295
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Innovations in Corneal Crosslinking

, , , &
Pages 144-151 | Received 13 Apr 2022, Accepted 08 Nov 2022, Published online: 02 Dec 2022

References

  • Wilson SE, Klyce SD. Advances in the analysis of corneal topography. Surv Ophthalmol. 1991;35(4):269–277. doi:10.1016/0039-6257(91)90047-j
  • Seiler T, Kahle G, Kriegerowski M. Excimer laser (193 nm) myopic keratomileusis in sighted and blind human eyes. Refract Corneal Surg. 1990;6(3):165–173. doi:10.3928/1081-597X-19900501-04
  • Pallikaris IG, Siganos DS. Excimer laser in situ keratomileusis and photorefractive keratectomy for correction of high myopia. J Refract Corneal Surg. 1994;10(5):498–510. doi:10.3928/1081-597X-19940901-07
  • Seiler T, Quurke AW. Iatrogenic keratectasia after LASIK in a case of forme fruste keratoconus. J Cataract Refract Surg. 1998;24(7):1007–1009. doi:10.1016/S0886-3350(98)80057-6
  • Seiler T, Spoerl E, Huhle M, Kamouna A. Conservative therapy of keratokonus by enhancement of collagen cross-links. ARVO-abstract 4671-B281. 1996.
  • Sporl E, Huhle M, Kasper M, Seiler T. Increased rigidity of the cornea caused by intrastromal cross-linking. Ophthalmologe. 1997;94(12):902–906.
  • Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol. 2003;135(5):620–627. doi:10.1016/S0002-9394(02)02220-1
  • Kamaev P, Friedman MD, Sherr E, Muller D. Photochemical kinetics of corneal cross-linking with riboflavin. Invest Ophthalmol Vis Sci. 2012;53(4):2360–2367. doi:10.1167/iovs.11-9385
  • Hayes S, Boote C, Kamma-Lorger CS, Rajan MS, Harris J, Dooley E, Hawksworth N, Hiller J, Terill NJ, Hafezi F, et al. Riboflavin/UVA collagen cross-linking-induced changes in normal and keratoconus corneal stroma. PLoS One. 2011;6(8):e22405. doi:10.1371/journal.pone.0022405
  • Richoz O, Hammer A, Tabibian D, Gatzioufas Z, Hafezi F. The biomechanical effect of corneal collagen cross-linking (CXL) with riboflavin and UV-A is oxygen dependent. Transl Vis Sci Technol. 2013;2(7):6. doi:10.1167/tvst.2.7.6
  • Spoerl E, Huhle M, Seiler T. Induction of cross-links in corneal tissue. Exp Eye Res. 1998;66(1):97–103. doi:10.1006/exer.1997.0410
  • Spoerl E, Mrochen M, Sliney D, Trokel S, Seiler T. Safety of UVA-riboflavin cross-linking of the cornea. Cornea. 2007;26(4):385–389. doi:10.1097/ICO.0b013e3180334f78
  • Wittig-Silva C, Chan E, Islam FM, Wu T, Whiting M, Snibson GR. A randomized, controlled trial of corneal collagen cross-linking in progressive keratoconus: three-year results. Ophthalmology. 2014;121(4):812–821. doi:10.1016/j.ophtha.2013.10.028
  • Hersh PS, Stulting RD, Muller D, Durrie DS, Rajpal RK, United States Crosslinking Study Group. United states crosslinking study G. United States multicenter clinical trial of corneal collagen crosslinking for keratoconus treatment. Ophthalmology. 2017;124(9):1259–1270. doi:10.1016/j.ophtha.2017.03.052
  • Seiler TG, Schmidinger G, Fischinger I, Koller T, Seiler T. [Complications of corneal cross-linking]. Ophthalmologe. 2013;110(7):639–644. doi:10.1007/s00347-012-2682-0
  • Greenstein SA, Fry KL, Bhatt J, Hersh PS. Natural history of corneal haze after collagen crosslinking for keratoconus and corneal ectasia: scheimpflug and biomicroscopic analysis. J Cataract Refract Surg. 2010;36(12):2105–2114. doi:10.1016/j.jcrs.2010.06.067
  • Lang PZ, Hafezi NL, Khandelwal SS, Torres-Netto EA, Hafezi F, Randleman JB. Comparative functional outcomes after corneal crosslinking using standard, accelerated, and accelerated with higher total fluence protocols. Cornea. 2019;38(4):433–441. doi:10.1097/ICO.0000000000001878
  • Fischinger I, Seiler TG, Santhirasegaram K, Pettenkofer M, Lohmann CP, Zapp D. Corneal crosslinking (CXL) with 18-mW/cm(2) irradiance and 5.4-J/cm(2) radiant exposure-early postoperative safety. Graefes Arch Clin Exp Ophthalmol. 2018;256(8):1521–1525. doi:10.1007/s00417-018-3978-9
  • Hammer A, Richoz O, Arba Mosquera S, Tabibian D, Hoogewoud F, Hafezi F. Corneal biomechanical properties at different corneal cross-linking (CXL) irradiances. Invest Ophthalmol Vis Sci. 2014;55(5):2881–2884. doi:10.1167/iovs.13-13748
  • Seiler TG, Komninou MA, Nambiar MH, Schuerch K, Frueh BE, Buchler P. Oxygen kinetics during corneal cross-linking with and without supplementary oxygen. Am J Ophthalmol. 2021;223:368–376. doi:10.1016/j.ajo.2020.11.001
  • Seiler T, Hafezi F. Corneal cross-linking-induced stromal demarcation line. Cornea. 2006;25(9):1057–1059. doi:10.1097/01.ico.0000225720.38748.58
  • Brittingham S, Tappeiner C, Frueh BE. Corneal cross-linking in keratoconus using the standard and rapid treatment protocol: differences in demarcation line and 12-month outcomes. Invest Ophthalmol Vis Sci. 2014;55(12):8371–8376. doi:10.1167/iovs.14-15444
  • Shetty R, Pahuja NK, Nuijts RM, Ajani A, Jayadev C, Sharma C, Nagaraja H. Current protocols of corneal collagen cross-linking: visual, refractive, and tomographic outcomes. Am J Ophthalmol. 2015;160(2):243–249. doi:10.1016/j.ajo.2015.05.019
  • Touboul D, Efron N, Smadja D, Praud D, Malet F, Colin J. Corneal confocal microscopy following conventional, transepithelial, and accelerated corneal collagen cross-linking procedures for keratoconus. J Refract Surg. 2012;28(11):769–776. doi:10.3928/1081597X-20121016-01
  • Mazzotta C, Traversi C, Caragiuli S, Rechichi M. Pulsed vs continuous light accelerated corneal collagen crosslinking: in vivo qualitative investigation by confocal microscopy and corneal OCT. Eye (Lond). 2014;28(10):1179–1183. doi:10.1038/eye.2014.163
  • Shajari M, Kolb CM, Agha B, Steinwender G, Muller M, Herrmann E, Schmack I, Mayer WJ, Kohnen T. Comparison of standard and accelerated corneal cross-linking for the treatment of keratoconus: a meta-analysis. Acta Ophthalmol. 2019;97(1):e22–e35. doi:10.1111/aos.13814
  • Moramarco A, Mastrofilippo V, Romano MG, Iannetta D, Braglia L, Fontana L. Efficacy and safety of accelerated corneal cross-linking for progressive keratoconus: a 5-year follow-up study. J Refract Surg. 2020;36(11):724–730. doi:10.3928/1081597X-20200819-01
  • Lenk J, Herber R, Oswald C, Spoerl E, Pillunat LE, Raiskup F. Risk factors for progression of keratoconus and failure rate after corneal cross-linking. J Refract Surg. 2021;37(12):816–823. doi:10.3928/1081597X-20210830-01
  • Koller T, Mrochen M, Seiler T. Complication and failure rates after corneal crosslinking. J Cataract Refract Surg. 2009;35(8):1358–1362. doi:10.1016/j.jcrs.2009.03.035
  • Hatch W, El-Defrawy S, Ong Tone S, Stein R, Slomovic AR, Rootman DS, Rabinovitch T, Kranemann C, Chew HF, Chan CC, et al. Accelerated corneal cross-linking: efficacy, risk of progression, and characteristics affecting outcomes. A large, single-center prospective study. Am J Ophthalmol. 2020;213:76–87. doi:10.1016/j.ajo.2020.01.006
  • Seiler TG, Mueller M, Mendes Baiao T. Repeatability and comparison of corneal tomography in mild to severe keratoconus between the anterior segment OCT MS-39 and pentacam HR. J Refract Surg. 2022;38(4):250–255. doi:10.3928/1081597X-20220114-02
  • Ehmke T, Seiler TG, Fischinger I, Ripken T, Heisterkamp A, Frueh BE. Comparison of corneal riboflavin gradients using dextran and HPMC solutions. J Refract Surg. 2016;32(12):798–802. doi:10.3928/1081597X-20160920-03
  • Fischinger I, Seiler TG, Wendelstein J, Tetz K, Fuchs B, Bolz M. Biomechanical response after corneal cross-linking with riboflavin dissolved in dextran solution versus hydroxypropyl methylcellulose. J Refract Surg. 2021;37(9):631–635. doi:10.3928/1081597X-20210610-04
  • Rapuano PB, Mathews PM, Florakis GJ, Trokel SL, Suh LH. Corneal collagen crosslinking in patients treated with dextran versus isotonic hydroxypropyl methylcellulose (HPMC) riboflavin solution: a retrospective analysis. Eye Vis (Lond). 2018;5:23. doi: 10.1186/s40662-018-0116-z
  • Hagem AM, Thorsrud A, Sandvik GF, Drolsum L. Randomized study of collagen cross-linking with conventional versus accelerated UVA irradiation using riboflavin with hydroxypropyl methylcellulose: two-year results. Cornea. 2019;38(2):203–209. doi:10.1097/ICO.0000000000001791
  • Hafezi F, Mrochen M, Iseli HP, Seiler T. Collagen crosslinking with ultraviolet-A and hypoosmolar riboflavin solution in thin corneas. J Cataract Refract Surg. 2009;35(4):621–624. doi:10.1016/j.jcrs.2008.10.060
  • Wollensak G, Sporl E. Biomechanical efficacy of corneal cross-linking using hypoosmolar riboflavin solution. Eur J Ophthalmol. 2019;29(5):474–481. doi:10.1177/1120672118801130
  • Wollensak G, Aurich H, Wirbelauer C, Sel S. Significance of the riboflavin film in corneal collagen crosslinking. J Cataract Refract Surg. 2010;36(1):114–120. doi:10.1016/j.jcrs.2009.07.044
  • Filippello M, Stagni E, O‘Brart D. Transepithelial corneal collagen crosslinking: bilateral study. J Cataract Refract Surg. 2012;38(2):283–291. doi:10.1016/j.jcrs.2011.08.030
  • Caporossi A, Mazzotta C, Paradiso AL, Baiocchi S, Marigliani D, Caporossi T. Transepithelial corneal collagen crosslinking for progressive keratoconus: 24-month clinical results. J Cataract Refract Surg. 2013;39(8):1157–1163. doi:10.1016/j.jcrs.2013.03.026
  • Franke MAD, Landes T, Seiler TG, Khayyat D, Johannsmeier S, Heinemann D, Ripken T. Corneal riboflavin gradients and UV-absorption characteristics after topical application of riboflavin in concentrations ranging from 0.1 to 0.5. Exp Eye Res. 2021;213:108842. doi:10.1016/j.exer.2021.108842
  • Vinciguerra P, Montericcio A, Catania F, Fossati G, Raimondi R, Legrottaglie EF, Vinciguerra R. New perspectives in keratoconus treatment: an update on iontophoresis-assisted corneal collagen crosslinking. Int Ophthalmol. 2021;41(5):1909–1916. doi:10.1007/s10792-021-01713-4
  • Vinciguerra R, Legrottaglie EF, Tredici C, Mazzotta C, Rosetta P, Vinciguerra P. Transepithelial iontophoresis-assisted cross linking for progressive keratoconus: up to 7 years of follow up. J Clin Med. 2022;11(3):678. doi: 10.3390/jcm11030678
  • Hill J, Liu C, Deardorff P, Tavakol B, Eddington W, Thompson V, Gore D, Raizman M, Adler DC. Optimization of oxygen dynamics, UV-A delivery, and drug formulation for accelerated epi-on corneal crosslinking. Curr Eye Res. 2020;45(4):450–458. doi:10.1080/02713683.2019.1669663
  • Harvitt DM, Bonanno JA. Oxygen consumption of the rabbit cornea. Invest Ophthalmol Vis Sci. 1998;39(2):444–448.
  • Freeman RD. Oxygen consumption by the component layers of the cornea. J Physiol. 1972;225(1):15–32. doi:10.1113/jphysiol.1972.sp009927
  • Mazzotta C, Sgheri A, Bagaglia SA, Rechichi M, Di Maggio A. Customized corneal crosslinking for treatment of progressive keratoconus: clinical and OCT outcomes using a transepithelial approach with supplemental oxygen. J Cataract Refract Surg. 2020;46(12):1582–1587. doi:10.1097/j.jcrs.0000000000000347
  • Matthys A, Cassagne M, Galiacy SD, El Hout S, Fournie P, Malecaze F. Transepithelial corneal cross-linking with supplemental oxygen in keratoconus: 1-year clinical results. J Refract Surg. 2021;37(1):42–48. doi:10.3928/1081597X-20201111-01
  • Kamiya K, Kanayama S, Takahashi M, Shoji N. Visual and topographic improvement with epithelium-on, oxygen-supplemented, customized corneal cross-linking for progressive keratoconus. J Clin Med. 2020;9(10):3222. doi: 10.3390/jcm9103222
  • Roberts CJ, Dupps WJ. Jr. Biomechanics of corneal ectasia and biomechanical treatments. J Cataract Refract Surg. 2014;40(6):991–998. doi:10.1016/j.jcrs.2014.04.013
  • Seiler TG, Shao P, Eltony A, Seiler T, Yun SH. Brillouin spectroscopy of normal and keratoconus corneas. Am J Ophthalmol. 2019;202:118–125. doi:10.1016/j.ajo.2019.02.010
  • Nordstrom M, Schiller M, Fredriksson A, Behndig A. Refractive improvements and safety with topography-guided corneal crosslinking for keratoconus: 1-year results. Br J Ophthalmol. 2017;101(7):920–925. doi:10.1136/bjophthalmol-2016-309210
  • Seiler TG, Fischinger I, Koller T, Zapp D, Frueh BE, Seiler T. Customized corneal cross-linking: one-year results. Am J Ophthalmol. 2016;166:14–21. doi:10.1016/j.ajo.2016.02.029
  • Abrishamchi R, Abdshahzadeh H, Hillen M, Hafezi N, Torres-Netto EA, Aslanides IM, Chen S, Randleman JB, Hafezi F. High-fluence accelerated epithelium-off corneal cross-linking protocol provides dresden protocol-like corneal strengthening. Transl Vis Sci Technol. 2021;10(5):10. doi:10.1167/tvst.10.5.10
  • The International Commission on Non-Ionizing Radiation Protection. Guidelines on limits of exposure to laser radiation of wavelengths between 180 nm and 1,000 mm. Health Phys. 2013;105:271–295.
  • Mazzotta C, Moramarco A, Traversi C, Baiocchi S, Iovieno A, Fontana L. Accelerated corneal collagen cross-linking using topography-guided UV-A energy emission: preliminary clinical and morphological outcomes. J Ophthalmol. 2016;2016:2031031. doi:10.1155/2016/2031031
  • Cassagne M, Pierne K, Galiacy SD, Asfaux-Marfaing MP, Fournie P, Malecaze F. Customized topography-guided corneal collagen cross-linking for keratoconus. J Refract Surg. 2017;33(5):290–297. doi:10.3928/1081597X-20170201-02
  • Seiler TG, Batista A, Frueh BE, Koenig K. Riboflavin concentrations at the endothelium during corneal cross-linking in humans. Invest Ophthalmol Vis Sci. 2019;60(6):2140–2145. doi:10.1167/iovs.19-26686
  • Hafezi F, Kling S, Gilardoni F, Hafezi N, Hillen M, Abrishamchi R, Gomes JAP, Mazzotta C, Randleman JB, Torres-Netto EA. Individualized corneal cross-linking with riboflavin and UV-A in ultrathin corneas: the Sub400 protocol. Am J Ophthalmol. 2021;224:133–142. doi:10.1016/j.ajo.2020.12.011
  • Koller T, Iseli HP, Donitzky C, Ing D, Papadopoulos N, Seiler T. Topography-guided surface ablation for forme fruste keratoconus. Ophthalmology. 2006;113(12):2198–2202. doi:10.1016/j.ophtha.2006.06.032
  • Zhu AY, Jun AS, Soiberman US. Combined protocols for corneal collagen cross-linking with photorefractive surgery for refractive management of keratoconus: update on techniques and review of literature. Ophthalmol Ther. 2019;8(1):15–31. doi:10.1007/s40123-019-00210-3
  • Noor IH, Seiler TG, Noor K, Seiler T. Continued long-term flattening after corneal cross-linking for keratoconus. J Refract Surg. 2018;34(8):567–570. doi:10.3928/1081597X-20180607-01
  • Moraes RLB, Ghanem RC, Ghanem VC, Santhiago MR. Haze and visual acuity loss after sequential photorefractive keratectomy and corneal cross-linking for keratoconus. J Refract Surg. 2019;35(2):109–114. doi:10.3928/1081597X-20190114-01
  • Gore DM, Leucci MT, Anand V, Fernandez-Vega Cueto L, Arba Mosquera S, Allan BD. Combined wavefront-guided transepithelial photorefractive keratectomy and corneal crosslinking for visual rehabilitation in moderate keratoconus. J Cataract Refract Surg. 2018;44(5):571–580. doi:10.1016/j.jcrs.2018.03.026
  • Nattis AS, Rosenberg ED, Donnenfeld ED. One-year visual and astigmatic outcomes of keratoconus patients following sequential crosslinking and topography-guided surface ablation: the TOPOLINK study. J Cataract Refract Surg. 2020;46(4):507–516. doi:10.1097/j.jcrs.0000000000000110
  • Singal N, Ong Tone S, Stein R, Bujak MC, Chan CC, Chew HF, El-Defrawy S, Jin Y, Kranemann C, Rabinovitch T, et al. Comparison of accelerated CXL alone, accelerated CXL-ICRS, and accelerated CXL-TG-PRK in progressive keratoconus and other corneal ectasias. J Cataract Refract Surg. 2020;46(2):276–286. doi:10.1097/j.jcrs.0000000000000049
  • Kwok SJJ, Kuznetsov IA, Kim M, Choi M, Scarcelli G, Yun SH. Selective two-photon collagen crosslinking in situ measured by Brillouin microscopy. Optica. 2016;3(5):469–472. doi:10.1364/OPTICA.3.000469
  • Bradford S, Mikula E, Kim SW, Xie Y, Juhasz T, Brown DJ, Jester JV. Nonlinear optical corneal crosslinking, mechanical stiffening, and corneal flattening using amplified femtosecond pulses. Transl Vis Sci Technol. 2019;8(6):35. doi:10.1167/tvst.8.6.35
  • Bradford SM, Mikula ER, Chai D, Brown DJ, Juhasz T, Jester JV. Custom built nonlinear optical crosslinking (NLO CXL) device capable of producing mechanical stiffening in ex vivo rabbit corneas. Biomed Opt Express. 2017;8(10):4788–4797. doi:10.1364/BOE.8.004788
  • Bradford SM, Brown DJ, Juhasz T, Mikula E, Jester JV. Nonlinear optical corneal collagen crosslinking of ex vivo rabbit eyes. J Cataract Refract Surg. 2016;42(11):1660–1665. doi:10.1016/j.jcrs.2016.06.040

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.