110
Views
0
CrossRef citations to date
0
Altmetric
Cornea and Ocular Surface

Mimicking TGFBI Hot-Spot Mutation Did Not Result in Any Deposit Formation in the Zebrafish Cornea

ORCID Icon, &
Pages 458-466 | Received 03 Jul 2023, Accepted 16 Dec 2023, Published online: 02 Jan 2024

References

  • Beuerman RW, Pedroza L. Ultrastructure of the human cornea. Microsc Res Tech. 1996;33(4):320–335. doi: 10.1002/(SICI)1097-0029(19960301)33:4<320::AID-JEMT3>3.0.CO;2-T.
  • Dua HS, Faraj LA, Said DG, Gray T, Lowe J. Human corneal anatomy redefined: a novel pre-Descemet’s layer (Dua’s layer). Ophthalmology. 2013;120(9):1778–1785. doi: 10.1016/j.ophtha.2013.01.018.
  • Munier FL, Korvatska E, Djemaï A, Le Paslier D, Zografos L, Pescia G, Schorderet DF. Kerato-epithelin mutations in four 5q31-linked corneal dystrophies. Nat Genet. 1997;15(3):247–251. doi: 10.1038/ng0397-247.
  • Weiss JS, Møller HU, Aldave AJ, Seitz B, Bredrup C, Kivelä T, Munier FL, Rapuano CJ, Nischal KK, Kim EK, et al. IC3D classification of corneal dystrophies – edition 2. Cornea. 2015;34(2):117–159. [Erratum in: Cornea. 2015 Oct;34(10):e32. Erratum in: Cornea. 2022;41(12):e23]. doi: 10.1097/ICO.0000000000000307.
  • Lakshminarayanan R, Chaurasia SS, Anandalakshmi V, Chai SM, Murugan E, Vithana EN, Beuerman RW, Mehta JS. Clinical and genetic aspects of the TGFBI-associated corneal dystrophies. Ocul Surf. 2014;12(4):234–251. doi: 10.1016/j.jtos.2013.12.002.
  • Nielsen NS, Poulsen ET, Lukassen MV, Chao Shern C, Mogensen EH, Weberskov CE, DeDionisio L, Schauser L, Moore TCB, Otzen DE, et al. Biochemical mechanisms of aggregation in TGFBI-linked corneal dystrophies. Prog Retin Eye Res. 2020;77:100843. doi: 10.1016/j.preteyeres.2020.100843.
  • Thapa N, Lee BH, Kim IS. TGFBIp/betaIG-H3 protein: a versatile matrix molecule induced by TGF-beta. Int J Biochem Cell Biol. 2007;39(12):2183–2194. doi: 10.1016/j.biocel.2007.06.004.
  • Skonier J, Bennett K, Rothwell V, Kosowski S, Plowman G, Wallace P, Edelhoff S, Disteche C, Neubauer M, Marquardt H. Beta IG-H3: a transforming growth factor-beta-responsive gene encoding a secreted protein that inhibits cell attachment in vitro and suppresses the growth of CHO cells in nude mice. DNA Cell Biol. 1994;13(6):571–584. doi: 10.1089/dna.1994.13.571.
  • Okada M, Yamamoto S, Tsujikawa M, Watanabe H, Inoue Y, Maeda N, Shimomura Y, Nishida K, Quantock AJ, Kinoshita S, et al. Two distinct kerato-epithelin mutations in Reis-Bücklers corneal dystrophy. Am J Ophthalmol. 1998;126(4):535–542. doi: 10.1016/s0002-9394(98)00135-4.
  • Kim JE, Han MS, Bae YC, Kim HK, Kim TI, Kim EK, Kim IS. Anterior segment dysgenesis after overexpression of transforming growth factor-beta-induced gene, beta IGH3, in the mouse eye. Mol Vis. 2007;13:1942–1952.
  • Liao X, Cui H, Wang F. Establishment of a transgenic mouse model of corneal dystrophy overexpressing human BIGH3. Int J Mol Med. 2013;32(5):1110–1114. doi: 10.3892/ijmm.2013.1480.
  • Bustamante M, Tasinato A, Maurer F, Elkochairi I, Lepore MG, Arsenijevic Y, Pedrazzini T, Munier FL, Schorderet DF. Overexpression of a mutant form of TGFBI/BIGH3 induces retinal degeneration in transgenic mice. Mol Vis. 2008;14:1129–1137.
  • Yamazoe K, Yoshida S, Yasuda M, Hatou S, Inagaki E, Ogawa Y, Tsubota K, Shimmura S. Development of a Transgenic Mouse with R124H Human TGFBI Mutation Associated with Granular Corneal Dystrophy Type 2. PLoS One. 2015;10(7):e0133397. doi: 10.1371/journal.pone.0133397.
  • Lukassen MV, Poulsen ET, Donaghy J, Mogensen EH, Christie KA, Roshanravan H, DeDioniso L, Nesbit MA, Moore T, Enghild JJ. Protein analysis of the TGFBIR124H mouse model gives insight into phenotype development of granular corneal dystrophy. Proteomics Clin Appl. 2020;14(6):e1900072. doi: 10.1002/prca.201900072.
  • Kitamoto K, Taketani Y, Fujii W, Inamochi A, Toyono T, Miyai T, Yamagami S, Kuroda M, Usui T, Ouchi Y. Generation of mouse model of TGFBI-R124C corneal dystrophy using CRISPR/Cas9-mediated homology-directed repair. Sci Rep. 2020;10(1):2000. doi: 10.1038/s41598-020-58876-w.
  • Zhao XC, Yee RW, Norcom E, Burgess H, Avanesov AS, Barrish JP, Malicki J. The zebrafish cornea: structure and development. Invest Ophthalmol Vis Sci. 2006;47(10):4341–4348. doi: 10.1167/iovs.05-1611.
  • Akhtar S, Schonthaler HB, Bron AJ, Dahm R. Formation of stromal collagen fibrils and proteoglycans in the developing zebrafish cornea. Acta Ophthalmol. 2008;86(6):655–665. doi: 10.1111/j.1600-0420.2007.01135.x.
  • Soules KA, Link BA. Morphogenesis of the anterior segment in the zebrafish eye. BMC Dev Biol. 2005;5(1):12. doi: 10.1186/1471-213X-5-12.
  • Puzzolo D, Pisani A, Malta C, Santoro G, Meduri A, Abbate F, Montalbano G, Wylegala E, Rana RA, Bucchieri F, et al. Structural, ultrastructural, and morphometric study of the zebrafish ocular surface: a model for human corneal diseases? Curr Eye Res. 2018;43(2):175–185. doi: 10.1080/02713683.2017.1385087.
  • Haustein J. On the ultrastructure of the developing and adult mouse corneal stroma. Anat Embryol (Berl)). 1983;168(2):291–305. doi: 10.1007/BF00315823.
  • Hirate Y, Okamoto H, Yamasu K. Structure of the zebrafish fasciclin I-related extracellular matrix protein (betaIG-H3) and its characteristic expression during embryogenesis. Gene Expr Patterns. 2003;3(3):331–336. doi: 10.1016/s1567-133x(03)00035-8.
  • Auer TO, Duroure K, De Cian A, Concordet JP, Del Bene F. Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res. 2014;24(1):142–153. doi: 10.1101/gr.161638.113.
  • Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT, Zheng Z, Gonzales AP, Li Z, Peterson RT, Yeh JR, et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature. 2015;523(7561):481–485. doi: 10.1038/nature14592.
  • Ikkala K, Raatikainen S, Koivula H, Michon F. Zebrafish cornea formation and homeostasis reveal a slow maturation process, similarly to terrestrial vertebrates’ corneas. Front Physiol. 2022; Nov 113:906155. doi: 10.3389/fphys.2022.906155.
  • Kayman Kürekçi G, Kural Mangit E, Koyunlar C, Unsal S, Saglam B, Ergin B, Gizer M, Uyanik I, Boustanabadimaralan Düz N, Korkusuz P, et al. Knockout of zebrafish desmin genes does not cause skeletal muscle degeneration but alters calcium flux. Sci Rep. 2021;11(1):7505. doi: 10.1038/s41598-021-86974-w.
  • Yaylacıoğlu Tuncay F, Dinçer PR. Could autosomal dominant TGFBI-related corneal dystrophies be modelled in zebrafish by using CRISPR/Cas9: challenges and possibilities. W J Opthalmol Vis Res. 2019;1(3):e000513.
  • Varshney GK, Carrington B, Pei W, Bishop K, Chen Z, Fan C, Xu L, Jones M, LaFave MC, Ledin J, et al. A high-throughput functional genomics workflow based on CRISPR/Cas9-mediated targeted mutagenesis in zebrafish. Nat Protoc. 2016;11(12):2357–2375. doi: 10.1038/nprot.2016.141.
  • Crispo M, Mulet AP, Tesson L, Barrera N, Cuadro F, dos Santos-Neto PC, Nguyen TH, Crénéguy A, Brusselle L, Anegón I, et al. Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes. PLoS One. 2015;10(8):e0136690. doi: 10.1371/journal.pone.0136690.
  • Poulsen ET, Runager K, Nielsen NS, Lukassen MV, Thomsen K, Snider P, Simmons O, Vorum H, Conway SJ, Enghild JJ. Proteomic profiling of TGFBI-null mouse corneas reveals only minor changes in matrix composition supportive of TGFBI knockdown as therapy against TGFBI-linked corneal dystrophies. Febs J. 2018;285(1):101–114. doi: 10.1111/febs.14321.
  • Dighiero P, Drunat S, D'Hermies F, Renard G, Delpech M, Valleix S. A novel variant of granular corneal dystrophy caused by association of 2 mutations in the TGFBI gene-R124L and DeltaT125-DeltaE126. Arch Ophthalmol. 2000;118(6):814–818. doi: 10.1001/archopht.118.6.814.
  • Krauss J, Geiger-Rudolph S, Koch I, Nüsslein-Volhard C, Irion U. A dominant mutation in tyrp1A leads to melanophore death in zebrafish. Pigment Cell Melanoma Res. 2014; Sep27(5):827–830. doi: 10.1111/pcmr.12272.
  • Tessadori F, Roessler HI, Savelberg SMC, Chocron S, Kamel SM, Duran KJ, van Haelst MM, van Haaften G, Bakkers J. Effective CRISPR/Cas9-based nucleotide editing in zebrafish to model human genetic cardiovascular disorders. Dis Model Mech. 2018; Oct 1811(10):dmm035469.
  • Kamel SM, van Opbergen CJM, Koopman CD, Verkerk AO, Boukens BJD, de Jonge B, Onderwater YL, van Alebeek E, Chocron S, Polidoro Pontalti C, et al. Istaroxime treatment ameliorates calcium dysregulation in a zebrafish model of phospholamban R14del cardiomyopathy. Nat Commun. 2021; Dec 912(1):7151. doi: 10.1038/s41467-021-27461-8.
  • Atienzar-Aroca R, Ferre-Fernández JJ, Tevar A, Bonet-Fernández JM, Cabañero MJ, Ruiz-Pastor MJ, Cuenca N, Aroca-Aguilar JD, Escribano J. Transgenic overexpression of myocilin leads to variable ocular anterior segment and retinal alterations associated with extracellular matrix abnormalities in adult zebrafish. Int J Mol Sci. 2022;23(17):9989. doi: 10.3390/ijms23179989.
  • Colakoglu A, Cosar CB. Age-related changes in corneal epithelial thickness measured with an ultrasound pachymeter. Clin Interv Aging. 2022;17:1461–1470. PMID: 36199975; PMCID: PMC9527701. Epithelial thickness decreases by aging doi: 10.2147/CIA.S378050.
  • De Silva MEH, Hill LJ, Downie LE, Chinnery HR. The effects of aging on corneal and ocular surface homeostasis in mice. Invest Ophthalmol Vis Sci. 2019;360(7):2705–2715. doi: 10.1167/iovs.19-26631.
  • Andreasen M, Nielsen SB, Runager K, Christiansen G, Nielsen NC, Enghild JJ, Otzen DE. Polymorphic fibrillation of the destabilized fourth fasciclin-1 domain mutant A546T of the Transforming growth factor-β-induced protein (TGFBIp) occurs through multiple pathways with different oligomeric intermediates. J Biol Chem. 2012;287(41):34730–34742. doi: 10.1074/jbc.M112.379552.
  • Grothe HL, Little MR, Sjogren PP, Chang AA, Nelson EF, Yuan C. Altered protein conformation and lower stability of the dystrophic transforming growth factor beta-induced protein mutants. Mol Vis. 2013;19:593–603. Epub 2013 Mar 20.
  • Malmos KG, Stenvang M, Sahin C, Christiansen G, Otzen DE. The changing face of aging: highly sulfated glycosaminoglycans induce amyloid formation in a lattice corneal dystrophy model protein. J Mol Biol. 2017;429(18):2755–2764. doi: 10.1016/j.jmb.2017.07.014.
  • Ikkala K, Raatikainen S, Michon F. Zebrafish corneal wound healing: from abrasion to wound closure imaging analysis. J Vis Exp. 2022;181(181):e63605. doi: 10.3791/63605.
  • Heur M, Jiao S, Schindler S, Crump JG. Regenerative potential of the zebrafish corneal endothelium. Exp Eye Res. 2013;106:1–4. doi: 10.1016/j.exer.2012.10.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.