
  • Meral I, Bilgili Y. Diffusion changes in the vitreous humor of the eye during aging. AJNR Am J Neuroradiol. 2011;32(8):1563–1566. doi:10.3174/AJNR.A2543.
  • Käsdorf BT, Arends F, Lieleg O. Diffusion regulation in the vitreous humor. Biophys J. 2015;109(10):2171–2181. doi:10.1016/j.bpj.2015.10.002.
  • Smith DW, Lee CJ, Gardiner BS. No flow through the vitreous humor: how strong is the evidence? Prog Retin Eye Res. 2020;78:100845. doi:10.1016/J.PRETEYERES.2020.100845.
  • Dörsam S, Olkhovskiy V, Friedmann E. Modeling and simulation of the aqueous humor flow in the human eye. Proc Appl Math Mech. 2019;19(1):e201900462. doi:10.1002/PAMM.201900462.
  • Colter J, Williams A, Moran P, Coats B. Age-related changes in dynamic moduli of ovine vitreous. J Mech Behav Biomed Mater. 2015;41:315–324. doi:10.1016/j.jmbbm.2014.09.004.
  • Nickerson CS, Karageozian HL, Park J, Kornfield JA. The mechanical properties of the vitreous humor. Invest Ophthalmol Vis Sci. 2004;45(13):37.
  • Lee B, Litt M, Buchsbaum G. Rheology of the vitreous body: Part 3. Concentration of electrolytes, collagen and hyaluronic acid. Biorheology. 1994;31(4):339–351. doi:10.3233/BIR-1994-31404.
  • Weber H, Landwehr G, Kilp H, Neubauer H. The mechanical properties of the vitreous of pig and human donor eyes. Ophthalmic Res. 1982;14(5):335–343. doi:10.1159/000265211.
  • Los LI, Van der Worp RJ, Van Luyn MJA, Hooymans JMM. Age-related liquefaction of the human vitreous body: LM and TEM evaluation of the role of proteoglycans and collagen. Invest Ophthalmol Vis Sci. 2003;44(7):2828–2833. doi:10.1167/IOVS.02-0588.
  • Goldmann H. Slit-lamp examination of the vitreous and the fundus. Br J Ophthalmol. 1949;33(4):242–247. doi:10.1136/BJO.33.4.242.
  • Basile AS, Glazier G, Lee A, Jiang L-Y, Johnson TR, Shields MJ, Vezina M, Doppalapudi VR. Intravitreal concentrations of a near-infrared fluorescence–labeled biotherapeutic determined in situ using confocal scanning laser ophthalmoscopy. Invest Ophthalmol Vis Sci. 2011;52(9):6949–6958. doi:10.1167/iovs.11-7790.
  • Lahham S, Shniter I, Thompson M, Le D, Chadha T, Mailhot T, Kang TL, Chiem A, Tseeng S, Fox JC. Point-of-care ultrasonography in the diagnosis of retinal detachment, vitreous hemorrhage, and vitreous detachment in the emergency department. JAMA Netw Open. 2019;2(4):e192162–e192162. doi:10.1001/jamanetworkopen.2019.2162.
  • Mamou J, Wa CA, Yee KMP, Silverman RH, Ketterling JA, Sadun AA, Sebag J. Ultrasound-based quantification of vitreous floaters correlates with contrast sensitivity and quality of life. Invest Ophthalmol Vis Sci. 2015;56(3):1611–1617. doi:10.1167/iovs.14-15414.
  • Höhn F, Mirshahi A, Hattenbach L-O. Optical coherence tomography for diagnosis of posterior vitreous detachment at the macular region. Eur J Ophthalmol. 2009;19(3):442–447. doi:10.1177/112067210901900319.
  • Fanea L, Fagan AJ. Review: magnetic resonance imaging techniques in ophthalmology. Mol Vis. 2012;18:2538–2560.
  • Erckens RJ, Jongsma FHM, Wicksted JP, Hendrikse F, March WF, Motamedi M. Raman spectroscopy in ophthalmology: from experimental tool to applications in vivo. Lasers Med Sci. 2001;16(4):236–252. doi:10.1007/PL00011360.
  • Method for non-invasive identification of individuals at risk for diabetes. 1999.
  • von Bülow S, Siggel M, Linke M, Hummer G. Dynamic cluster formation determines viscosity and diffusion in dense protein solutions. Proc Natl Acad Sci USA. 2019;116(20):9843–9852. doi:10.1073/pnas.1817564116.
  • Neudorfer M, Fuhrer AE, Zur D, Barak A. The role of posterior vitreous detachment on the efficacy of anti-vascular endothelial growth factor intravitreal injection for treatment of neovascular age-related macular degeneration. Indian J Ophthalmol. 2018;66(12):1802. doi:10.4103/ijo.IJO_373_18.